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Asymptotic analysis for

a nonlinear parabolic equation on R

Eva Fašangová

Abstract. We show that nonnegative solutions of

ut − uxx + f(u) = 0, x ∈ R, t > 0,

u = αū, x ∈ R, t = 0, supp ū compact

either converge to zero, blow up in L2-norm, or converge to the ground state when
t → ∞, where the latter case is a threshold phenomenon when α > 0 varies. The proof
is based on the fact that any bounded trajectory converges to a stationary solution.
The function f is typically nonlinear but has a sublinear growth at infinity. We also
show that for superlinear f it can happen that solutions converge to zero for any α > 0,
provided supp ū is sufficiently small.

Keywords: parabolic equation, stationary solution, convergence

Classification: 35B40, 35K55, 35B05

1. Introduction

In this paper we investigate the asymptotic behaviour of positive (classical)
solutions of the equation

(1.1)
ut(t, x)− uxx(t, x) + f(u(t, x)) = 0, x ∈ R, t ≥ 0,

lim
|x|→∞

u(t, x) = 0, t ≥ 0

with initial condition

(1.2) u(0, x) = u0(x), x ∈ R.

Equations of this type arise for example in physics in modelling the heat prop-
agation or in biological models of population dynamics.
Let f : [0,∞) 7→ R. We denote F (s) =

∫ s
0 f(τ) dτ and

ζ0 = inf{s > 0; F (s) ≤ 0}.

For the purposes of the paper we will use the following hypotheses:

The work was supported by the Grant Nr. 201/96/0432 of the Grant Agency of the Czech
Republic.
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(F1) f ∈ C1+µ([0,∞)) for some µ > 0,

(F2) f(0) = 0,

(F3) f ′(0) > 0,

(F4) 0 < ζ0 < ∞ and f(ζ0) < 0,

(F5) f(s) ≤ ks for some positive constant k,

(F6) f(s) ≥ −ks for some positive constant k.

We will deal with initial data from the set

I = {ū ∈W1,2(R); supp ū is compact, ū ≥ 0, ū 6≡ 0}.

Then we can state our main results.

Theorem 1.1. For any f satisfying (F1)–(F6) and ū ∈ I there exists a critical
number αc ∈ (0,∞) such that
(i) if α ∈ [0, αc) and u0 = αū, then the solution of (1.1)–(1.2) satisfies

(1.3) lim
t→∞

u(t, .) = 0 in W1,2(R);

(ii) if α ∈ (αc,∞) and u0 = αū, then the solution satisfies

(1.4) lim inf
t→∞

( inf
|x|≤R

u(t, x)) ≥ ζ0 for any R > 0;

(iii) if u0 = αcū, then there exists an x̄ ∈ R such that the solution satisfies

(1.5) lim
t→∞

u(t, .) = wg(. − x̄) in W1,2(R),

where wg is the unique positive symmetric (w(−x) = w(x)) solution
(ground state) of the stationary problem

(1.6) −wxx + f(w) = 0, x ∈ R, w ≥ 0, w 6≡ 0, w ∈ C(R),

(1.7) w(±∞) = 0.

This theorem is a one-dimensional analogy of the result of Feireisl-Petzeltová
[1], where a similar statement is proved for the space domain R

N , N ≥ 3 and
special nonlinearity

f(u) = u+

n
∑

j=1

bju
rj −

m
∑

i=1

aiu
pi, ai, bj > 0, 1 < rj < pi ≤

N

N − 2 ,
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(which violates (F6)) with the exception that in (ii) of [1] the solution blows up in
finite time. The proof of Theorem 1.1 is motivated by [1], namely the use of the
method of Zelenyak [2] to show convergence of a trajectory to a single stationary
solution. This is possible due to the properties of the linearized problem, which,
in our case, is solved directly by methods of ordinary differential equations. Also,
in [1] the method of concentrated compactness is involved, but in our paper we
can overcome this point and prove directly compactness of bounded trajectories
(Proposition 5.5). In this sense the calculation is less sophisticated for N = 1
than it is in [1] for N ≥ 3.
An essential ingredient in the proof of Theorem 1.1 is convergence of relatively

compact trajectories. Convergence of relatively compact trajectories to a time-
periodic solution have been proved recently by Feireisl-Poláčik [3] under more
general assumptions, namely the nonlinear term f = f(t, u) is periodic in time
and u0 ∈ C0(R). In our case, thanks to the energy, there are no nontrivial (i.e.
nonconstant in time) time-periodic solutions to (1.1)–(1.2), so convergence would
follow from [3], but our proof is simpler and we do not need to investigate the
set of zeros of solutions to the linearized problem (“zero numbers”). Moreover,
Theorem 1.1 gives a complete characterization of the long-time behaviour of solu-
tions and shows that convergence to the ground state is a threshold phenomenon,
which is the main result of the first part of this paper. In the second part we
give an example showing that the assumption (F5) is in some sense necessary to
obtain the threshold result (ii) (cf. Theorem 1.2).
In the classical paper of Chaffee [4] it was shown that under the hypotheses

f ∈ C3(R), (F2), (F3) and
f(ζ1) > 0 for some ζ1 ∈ (0, ζ0),

any solution converges (uniformly on bounded sets of R) to zero as t → ∞,
provided the initial condition u0 ∈ L2(R) is uniformly continuous and satisfies

0 ≤ u0(x) ≤ ζ1, x ∈ R.

In the setting of Theorem 1.1 it says the following: Suppose that ζ0 = +∞ instead
of (F4); then for any α ≥ 0 we have (i). In the present paper it will be shown that
if ζ0 < ∞, then any solution emanating from u0 ∈ I and bounded in the L∞-norm
either converges to a stationary solution (which is 0 if (F4) does not hold, and
0 or wg(. − x̄) if (F4) holds), or satisfies (1.4) (in particular it is unbounded in
integral-norm).
The hypothesis (F2) ensures that zero is a stationary solution and (F4) is a

necessary and sufficient condition for the existence of the ground state. (F3)
implies stability of the zero solution. In particular, instead of (F3) one could
assume

f > 0 on (0, ε), for some ε > 0

in order to obtain stability of 0 in C0(R), but for the method used in the proof
of convergence of bounded trajectories (Proposition 5.1) (F3) is essential. (F6)
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guaranties that the solution is defined for any t > 0. The hypothesis on the
compactness of supp ū is technical and it is used to prove convergence of bounded
trajectories emanating from αū. This hypothesis can be replaced by

ū > 0, ū(x) = ū(−x) ≤ wg(x−R) for x > R, ū is nonincreasing on (R,∞),

for some R > 0 (Lemma 5.4 works if this replaces the assumption “supp ū com-
pact”). The next theorem shows that the condition (F5) is natural in the sense
that if f is superlinear, then αc can be +∞.
Theorem 1.2.

(a) Let f be defined on some interval [0, a1] and satisfy (F1)–(F4) with ζ0 <
a1, f(a1) = 0. Let α > 1 and s0 > a1 be fixed.
Then the following assertion holds: There exist positive constants M̄ , r̄

such that if f is prolonged to [0,∞) in such a way that f ∈ C1+µ, µ > 0,
f > 0 on (a1, s0) and

(F7) f(s) ≥ Msα, s ≥ s0,

for some M ≥ M̄ , then the solution of (1.1)–(1.2) converges to 0 in
W1,2(R) as t → ∞, provided meas suppu0 ≤ r̄.

(b) Let f be defined on [0,∞), satisfy (F1)–(F4) and (F7) for some M > 0,
s0 > ζ0 and, in addition, α > 3.
Then there exists a positive number r̄ such that if meas suppu0 ≤ r̄,

then the solution of (1.1)–(1.2) converges to 0 in W1,2(R) as t → ∞.

The paper is organized as follows. Section 2 is a review of the existence the-
ory for the problem. In Section 3 the stationary problem is solved. Section 4
contains some spectral properties of the corresponding linear operator. In Sec-
tion 5 we show that bounded trajectories are always convergent. Here we use
energy estimates, symmetry arguments and we take advantage of the fact that 0
is a simple isolated eigenvalue of the linearized (at the ground state) operator. In
Section 6 the unbounded trajectories are studied (the word “unbounded” refers to
unboundedness in integral norm), using the result of Fife-McLeod [5] on stability
of travelling fronts. Finally, Sections 7 and 8 contain the proofs of Theorems 1.1
and 1.2. The comparison principle is used throughout the paper.

2. Existence theory

In this section we assume that f is locally Lipschitz continuous and f(0) = 0.
The evolution problem (1.1)–(1.2) can be solved using the theory of analytic
semigroups, cf. [6].

Proposition 2.1. Suppose f is locally Lipschitz continuous and f(0) = 0. For
any nonnegative u0 ∈W1,2(R) there exists a unique solution of (1.1)–(1.2)

u ∈ C([0, Tmax),W
1,2(R)) ∩ C1((0, Tmax),W

1,2(R))
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where [0, Tmax) is the maximal interval of existence. This solution is a classical
solution in the sense that all derivatives appearing in (1.1) are continuous in
(0,∞)× R and u is continuous in [0,∞)× R. If Tmax < ∞, then
(2.1) sup

t∈[0,Tmax)
‖u(t)‖W1,2 =∞.

The energy functional associated to (1.1),

(2.2) Eu(t) =
1

2

∫

R

u2x(t, x) dx+

∫

R

F (u(t, x)) dx

is nonincreasing along any trajectory and

(2.3)
d

dt
Eu(t) = −

∫

R

u2t (t, x) dx.

If u0 6≡ 0, then u(t, x) > 0 for any t ∈ (0, Tmax) and x ∈ R.

The first part of the proposition may be deduced from [6, Theorems 3.3.3
and 3.5.2] applied on the basic space L2(R), the nonlinearity f being locally Lip-
schitz continuous from W1,2(R) into L2(R). Since u0 is Hölder continuous, this
solution is a classical solution. A-priori estimates show that the solution is un-
bounded if its existence interval is bounded. The relation (2.3) can be obtained
by multiplying the equation (1.1) by ut and integrating by parts over R. The
last statement is an application of the strong comparison principle (cf. Proposi-
tion 2.2).

Proposition 2.2. Let f, g be locally Lipschitz continuous, f(0) = g(0) = 0.

(i) Let u and v be solutions from Proposition 2.1 satisfying the inequalities

ut − uxx + f(u) ≥ vt − vxx + f(v), (t, x) ∈ intM,(2.4)

u ≥ v, (t, x) ∈ ∂M,(2.5)

the derivatives appearing in (2.4) being continuous, whereM = [0,∞)×
(a, b), −∞ ≤ a < b ≤ ∞. Then u ≥ v inM. If moreover u(0, x) > v(0, x)
in an open subinterval of (a, b), then u > v in intM.

(ii) The same assertion holds if we suppose instead of (2.4) that f ≤ g and

(2.6) ut − uxx + f(u) = vt − vxx + g(v) = 0, (t, x) ∈ intM.

This comparison principle can be deduced from the strong maximum principle
for linear parabolic inequalities (cf. [7]) applied to the function w = u−v satisfying

(2.7) wt − wxx +
f(u)− f(v)

u − v
w ≥ 0 in intM, w ≥ 0 on ∂M.

Using standard a-priori estimates and the comparison principle to estimate the
solution of (1.1) with the solution of the ordinary differential equation

(2.8) zt + f(z) = 0, t > 0

we can prove the following lemma.
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Lemma 2.3. If, in addition to the hypotheses of Proposition 2.1, f satisfies also
(F6), then any solution is global.

Continuous dependence on initial data is also a standard result, see [6, Theo-
rem 3.4.1].

Proposition 2.4. Suppose f is locally Lipschitz continuous and f(0) = 0. As-
sume un

0 ∈ W1,2(R), n = 1, 2 . . . are nonnegative and un
0 → u0 in W

1,2(R). Let
un be the solutions of (1.1) defined on [0, T n

max) corresponding to initial data un
0 .

Then the solution u of (1.1)–(1.2) with initial datum u0 exists on [0, Tmax)
with

lim inf
n→∞

T n
max ≥ Tmax,

and for any T < Tmax we have

lim
n→∞

un = u in C([0, T ],W1,2(R)).

3. The stationary problem

In this section we assume that f is locally Lipschitz continuous, f(0) = 0
and ζ0 > 0. The following statements can be proved by standard techniques
for ordinary differential equations found for example in [8] (the first of them is
adopted from [9]).

Lemma 3.1. The problem (1.6)–(1.7) admits a solution if and only if f satisfies
(F4). Moreover, if (F4) is satisfied, then the solution is unique up to a translation
of the origin and after a suitable translation satisfies

(i) w(x) = w(−x), x ∈ R,
(ii) w(x) > 0, x ∈ R,
(iii) w(0) = ζ0,
(iv) w′(x) < 0, x > 0,
(v) if f ′(0) > 0, then w ∈W2,2(R).

We denote by wg the solution which satisfies (i), (ii) and call it the ground
state.

Lemma 3.2.

(i) If ζ0 = ∞, then the problem (1.6) has a unique (up to spatial shift)
solution w satisfying w(∞) = 0, w(−∞) =∞ and w is decreasing.

(ii) If 0 < ζ0 < ∞ and f(ζ0) = 0, then (1.6) has a unique (up to spatial shift)
solution w satisfying w(−∞) = ζ0, w(∞) = 0 and w is decreasing.

Corollary 3.3. The set of stationary solutions (i.e. solutions of (1.6)–(1.7)) S =
{0} if f does not satisfy (F4), and S = {0, wg(. − x̄); x̄ ∈ R} if f satisfies (F4).



Asymptotic analysis for a nonlinear parabolic equation on R 531

4. The linear problem

In this section we assume that f satisfies the hypotheses (F1), (F2), (F3)
and (F4).

Lemma 4.1. Suppose (F1)–(F4). The problem

(4.1) −v′′(x) + f ′(wg(x))v(x) = 0, x ∈ R, v ∈W1,2(R)

admits a unique solution w′
g up to a multiplicative constant.

Proof: By differentiating the equation (1.6) we see that ϕ = w′
g is a solution

of (4.1). The substitution of variables z = ( vϕ )
′ leads to the equation z′ϕ+2zϕ′ = 0

which has an explicit solution z(x) = ϕ−2(x) and hence

v(x) = c1ϕ(x)

∫ x

0
ϕ−2(τ) dτ + c2ϕ(x)

is a general solution of the equation in (0,∞). Applying l’Hospitals rule we find

lim
x→∞

v(x) = c1 lim
x→∞

∫ x
0 ϕ−2(τ) dτ

ϕ−1(x)
+ 0 = −c1 lim

x→∞

1

ϕ′(x)
,

where the last limit is 0 only for c1 = 0. �

We can characterize the spectrum of the linear operator

Lwg : L
2(R) 7→ L2(R), D(Lwg ) = W

2,2(R),

Lwgv = −vxx + f ′(wg)v, v ∈ D(Lwg ).

Proposition 4.2. Suppose (F1)–(F4). The spectrum of Lwg consists of the

essential spectrum σe = [f
′(0),∞) and the simple eigenvalues 0 (the correspond-

ing eigenfunction is w′
g) and −λ < 0 (the corresponding eigenfunction is strictly

positive).

Proof: Since lim
|x|→∞

f ′(wg(x)) = f ′(0), it is a classical result about the spectrum

of the Schrödinger operator that σ = [f ′(0),∞) ∪ {−λk,−λk−1, . . . , λ0}, where
−λk < −λk−1 < · · · < λ0 = 0 are eigenvalues (cf. [10, Section XIII.4]). By
Lemma 4.1, 0 is a simple eigenvalue. By [10, Theorem XIII.44], −λk is a simple
eigenvalue and the corresponding eigenfunction is positive. Since w′

g changes sign,
0 is not the smallest eigenvalue. By the Sturm-Liouville theory the eigenfunction
ei corresponding to −λi has k− i+2 zeros (together with ±∞), (see for example
[11, Chapter VIII, Section 1]). Since w′

g has 3 zeros, k = 1. �
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Proposition 4.3. Suppose (F1)–(F4) and in addition (F6). Then the stationary
solutions of the evolution problem (1.1)–(1.2) have the following properties:

(i) 0 is locally asymptotically stable in L∞(R);
(ii) wg is unstable in the following sense: Let u be a global solution of (1.1)–
(1.2) such that lim

t→∞
u(t) = wg(. − x̄) for some x̄ ∈ R. Let v0 ∈ I be such

that v0 ≥ u0, v0 6≡ u0. Then the solution v of (1.1) with the initial value
v(0) = v0 satisfies

lim
t→∞

‖u(t)‖L2(R) =∞.

The part (i) is an immediate consequence of the stability of 0 for (2.8) and the
comparison principle. The proof of (ii) is based on the existence of a negative
eigenvalue of the corresponding linear operator and is postponed into Section 5.

5. Convergence of bounded trajectories

We denote S = {0, wg(. − x̄); x̄ ∈ R}, the set of stationary solutions (i.e.
solutions of (1.6)–(1.7)) when (F4) is satisfied. The main result of this section is
the following.

Proposition 5.1. Suppose (F1), (F2), (F3) and u0 ∈ I. Suppose that the
solution u of (1.1)–(1.2) satisfies

0 ≤ u(t, x) ≤ c, x ∈ R, t ≥ 0;(5.1)

u(t,±r) ≤ ζ1, t ≥ 0; u(0, x) = 0, |x| ≥ r,(5.2)

for some c > 0, ζ1 < ζ0, r > 0. Then there exists a stationary solution w ∈ S
such that

(5.3) u(t)→ w in C0(R) as t → ∞.

Here we use the notation C0(R) = {w ∈ C(R); w(±∞) = 0} with the topol-
ogy of uniform convergence. The proof consists of three steps: proving relative
compactness, investigating possible limits and proving convergence to a single
element.

Lemma 5.2. Suppose (F1), (F2), (F3). Let u be a solution of (1.1)–(1.2) satis-
fying (5.1), (5.2). Then the set {u(t), t ≥ 0} is relatively compact in C0(R).
Proof: There exists a solution w on [r,∞) of (1.6) with w(r) = ζ1, w(∞) = 0
which is decreasing. Using the comparison principle for u and w onM = [0,∞)×
[r,∞) we get u(t, x) ≤ w(x), t ≥ 0, x ≥ r (and analogously for x ≤ −r).
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Since F > 0 on (0, ζ0), the energy can be estimated in the following way:

(5.4)

Eu(0) ≥ Eu(t) =
1

2

∫

R

u2x(t) +

∫

|x|≤r
F (u(t)) +

∫

|x|>r
F (u(t))

≥ 1
2

∫

R

u2x(t) + 2r inf
[0,c]

F,

hence {ux(t); t ≥ 0} is bounded in L2(R).
The assertion follows from the theorem of Arzela-Ascoli (u(t) are bounded,

equicontinuous on every bounded subinterval of R and u(t, x) → 0 as |x| → ∞
uniformly in t). �

Lemma 5.3. Suppose (F1), (F2), (F3). Let u0 ∈ I and suppose that the solution
u of (1.1)–(1.2) satisfies (5.1), (5.2). Then u(t)→ S as t → ∞.
Proof: Since the energy is nonincreasing, from (5.4) we get that Eu(t) is
bounded. So by (2.3) we have

(5.5)

∫ ∞

0

∫

R

u2t = Eu(0)− Eu(∞) < ∞.

We want to conclude that ut(t)→ 0 in L2(R) as t → ∞. By differentiating (1.1)
with respect to t we find that the function v = ut satisfies

(5.6) vt − vxx + f ′(u)v = 0.

Multiplying (5.6) by v and integrating by parts over R we get

(5.7)
d

dt

∫

R

v2 = 2

∫

R

vvt = −2
∫

R

v2x + v2f ′(u) ≤ 2 sup
[0,c]
(f ′)

∫

R

v2.

Hence the function ϕ(t) =
∫

R
u2t (t) satisfies ϕ(t) ≤ ec1(t−s)ϕ(s), t ≥ s for some

c1 > 0 and ϕ ∈ L1(0,∞). It is an exercise that then ϕ(t)→ 0 as t → ∞.
Let u(tn)→ w in C0(R) for tn → ∞. Then passing to the limit in the equation

(1.1) in the sense of distributions we find that w ∈ S. �

Proof of Proposition 5.1: The case when u(tn) → 0 for some tn → ∞ is
straightforward by Proposition 4.3 (i). The nontrivial part is that in the case
when

u(t)→ {wg(. − x̄), x̄ ∈ R}
we have also convergence to a single element. To this end one can use the method
of Zelenyak [2] as in [1], using the results of Section 4 (namely that the eigenvalue
0 is an isolated point of the spectrum of Lwg(.−x̄) and is simple). The assumption

f ′(0) > 0 is crucial here. �

The main consequence of the compactness of the support of the initial value is
the content of the following lemma (cf. [1] for the more dimensional case).



534 E.Fašangová

Lemma 5.4. Let u0 ∈ I and let suppu0 ⊂ [−r, r]. If u is the solution of (1.1)–
(1.2) from Proposition 2.1, then for any λ ≥ r we have

u(t, λ − x) ≥ u(t, λ+ x), x ≥ 0, t ≥ 0,

and similarly for any λ ≤ −r we have

u(t, λ − x) ≤ u(t, λ+ x), x ≥ 0, t ≥ 0.

In particular, u(t, .) is nonincreasing in [r,∞) and nondecreasing in (−∞,−r], for
any t ≥ 0.
Proof: Let λ ≥ r be fixed. We define the function v(t, x) = u(t, 2λ−x) for t ≥ 0,
x ≥ λ. Then v is a solution of (1.1) inM = {[t, x], x ≥ λ, t ≥ 0} satisfying the
boundary condition v ≥ u on ∂M. Hence v ≥ u inM. �

Proposition 5.5. Suppose (F1), (F2), (F3), (F6) and u0 ∈ I. Let u be the
solution of (1.1)–(1.2). If u satisfies (5.2) with some ζ1 < ζ0, r > 0, then the
conclusion of Proposition 5.1 remains true. If (5.2) does not hold, then

(5.8) lim
t→∞

‖u(t)‖L2(R) =∞.

Proof: Suppose first that (F5) holds too. We will show that then the subli-
nearity of f and (5.2) imply (5.1). We note first that since f is sublinear, by
the comparison principle u can be estimated from below and from above by the
solutions v and w of

vt − vxx − kv = 0, x ∈ R, t > t0,(5.9)

wt − wxx + kw = 0, x ∈ R, t > t0,(5.10)

namely, if w(t0, x) ≤ u(t0, x) ≤ v(t0, x) for any x ∈ R, then w(t, x) ≤ u(t, x) ≤
v(t, x) for any x ∈ R, t ≥ t0.
We distinguish two cases:
(a) Suppose that there exists a sequence of times tn → ∞ such that

(5.11) lim
n→∞

∫ r

−r
u(tn, x) dx =∞.

Let w be the solution of (5.10) with initial value w(tn) = u(tn). Using the
fundamental solution of the heat equation, w can be explicitly calculated:

(5.12) w(tn + t, x) =
e−kt

√
4πt

∫

R

e−
(x−y)2

4t w(tn, y) dy, t > 0.
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So for t = 1 and x = r we can estimate

u(tn + 1, r) ≥ w(tn + 1, r) ≥
e−k

√
4π

∫ r

−r
e−

(r−y)2

4 u(tn, y) dy

≥ e−ke−r2

√
4π

∫ r

−r
u(tn, y)→ ∞,

which contradicts (5.2).

(b) Suppose now that there exists a constant c1 < ∞ such that

(5.13)

∫ r

−r
u(t, x) dx ≤ c1, t > 0.

Again, the solution of (5.9) with initial value v(t0) = u(t0) can be written explic-

itly and for t ∈ [12 , 1] and |x| ≤ r can be estimated as follows:

u(t0 + t, x) ≤ v(t0 + t, x)

≤ ekt

√
4πt

(

∫ r

−r
e−

(x−y)2

4t u(t0, y) dy +

∫

|y|≥r
e−

(x−y)2

4t u(t0, y) dy

)

≤ ek

√
2π

(

∫ r

−r
u(t0, y) dy + ζ1

∫

|y|≥r
e−

(x−y)2

4 dy

)

≤ ek

√
2π

(

c1 + ζ1

∫

R

e−
y2

4 dy

)

≤ ek

√
2π
(c1 + 2ζ1

√
π),

where we used (5.2) and (5.13). Since t0 > 0 was arbitrary, we get (5.1).
Now, if (F5) does not hold, then we can find an s0 > ‖u0‖L∞ such that

f(s0) > 0, then by comparing u to the solution of (2.8) with z(0) = s0 we get
(5.1).
The second assertion follows from Lemma 5.4. �

Lemma 5.6. Assume (F1), (F2), (F3). Then (5.3) implies convergence in the
W1,2-norm.

Proof: If u is a solution of (1.1)–(1.2), then

(5.14) ut − uxx + f ′(0)u = f ′(0)u − f(u) ≡ g, x ∈ R, t > 0,

and since f ∈ C1+µ, we can write

(5.15) ‖g‖W1,2(R) ≤ c1‖u(t)‖µ
L∞(R)

‖u(t)‖W1,2(R) = h(t)‖u(t)‖W1,2(R),

with lim
t→∞

h(t) = 0. Then using the variation-of-constants formula and the stabil-

ity of 0 for the homogeneous equation (2.8) and for the linear equation (5.14) in
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the space W1,2 (which is a consequence of f ′(0) > 0) one can show u(t) → 0 as
t → ∞ in W1,2(R). �

Proof of Proposition 4.3 (ii) (cf. [1]): From symmetry we can restrict our-
selves to x̄ = 0. By contradiction, suppose the contrary is true. Then Propo-
sition 5.5 yields that v(t) converges to a stationary solution. By the maximum
principle v(t, x) > u(t, x), t > 0, x ∈ R, so necessarily lim

t→∞
v(t) − u(t) = 0. The

function w = v − u satisfies the equation

(5.16) wt − wxx + f ′(wg)w + h = 0,

where h = f(v) − f(u) − f ′(wg)w. Let −λ < 0 be a negative eigenvalue of Lwg

with the strictly positive eigenfunction e and set ϕ(t) =
∫

R
w(t, x)e(x) dx. Taking

the L2-scalar product of (5.16) with e we get

(5.17) ϕ′(t)− λϕ(t) +

∫

R

h(t, x)e(x) dx = 0.

From the smoothness of f and from the convergence of w to 0 we get

(5.18) |h(t, x)| ≤ λ

2
w(t, x) for x ∈ R, t ≥ t0,

if t0 is sufficiently large depending on λ. Hence ϕ′(t) ≥ λ
2ϕ(t), t ≥ t0. This

implies ϕ(t)→ ∞ which contradicts w(t)→ 0. �

6. Characterization of unbounded trajectories

We report the result of Fife-McLeod [5, Theorem 3.2] characterizing the initial
data which give rise to unbounded (in integral-norm) solutions.

Theorem 6.1. Let f ∈ C1[0, 1] satisfy

(6.1)

f(0) = f(1) = 0, f ′(0) > 0, f ′(1) > 0,

f(s) > 0, 0 < s < α0,

f(s) < 0, α1 < s < 1,
∫ 1

0
f(s) ds < 0,

where 0 < α0 ≤ α1 < 1. Suppose that there exists a travelling front solution U of
(1.1) (i.e. v(t, x) = U(x − ct) is a solution of (1.1) and U(−∞) = 0, U(∞) = 1).
Let u0 satisfy

(6.2)

lim sup
|x|→∞

u0(x) < α0,

u0(x) > α1 + η, x ∈ (a, b), b − a > L,
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where η and L are some positive numbers. Then if L is sufficiently large (de-
pending on η and f), we have for some constants x0, x1, K > 0, ω > 0 and c < 0

(c > 0 if
∫ 1
0 f > 0) that the solution of (1.1)–(1.2) satisfies

|u(x, t)− U(x − ct − x0)| < Ke−ωt, x < 0,

|u(x, t)− U(−x − ct − x1)| < Ke−ωt, x > 0.

Note that in particular the solution from the above theorem satisfies

(6.3) lim inf
t→∞

{ inf
|x|≤R

u(t, x)} ≥ α1 for any R > 0.

The existence of a travelling wave U for (1.1)–(1.2) is guaranteed by the existence
of the ground state wg (the proof in [12, Theorem 4.76] can be carried out).

Corollary 6.2. Suppose (F1)–(F4). Let ζ1 < ζ0 be such that f < 0 on [ζ1, ζ0).
Then there exists an L > 0 such that if u0 satisfies

(6.4) u0(x) > ζ1, x ∈ (a, b), b − a > L,

then the solution of (1.1)–(1.2) satisfies (1.4). In particular, if the solution does
not satisfy (5.2), then (1.4) holds.

Proof: We choose 0 < α0 < α1 < ζ1 so that f > 0 on (0, α0), f < 0 on (α1, ζ0)
and define a function f̄ so that f̄ satisfies (6.1) on an interval [0, ζ2], ζ2 > ζ0 for
α + η = ζ1 and also f̄ ≥ f . Let L be given by Theorem 6.1 for f̄ ∈ C1([0, ζ2])
(after rescaling). Let u be the solution of (1.1)–(1.2). Then for a function u0
satisfying (6.4) we can choose a function v0 ≤ u0 such that v0 satisfies (6.2). Let
v be the solution of (1.1) with initial value v(0) = v0 and let v̄ be the solution of

v̄t − v̄xx + f̄(v̄) = 0, v̄(0) = v0.

Then by the comparison principle u ≥ v ≥ v̄ and by Lemma 6.1 v̄ satisfies (1.4).
For the additional assertion use Lemma 5.4. �

7. Proof of Theorem 1.1

We define two sets:

A0 = {u0 ∈W1,2(R); u0 ≥ 0, the solution of (1.1)–(1.2) converges to 0
in C0(R) as t → ∞}

A∞ = {u0 ∈W1,2(R); u0 ≥ 0, the solution of (1.1)–(1.2) satisfies (1.4) }.

If (F3) holds, it follows from the local asymptotic stability of 0 and the continuous
dependence on initial data that A0 is a nonempty (containing 0) open subset of
W1,2(R) ∩ {v ≥ 0}.
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Lemma 7.1. Suppose (F1)–(F4). A∞ is an open subset of W
1,2(R) ∩ {v ≥ 0}.

Proof: Let u0 ∈ A∞. Let 0 < ζ1 < ζ0 and t0 > 0 be such that u(t0) satis-
fies (6.4). Then from continuous dependence on initial data there exists a neigh-
borhood U of u0 such that if v0 ∈ U , then the corresponding solution satisfies
(6.4) at time t0, hence by Corollary 6.2 we get v0 ∈ A∞. �

Lemma 7.2. Suppose (F1)–(F6). Given u0 ∈ I, then αu0 ∈ A∞ provided α is
sufficiently large.

Proof: Let u be the solution of (1.1) with u(0) = αu0. Since (F5) holds,
the comparison principle yields u ≥ w, where w is the solution of (5.10) with
w(0) = u(0). For |x| ≤ L, t = 1 we can estimate as follows:

u(1, x) ≥ w(t, x) =
e−kt

√
4πt

∫

R

e−
(x−y)2

4t αu0(y) dy

≥ α
e−ke−L2

√
4π

∫ L

−L
u0(y) dy > ζ1,

for α large enough, depending on ζ1, L. Then we use Corollary 6.2. �

Proof of Theorem 1.1: For ū ∈ I we set

αc = sup{α > 0, αū ∈ A0}.
Lemma 7.2 yields αc < ∞. By the comparison principle {α ≥ 0; αū ∈ A0} =
[0, αc). Since A∞ is open, αcū /∈ A∞, so by Corollary 6.2, for the solution u with
u(0) = αcū necessarily (5.2) holds. Then by Proposition 5.5 u(t) converges (the
convergence being in the W1,2-norm by Lemma 5.6) to a stationary solution w
and w 6= 0, hence (ii). Finally, Proposition 4.3 (ii) ends the proof. �

8. Proof of Theorem 1.2

Throughout this section we assume that f satisfies the hypotheses of Theo-
rem 1.2 (a) resp. (b) and we denote by a0 a positive constant satisfying

f(s) > 0, s ∈ (0, a0].
Note that (F6) is automatically fulfilled. In parts (a) resp. (b) of the following
statements we suppose the hypotheses of part (a) resp. (b) of Theorem 1.2. The
other statements hold in both cases.

Lemma 8.1. There exists a δ > 0 (depending on k, a0) such that if
‖u(0)‖L1(R) ≤ δ, then u(t)→ 0 in W1,2(R) as t → ∞.

Proof: The solution u is dominated by the solution of the linear equation (5.9)
satisfying v(0) = u(0), which can be explicitly calculated, hence we get

(8.1) ‖u(1)‖L∞(R) ≤
ek

√
4π

‖u(0)‖L1(R).
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Then from the stability of 0 in L∞ we get lim
t→∞

‖u(t)‖L∞(R) = 0, provided
‖u(0)‖L1 is sufficiently small. Finally, convergence in L∞ implies convergence in
W1,2 as in Lemma 5.6. �

Before proceeding, we describe the idea of the proof of Theorem 1.2. By
Lemma 8.1, it is enough to find a T1 > 0 such that ‖u(T1)‖L1 < δ. Over a

small space-interval, we will estimate the L1-norm of u(T1) by the L
∞-norm

(Lemma 8.3) by comparing u with the steady state solution z of zt + f(z) = 0.
On the complement of this small interval, we compare u with the solution of
vt − vxx − kv = 0, t > 0, x > 0 with zero initial condition at t = 0 and bounded
boundary condition at x = 0. To this end we will control u on the space-boundary
with the solution of −wxx + f(w) = 0 (more precisely with w in the stable man-
ifold at the greatest equilibrium point; Lemma 8.4). Here we need a sufficiently
large f .

Lemma 8.2. For any ε > 0 and A < ∞ there exists a T = T (k, A, ε) > 0 such
that if a function v defined on some set {(t, x) ∈ R

2, t ≥ 0, x ≥ x0} satisfies

(8.2)

vt − vxx − kv = 0, x > x0, t > 0,

0 ≤ v(t, x0) ≤ A, t > 0,

v(0, x) = 0, x ≥ x0,

then

(8.3) ‖v(t)‖L1(x0,∞) ≤ ε, t ∈ [0, T ].

One can choose T = Ck
ε2

A2
, where Ck is a constant depending on k.

Proof: Without loss of generality we can suppose x0 = 0. Let ε > 0 be given

and define the function ϕ(x) =
A(δ−x)3

δ3
for x ∈ [0, δ], and ϕ(x) = 0 for x > δ,

δ > 0 to be chosen later. By the comparison principle, v is dominated by the
solution y of

(8.4)

yt − yxx − ky = 0, x > 0, t > 0,

y(t, 0) = A, t ≥ 0,
y(0, x) = ϕ(x), x ≥ 0.

Then w = y − ϕ is the solution of

(8.5)

wt − wxx − kw = kϕ+ ϕ′′ ≡ g, x > 0, t > 0,

w(t, 0) = 0, t ≥ 0,
w(0, x) = 0, x ≥ 0,
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and can be estimated using the variation-of-constants formula (note that the ope-
rator L(w) = −wxx generates a semigroup of contractions on L

1(0,∞))

(8.6) ‖w(t)‖L1(0,∞) ≤
∫ t

0
ek(t−s)‖g‖L1(0,∞) ds =

ekt − 1
k

‖g‖L1(0,∞).

So v can be estimated for t ≤ T as follows

‖v(t)‖L1(0,∞) ≤ ‖y(t)‖L1(0,∞) ≤ ‖w(t)‖L1(0,∞) + ‖ϕ‖L1(0,∞)

≤ ekt − 1
k
(k‖ϕ‖L1(0,∞) + ‖ϕ′′‖L1(0,∞)) + ‖ϕ‖L1(0,∞)

= ekt‖ϕ‖L1(0,∞) +
ekt − 1

k
‖ϕ′′‖L1(0,∞)

≤ ekT ‖ϕ‖L1(0,∞) +
ekT − 1

k
‖ϕ′′‖L1(0,∞)

≤ ekT Aδ

4
+ T
3A

δ

ekT − 1
kT

.

If we choose T such that

(8.7) T
ekT − 1

kT
ekT ≤ ε2

3A2

and δ = 2ε
AekT , then we get

‖v(t)‖L1(0,∞) ≤
ε

2
+

ε

2
= ε, t ∈ [0, T ].

�

Lemma 8.3.

(a) For any a > 0 and T > 0 there exists an M0 = M0(α, s0, a, T ) > 0 such
that for any M ≥ M0 and for any solution of (1.1) independently on u0
we have

(8.8) ‖u(T )‖L∞(R) ≤ s0 + a.

(b) If α > 3, then for any ̺ > 0 there exists an a = a(α, k, M, s0, ̺) > 0 such
that (8.8) holds for the specially chosen time T = ̺

(s0+a)2
.

Proof: By the comparison theorem, any solution is bounded by the solution of
the ordinary differential equation

(8.9) zt + f(z) = 0, t > 0, z(0) = z0,
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where z0 > max{‖u(0)‖L∞ , s0+a}. Integrating the equation we find that z = z(t)
is implicitly given by

(8.10)

∫ z0

z

1

f(y)
dy = t.

z is nonincreasing. We want to show that z(T ) ≤ s0 + a, which is equivalent to

(8.11)

∫ z0

s0+a

1

f
≤ T.

We can estimate

(8.12)

∫ z0

s0+a

1

f
≤
∫ ∞

s0+a

1

f
≤
∫ ∞

s0+a

1

Msα
ds =

1

M(α − 1)(s0 + a)1−α.

(a) For given a and T the last term can be dominated by T provided M is
sufficiently large.

(b) If α > 3 and M, ̺ > 0 are given, then by choosing a large enough, the last
term in (8.12) can be dominated by ̺

(s0+a)2
. �

Lemma 8.4.

(a) For any ε > 0 there exists a constant M1 = M1(α, s0, a, ε) such that if
M ≥ M1, then the stationary problem

(8.13) −wxx + f(w) = 0, x ∈ R

has a solution such that

(8.14)
lim
x→0

w(x) = +∞, lim
x→∞

w(x) = a1 < s0,

w′(x) < 0, x > 0; w(x) ≤ s0 + a, x ≥ ε.

(b) If α > 3, then for any ̺ > 0 there exists an a = a(α, M, s0, ̺) such that
the problem (8.13) possesses a solution satisfying (8.14) for the specially
chosen ε = ̺

s0+a .

Proof: If w is a solution of (8.13), then

(8.15)
d

dx

(

−1
2
w2x + F (w)

)

= 0,

so −w2x + 2F (w) = −c for some constant c. From (8.14) we have c = −2F (a1).
Hence the desired solution should satisfy wx = −

√

2(F (w)− F (a1)), which im-
plies that w = w(x) is implicitly given by

(8.16) x =

∫ ∞

w

1
√

2(F (y)− F (a1))
dy.
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w decreases to a1 as x tends to ∞. So in order to satisfy (8.14), we need only to
show that w(ε) ≤ s0 + a, which is equivalent to

(8.17)

∫ ∞

s0+a

1
√

2(F (y)− F (a1))
dy ≤ ε.

Since f > 0 on (a1, s0), we deduce from (F7) that

F (s) ≥ F (a1) +

∫ s

s0

f ≥ F (a1) +
M

1 + α
(s1+α − s1+α

0 ), s > s0.

Hence we can estimate

(8.18)

∫ ∞

s0+a

1
√

2(F (y)− F (a1))
dy ≤

∫ ∞

s0+a

√

α+ 1

2M

1
√

yα+1 − sα+1
0

dy

=

√

α+ 1

2M

∫ ∞

s0+a

dy

y
α+1
2

√

1− (s0y )1+α

≤
√

α+ 1

2M

1
√

1− ( s0
s0+a)

1+α

∫ ∞

s0+a
y−

α+1
2 dy

=

√

α+ 1

2M

1
√

1− ( s0
s0+a)

1+α

2

α − 1(s0 + a)
1−α
2 .

(a) For ε given, the last term can be made smaller than ε, providedM is large
enough.

(b) If α > 3 and ̺ is given, then the last term in (8.18) is less than ̺
s0+a ,

provided a is large enough. �

Proof of Theorem 1.2: Let a0, k be fixed and let δ be given by Lemma 8.1.

(a) Let α, s0 and a > 0 be given. Let T1 = T (k, s0 + a, δ
10 ) be given by

Lemma 8.2. Let M0 = M0(α, s0, a, T1) be given by Lemma 8.3 and M1 =

M1(α, s0, a, δ
5(s0+a)

) be given by Lemma 8.4. If M ≥ max{M0, M1} (which de-
pends on α, k, a0, s0, a), and if suppu0 ⊂ [−r, r], with

(8.19) r <
δ

5(s0 + a)
,

then we can estimate ‖u(T1)‖L1(R) by the comparison principle as follows.
First of all we have from Lemma 8.3

(8.20) 0 ≤ u(T1, x) ≤ s0 + a, x ∈ R.
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Let w be given in Lemma 8.4. We will compare u with w(. − r) on the set
M = {(t, x), x ≥ r′, t ∈ [0, T1]}, where r′ > r is chosen close to r so that
w(r′ − r) ≥ sup{u(t, x); t ∈ [0, T1], x ∈ R}. We get u(t, x) ≤ w(x − r) in M.
Due to (8.14), r′ can be chosen arbitrarily close to r, so we get

(8.21) 0 ≤ u(t, x) ≤ w(x − r), x > r, t ∈ [0, T1].

Similarly, comparing u with the function x 7→ w(−x − r) on the set {(t, x), x ≤
−r′, t ∈ [0, T1]}, we get

(8.22) 0 ≤ u(t, x) ≤ w(−x − r), x < −r, t ∈ [0, T1].

Using (8.21), (8.22), (8.14) and Lemma 8.2 on the set {(t, x), x ≥ r+ δ
5(s0+a)

, t ∈
[0, T1]}, and, by symmetry, on {(t, x), x ≤ −r − δ

5(s0+a)
, t ∈ [0, T1]}, we obtain

‖u(T1)‖L1(R) =
∫

|x|≤r+ δ
5(s0+a)

u(T1) +

∫

r+ δ
5(s0+a)

<|x|
u(T1)

≤ 2(s0 + a)(r +
δ

5(s0 + a)
) + 2‖u(T1)‖L1(r+ δ

5(s0+a)
,∞)

≤ 4δ
5
+ 2

δ

10
= δ,

where we have used (8.20), (8.19) and (8.3) (with ε = δ
10 ). Finally, by Lemma 8.1

we get lim
t→∞

‖u(t)‖W1,2(R) = 0. The problem being translation invariant, the part
(a) is proved in the case when suppu0 is contained in an interval of a sufficiently
small length. If this is not the case, we can find a finite number of closed inter-
vals Ik such that suppu0 ⊂ ⋃

Ik and
∑ |Ik| is small, and we make the above

construction on any Ik.

(b) Let α, s0, M be given. Let T1 = Ck

(

δ
10

)2
1

(s0+a)2
be given by Lemma 8.2,

where a is chosen large enough to satisfy Lemma 8.3 (b) for T = T1 and also

Lemma 8.4 (b) for ε = δ
5(s0+a)

. Then we follow the same procedure as in part (a).

�
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