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Homotopy properties of curves

Janusz J. Charatonik, Alejandro Illanes

Abstract. Conditions are investigated that imply noncontractibility of curves. In partic-
ular, a plane noncontractible dendroid is constructed which contains no homotopically
fixed subset. A new concept of a homotopically steady subset of a space is introduced
and its connections with other related concepts are studied.
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1. Introduction

Various concepts of points (or sets) of stability or fixation play an important
role in investigation of homotopy properties of topological spaces. The reader is
referred to concepts introduced and results obtained by H. Hopf and E. Pannwitz
in [8], developed and modified by K. Borsuk and J.W. Jaworowski in [1], and
also by A. Lelek in [9]. Some of the above mentioned concepts were local ones,
connected either with local structure of the investigated continuum or with local
homotopy properties. In the present paper we investigate some other homotopy
properties of continua (especially of curves), ones which are global, and thereby
are more suitable to study contractibility of curves in the whole.
After preliminaries, homotopically fixed sets are studied in the third section.

It is shown that the existence of a homotopically fixed subset is not necessary
for a dendroid to be contractible: namely in Example 3.4 a noncontractible plane
dendroid is constructed that contains no homotopically fixed subset. Concepts of
homotopically steady and strongly homotopically steady subsets of a space are
introduced in the next section, and their connections with other related notions,
mostly for dendroids, are studied. However, a problem concerning the existence
of a homotopically steady point in any noncontractible dendroid remains open
(Question 4.5).

2. Preliminaries

All considered spaces are assumed to be metric. We denote by N the set of all
positive integers, by R the space of real numbers, and by I the closed unit interval
[0, 1] of reals. Given two points a and b in the plane R

2, let ab denote the straight
line segment with end points a and b. The symbols Li , Ls and Lim mean the
lower limit, the upper limit and the topological limit of a sequence of sets. The
reader is referred to e.g. [10] for definitions of various concepts used in the paper.
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By a mapping we always mean a continuous function. Given a space X , a
mapping H : X×I → X is called a homotopy. A homotopyH such that H(x, 0) =
x for each point x ∈ X is called a deformation. A spaceX is said to be contractible
if there exists a deformation H : X × I → X such that H(X ×{1}) is a singleton.
It is well-known that each contractible curve is a uniformly arcwise connected
dendroid (see e.g. [2, Propositions 1 and 4, p. 73]). Therefore, investigation of some
obstructions of contractibility for curves can be restricted to uniformly arcwise
connected dendroids only. One of such obstructions is the existence of an Ri-
continuum. A nonempty proper subcontinuum A of a dendroid X is called an
Ri-continuum (where i ∈ {1, 2, 3}) if there exist an open set U containing A and
two sequences {C1n : n ∈ N} and {C2n : n ∈ N} of components of U such that

(2.1) A =











(LsC1n) ∩ (LsC
2
n) for i = 1,

(LimC1n) ∩ (LimC2n) for i = 2,

LiC1n for i = 3.

If an R1-continuum A is a singleton {p}, then p is called an R-point. If a dendroid
X contains an Ri-continuum, for some i ∈ {1, 2, 3}, then X is not contractible,
[6, Theorem 3, p. 300].
For more information on this and related concepts the reader is referred to [3]

and [5].

3. Homotopically fixed sets

The following proposition is known (see [4, Proposition 1, p. 239]).

3.1 Proposition. If a space X contains two subsets A and B such that ∅ 6= A ⊂
B 6= X and

(3.2) for every deformation H : X × I → X we have H(A × I) ⊂ B,

then X is not contractible.

A nonempty proper subset A of a space X is said to be homotopically fixed
provided that condition (3.2) is satisfied with B = A. Examples of homotopically
fixed subsets can be seen from the next result (see [6, Theorem 3, p. 300]).

3.3 Proposition. Each Ri-continuum of a dendroid X (where i ∈ {1, 2, 3}) is a
homotopically fixed subset of X .

Questions were asked in [2, Questions 1.4 and 1.5, p. 561] whether converse
implication to that of Proposition 3.1 is true for dendroids; in particular, whether
does each noncontractible dendroid contain any homotopically fixed subset? Re-
cently these questions have been answered in the negative. The example is pre-
sented below.
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3.4 Example. There exists a noncontractible uniformly arcwise connected den-

droid in the plane that contains no homotopically fixed subset.

Proof: In the Cartesian coordinates (x, y) in the plane R
2 put p = (0, 0), q =

(1, 0), and, for each n ∈ N, let pn = (1, 1/n) and qn = (0,−1/n). Then the needed
dendroid X is defined by X = pq ∪

⋃

{ppn ∪ qqn : n ∈ N}.
Indeed, X is noncontractible because it is of type N between points p and q,

[11, Corollary 2.2, p. 839]. If a nonempty proper subset A of X is distinct from
the limit segment pq, then one can find a deformation H : X × I → X such
that H(A × I) \ A 6= ∅ in a routine way. Thus only the case of A = pq needs a
proof. We will prove that there exists a deformation H such that H(q, 1) = p1.
To this aim we introduce an auxiliary notation. Given points a, b, c and d in
R
2 (not necessarily distinct), we put abcd = ab ∪ bc ∪ cd, and define a mapping

β(a, b, c, d) : [0, 3]→ abcd by

β(a, b, c, d)(t) =











(1 − t)a+ tb, if t ∈ [0, 1],

(2 − t)b+ (t − 1)c if t ∈ [1, 2],

(3 − t)c+ (t − 2)d if t ∈ [2, 3].

Notice that β is a continuous function depending on five variables a, b, c, d and t.
Then define the needed deformation H : X × I → X by the formula

H((x, y), t) =











β(p, pn, p, p1)((2t+ 1)x) if (x, y) ∈ ppn,

β(p, q, p, p1)((2t+ 1)x) if (x, y) ∈ pq,

β(qn, q, p, p1)((2t+ 1)x) if (x, y) ∈ qqn.

Clearly H has the required properties, and thereby A = pq is not a homotopically
fixed subset of X . �

4. Homotopically steady sets

A nonempty subset A of a space X is said to be homotopically steady provided
that

(4.1) for every deformation H : X × I → X we have A ⊂ H(X × {1}).

In other words, A is homotopically steady if and only if for every deformationH as
above and for every number t ∈ I the set A is contained in the image H(X ×{t})
of the whole space X . In particular, a point p ∈ X is called a homotopically
steady point of X if the singleton {p} is a homotopically steady subset of X . For
example, if X is an arc, then no point (and no subset) of X is homotopically
steady, while for X being a simple closed curve each subset of X , in particular
each point, as well as the whole space X , is homotopically steady.
Denote by D(X) the family of all deformations on X , and put

Σ(X) =
⋂

{H(X × {1}) : H ∈ D(X)},

calling the above intersection the kernel of steadiness of X . Then condition (4.1)
can be reformulated as A ⊂ Σ(X), which leads to the following observation.
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4.2 Observation. A subset of a space X is homotopically steady if and only if
it is contained in the kernel Σ(X) of steadiness of X .

The concept of homotopical steadiness is related to contractibility by the fol-
lowing result.

4.3 Theorem. Each contractible space has empty kernel of steadiness.

Proof: Let a space X be contractible. Thus there are a point a ∈ X and a
deformation H0 : X × I → X with H0(X × {1}) = {a}. Let b ∈ X \ {a}.
Since X is arcwise connected, there is an arc ab ⊂ X . Let h : I → ab be a
homeomorphism with h(0) = a and h(1) = b. Define a deformationH : X×I → X
by H(x, t) = H0(x, 2t) for t ∈ [0, 1/2], and H(x, t) = h(2t − 1) for t ∈ [1/2, 1].
Then H(X × {1}) = {b}. Thus Σ(X) ⊂ H0(X × {1}) ∩ H(X × {1}) = ∅. �

A proof of the next result is left to the reader.

4.4 Propositions. Let a continuum X be hereditarily unicoherent. (a) If a
subset A ofX is homotopically steady, then the continuum I(A) irreducible about
A is homotopically steady as well. (b) Each homotopically steady point of X
belongs to the maximal homotopically steady subset of X which equals the kernel
Σ(X) of steadiness of X , and which is, therefore, a continuum.

For the annulus X = {(x, y) ∈ R
2 : 1 ≤ x2 + y2 ≤ 4} we have Σ(X) = ∅,

while X is not contractible. Thus the converse to Theorem 4.3 is not true for
arbitrary continua. It would be interesting to know whether this converse is true
for a dendroid. Thus we have the following question.

4.5 Question. Does every noncontractible dendroid have nonempty kernel of
steadiness (i.e. does every noncontractible dendroid contain a homotopically
steady point)?

Below a result is shown that can be considered as a partial answer to Ques-
tion 4.5.

4.6 Proposition. If a noncontractible dendroid X contains a point p such that
each component of its complement is contractible, then p is a homotopically steady
point of X .

Proof: Suppose that p is not homotopically steady. Thus there exists a defor-
mation H0 : X × I → X such that p ∈ X \ H0(X × {1}). Let C be a component
of X \ {p} containing the continuum H0(X ×{1}). Since C is contractible, there
is q ∈ C and a deformation H1 : C × I → C such that H1(C × {1}) = {q}. Then
the mapping H : X × I → X defined by H(x, t) = H0(x, 2t) for t ∈ [0, 1/2], and
H(x, t) = H1(H0(x, 1), 2t − 1) for t ∈ [1/2, 1] is a deformation with H(x, 1) =
H1(x, 1) = {q}. Thus X is contractible, a contradiction. �

The dendroidX described in Example 3.4 has a nondegenerate kernel of steadi-
ness, namely Σ(X) = pq, while no subset of X is homotopically fixed. Thus the
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existence of a nondegenerate homotopically steady continuum in a dendroid does
not imply the existence of a homotopically fixed subset in the considered dendroid.
The next example shows that a homotopically fixed subset of a dendroid need

not be homotopically steady.

4.7 Example. There exists a plane dendroid X and a subcontinuum A of X
such that A is an R1-, R2-, and R3-continuum in X , so it is homotopically fixed,
while not homotopically steady.

Proof: In the Cartesian coordinates (x, y) in R
2 put c = (0, 0), p = (−1, 0),

q = (1, 0), r = (0, 1) and, for each n ∈ N, let pn = (−1/n, 1/n), qn = (1/n, 1/n),
an = (−1/n, 1), and bn = (1/n, 1). Then the needed dendroid X is defined by

X = pq ∪ cr ∪
⋃

{ppn ∪ pnan : n ∈ N} ∪
⋃

{qqn ∪ qnbn : n ∈ N}.

Put A = cr, U = X \{p, q}, and for each n ∈ N let C1n and C2n denote components
of U that contain the points an and bn, respectively. Then equality (2.1) for i = 1

and i = 2 is satisfied. Putting C′

2n−j = Cj
n for j ∈ {1, 2} we get A = LiC′

n, so

A is an Ri-continuum in X for each i ∈ {1, 2, 3}, and by Proposition 3.3 it is a
homotopically fixed subset of X .
Let a deformation H : X × I → X be defined by

H((x, y), t) =

{

(x, y) if y ≤ |x|,

(x, t(x − y) + y) if y > |x|.

Then H(X ×{1}) ⊂ {(x, y) ∈ X : y ≤ |x|}, and we see that A is not contained in
H(X × {1}). Therefore A is not a homotopically steady subset of X . The proof
is then complete. �

4.8 Remarks. (a) Example 4.7 shows that an analog of Proposition 3.3 is not
true, i.e., the term “homotopically fixed” cannot be replaced by “homotopically
steady” in that result. (b) In the dendroid X constructed in Example 4.7 the
kernel Σ(X) of steadiness is nondegenerate (it equals the segment pq). Thus the
following questions, which are related to Question 4.5 and to Proposition 3.3, are
natural and interesting.

4.9 Questions. (a) Does the existence of a homotopically fixed subset in a den-
droid imply the existence of a homotopically steady subset? (b) What are in-
terrelations between Ri-continua and homotopically steady subsets of dendroids?
More precisely, let an Ri-continuum A (for some i ∈ {1, 2, 3}) be contained in a
dendroid X . Must A contain a nonempty homotopically steady subset of X?

The concept of a homotopically steady subset of a space can be strengthened
by demanding that for each deformation it remains not only in the image of the
whole space, but even in the image of itself. More precisely, a nonempty subset
A of a space X is said to be strongly homotopically steady provided that

(4.10) for every deformation H : X × I → X we have A ⊂ H(A × {1}).
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In particular, a point p ∈ X is called a strongly homotopically steady point of X if
the singleton {p} is a strongly homotopically steady subset of X . In other words,
p ∈ X is a strongly homotopically steady point of X if and only if

(4.11) for every deformation H : X × I → X we have H({p} × I) = {p}.

Obviously, it follows from 4.1 and 4.10 that each strongly homotopically steady
set is homotopically steady. The opposite implication does not hold, as it can be
seen from Example 4.7. Namely the middle point c = (0, 0) of the straight line
segment pq is a homotopically steady point, while not a strongly homotopically
steady point of the dendroid, that can be seen using a deformation of X which
pushes c a little bit along cr in the direction to r, forcing to move the points pn

along pnan as well as qn along qnbn in the directions to an and to bn, respec-
tively. Furthermore, using the above mentioned deformation and the deformation
H defined in Example 4.7, we can observe that no point of the dendroid X of
Example 4.7 is strongly homotopically steady. However, the following questions
are unanswered.

4.12 Questions. (a) Does the existence of a homotopically steady point (non-
degenerate subcontinuum) imply the existence of a strongly homotopically steady
nondegenerate subcontinuum in a dendroid? (b) In particular, is Σ(X) a strongly
homotopically steady subcontinuum of a dendroid X?

The following result is an analog of Proposition 4.4 (a). Its proof is omitted.

4.13 Proposition. If a subset A of a hereditarily unicoherent continuum X is
strongly homotopically steady, then the continuum I(A) irreducible about A is
strongly homotopically steady as well.

A compact space is said to be rational provided it has an open basis composed
entirely of sets whose boundaries are countable. In [7, Example 3.2, p. 192],
a rational uniformly arcwise connected dendroid X in the plane is constructed
(called below the Fitzpatrick-Lelek dendroid) such that each nonempty connected
open subset of X is dense in X . Thus, if we denote by L(X) the set of all points
of X at which it is locally connected, we have L(X) = ∅. On the other hand, the
set K(X) of all points of X at which it is connected im kleinen is known to be a
dense subset of X [7, Theorem 3.1, p. 191]. The Fitzpatrick-Lelek dendroid has a
very strong homotopical property. To formulate it, we recall two concepts related
to mappings. A mapping f : A → B between topological spaces A and B is said
to be:

— interior at a point p ∈ A provided that f(p) ∈ intU for each open subset
U ⊂ A containing p;

— strongly homotopically stabile at a point p ∈ A provided that for each homotopy
H : A × I → B with H(a, 0) = f(a) for a ∈ A we have H(p, t) = f(p) for each
t ∈ I, i.e., H({p} × I) = {f(p)}.
The following theorem is shown in [9, Example 1.2, p. 195].
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4.14 Theorem. The Fitzpatrick-Lelek dendroid X contains a countable dense
subset D ⊂ X such that each mapping f of a topological space T into X which is
interior at a point p ∈ T , where f(p) ∈ D, is strongly homotopically stabile at p.

Taking T = X and f : X → X as the identity mapping we conclude from
Theorem 4.14 that (4.11) holds for each point p ∈ D ⊂ clD = X , so we get the
following result.

4.15 Statement. Each point of the Fitzpatrick-Lelek dendroid X is strongly

homotopically steady; thus Σ(X) = X .

4.16 Remark. By a modification of the construction of the Fitzpatrick-Lelek
dendroid another plane dendroid E′ is shown in [9, Remarks, p. 196] having all
the above mentioned homotopy properties of X and such that not only K(E′) but
also L(E′) is a dense subset of E′. By the same argument as for X one can see
that E′ has the property that its kernel of steadiness equals the whole dendroid.

The above remark, as well as Statement 4.15, motivate the following problems.

4.17 Problems. (a) Give an internal characterization of dendroids X for which
Σ(X) = X . (b) Give an internal characterization of dendroids X such that each
point of X is strongly homotopically steady.

A point e of a dendroid X is called an end point of X provided that it is an
end point of every arc contained in X and containing e. Observation 4.2 and
Proposition 4.4 imply the next result, that is related to Problem 4.17 (a).

4.18 Statement. For each dendroid X the following conditions are equivalent:

(a) Σ(X) = X ;
(b) the set E(X) of all end points of X is homotopically steady;
(c) each end point of X is a homotopically steady point of X .

The following question (asked by W.J. Charatonik) which is related to Ques-
tion 4.5, seems to be interesting by itself. Let X be a dendroid having a nonde-
generate kernel Σ(X) of steadiness. Shrink Σ(X) to a point. The resulting space,
being a monotone image of a dendroid, is a dendroid, too.

4.19 Question. Given a dendroidX with a nondegenerate kernel Σ(X) of steadi-
ness, is the dendroid X/Σ(X) always contractible?
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