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Linking the closure and orthogonality

properties of perfect morphisms in a category

David Holgate

Abstract. We define perfect morphisms to be those which are the pullback of their image
under a given endofunctor. The interplay of these morphisms with other generalisations
of perfect maps is investigated. In particular, closure operator theory is used to link
closure and orthogonality properties of such morphisms. A number of detailed examples
are given.

Keywords: perfect morphism, (pullback) closure operator, factorisation theory, orthogo-
nal morphisms

Classification: 18A20, 18B30, 54C10

1. Introduction

This paper continues the study of categorical generalisations of perfect mor-
phisms begun in [20]. Such generalisations have been twofold — generalising the
orthogonality properties of perfect maps on the one hand and their closure and
compactness properties on the other. Central to our investigations is a notion
of perfect morphism relative to a pointed endofunctor on a category X. Using
this notion as well as the pullback closure operator induced by the endofunctor,
we explore the links between these two previously disjoint categorical studies of
perfect maps.
The emphasis of [20] was on introducing the pullback closure operator and

investigating its role in describing — in closure and compactness terms — perfect
morphisms defined via a pointed endofunctor. We now look more closely at perfect
morphisms defined via orthogonality properties, and build on the main result of
[20], providing a theorem that summarises ties between various generalisations of
perfect maps.
Our approach is to investigate what properties of the pointed endofunctor

and underlying category enable links to be established between these notions of
perfect morphism. The closure operator, when employed, is strictly a tool in the
process. A number of examples are given that illustrate the theory and endeavour
to provide an intuition for the assumptions upon which it is built.
I am grateful to my doctoral supervisor Guillaume Brümmer for his hand in

this work. In particular it was on his instigation that I embarked on the study of
perfect morphisms.
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2. Categorical background

Categorical notation is taken from [1]. We work in a category X. The pair
(R, r) will denote a pointed endofunctor on X throughout. For X ∈ ObX,
rX : X → RX will denote the natural morphism induced by (R, r). A number
of central definitions relate to this pointed endofunctor.

2.1 Definition. (1) ΣR = {f ∈ MorX | Rf is an isomorphism};
(2) Fix(R, r) = {X ∈ ObX | rX : X → RX is an isomorphism};
(3) (R, r) is idempotent if RX ∈ Fix(R, r) for every X ∈ ObX;
(4) (R, r) is well pointed if rRX = RrX for every X ∈ ObX;
(5) (R, r) is direct if for any f : X → Y in X the pullback P below can be
formed, and the induced morphism u ∈ ΣR.

X

rX

��

u

!!C
C

C
C

f // Y

rY

��

P
q

}}{{
{{

{{
{{

p
=={{{{{{{{

RX
Rf // RY

Two notions of orthogonal morphism will be used below — one relative to a
morphism class, the other relative to an object class.

2.2 Definition. Let A ⊆ MorX, B ⊆ ObX and f : X → Y be a morphism in X.

(1) f ∈ A↓ if any commutative square vg = fu with g ∈ A has a unique
diagonal.

(2) f ∈ B⊥w
if for any morphism g : X → B with codomain B ∈ B there is

an h : Y → B such that hf = g. We say f ∈ B⊥ if h is unique. Such f
will be termed the (uniquely) B-extendable morphisms.

We use categorical closure operators as introduced in [8]. A standard reference
is now [10]. Suffice to say that X is an (E,M) category for sinks. The classM
constitutes subobjects in X and closure operators act on these subobjects. The
class E = E ∩ MorX and the classM will be fixed throughout.

The pullback closure operator was introduced and studied in [20] and [19]. Its
construction is as follows for a subobject m :M → X in M. Take the (E ,M)-
factorisation ne = Rm and then form the pullbackm of n along rX . The pullback
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closure of m is then Φ(R,r)(m) := m.

M

rM

��

j

!!D
D

D
D

m // X

rX

��

M

m

=={{{{{{{{

rX

��

RM
e

""E
EE

EE
EE

E
Rm // RX

N

n
<<zzzzzzzz

Closure operators and the two notions defined below have been used extensively
to study epimorphisms in categories.

2.3 Definition. Let f : X → Y be a morphism in X.

(1) f is said to be Φ(R,r)-dense if when we take the (E ,M)-factorisation

me = f we get that Φ(R,r)(m)
∼= 1X .

(2) f is A-cancellable for a class A of X-objects, if for any pair g, h : Y → A
with gf = hf and A ∈ A it follows that g = h.

3. Different notions of perfect morphism — a brief survey

Since their introduction, a number of characterisations — and indeed defini-
tions — of perfect maps have been given. Thus when categorical topologists in
the 1970’s set about generalising the notion of a perfect map, a number of differ-
ent generalisations were possible. A particularly good summary of these can be
found in [17]. Below is an outline of five characterisations that will be used in our
investigations.
For now, consider perfect continuous maps in Tych. (R, r) is the pointed end-

ofunctor induced by the Čech-Stone compactification. This is the paradigmatic
example for our study. For a continuous f : X → Y in Tych, the following are
five different ways of characterising f as a perfect map.

(1) f is a closed map and for any y ∈ Y , f−1(y) is compact. This is
usually considered to be the definition of a perfect map. Until recently no
attempts had been made to generalise this definition. To our knowledge,
[9] was the first endeavour to make a more general study of morphisms
that preserve closure and have compact preimages of points.

(2) For any space Z the map f × 1Z : X × Z → Y × Z is closed.
[3] uses this as the definition of a perfect map, and shows the equivalence
of this definition with the one above. The first attempts to generalise
this characterisation were made in [4] (for sequential closure) and [22] (in
categories of “structured sets”).
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[18] takes these generalisations further in an hereditary construct. More
recently [9] investigated the interrelation of this notion with the one in
(1) above. They also restrict themselves to certain constructs. Some
improvements on their joint results were made in [7].

(3) f is orthogonal to every compact extendable epimorphism. In our

notation we could write that f ∈ (HComp⊥w
∩ Epi )↓ = (Fix(R, r)⊥w

∩

Epi )↓ = {Dense C∗-embeddings}↓. [16] made use of this characterisation
of perfect maps to find a categorical generalisation. (An appendix to [23]
introduces independently an equivalent notion.)

A string of papers [25], [17], [24], [26] and finally [27] exploited this line
of study. The final paper introduced perfect sources. Collections of such
sources occur as the second part of factorisation structures for sources
inX, and so are in one-one correspondence with epireflective subcategories
of X.

(4) f ∈ Σ
↓
R
. This is a result of the fact that in our setting, {Dense C∗-

embeddings} = ΣR. While this is obviously strongly related to (3) above,
we have not found any author who has specifically generalised this fact by
considering an arbitrary endofunctor or even reflector (R, r).

(5) f is the pullback of its image under (R, r). More precisely, the
diagram below is a pullback square.

X

rX

��

f // Y

rY

��

(∗)

RX
Rf

// RY

The fact that this characterises perfect maps was first proved in [15].
A number of authors ([2], [13], [28] and [14]) have taken this approach to
generalising perfect maps in relatively restricted settings.

[27] calls this notion of perfectness R-strongly perfect and extends it to
sources. He gives a few results that relate this notion to the one in (3) that
was so widely studied. It seems that no-one took these ideas any further
apart from the recent work in [5]. This last notion of a perfect map is the
central one that we use.

We should point out here that more recently in [6] the definition of a perfect
morphism f : X → Y as one which is compact in the comma category X/Y has
been given. We do not consider that definition here.
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4. (R, r)-perfect and weakly (R, r)-perfect morphisms

4.1 Definition. A morphism f : X → Y in X will be called weakly (R, r)-perfect

if f ∈ Σ↓
R
. We will call f (R, r)-perfect if the commutative square as shown in

(∗) above is a pullback.

There are numerous results in topology regarding properties of perfect maps
and their relation to compact spaces. Taking the class Fix(R, r) as the analogue
of the compact Hausdorff spaces, a number of these are easily generalised for both
weakly (R, r)-perfect and (R, r)-perfect morphisms. First an important observa-
tion which appears as Proposition 15 in [20].

4.2 Proposition. If f : X → Y in X is (R, r)-perfect, then f is weakly (R, r)-
perfect.

4.3 Lemma. Any morphism h : X → Y in ΣR is Fix(R, r)-cancellable.

Proof: Take X
h
→ Y ∈ ΣR and u, v : Y → Z such that uh = vh and Z is in

Fix(R, r).

X

rX

��

h // Y

rY

��

u //
v

// Z

rZ

��
RX

Rh // RY
Ru //

Rv
// RZ

Since uh = vh, RuRh = RvRh, but Rh is an isomorphism, so Ru = Rv. Thus
rZu = rZv, and since Z ∈ Fix(R, r), u = v. �

4.4 Proposition. The class of weakly (R, r)-perfect morphisms contains all X
isomorphisms and is closed under composition, pullbacks, multiple pullbacks and
products in X.

Proof: True for any class A↓, cf. for example [25, Proposition 1]. �

4.5 Remark. It is easy to see that the class of (R, r)-perfect morphisms contains
all isomorphisms and is closed under composition. We need to assume various
properties for (R, r) before the other results follow.

4.6 Proposition. Let f : X → Y and g : Y → Z be morphisms in X such that
their composition gf is (weakly) (R, r)-perfect.

(a) If g is a monomorphism, then f is (weakly) (R, r)-perfect.
(b) If g is (weakly) (R, r)-perfect, then f is (weakly) (R, r)-perfect.
(c) If f is a retraction, then g is weakly (R, r)-perfect.
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Proof: (a) Let gf be weakly (R, r)-perfect. Assume we have a commutative

square fu = vh with A
h
→ B ∈ ΣR.

There is a unique diagonal d : B → X for the square (gf)u = (gv)h. But since
g is a monomorphism d is a unique diagonal for the square fu = vh and f is
weakly (R, r)-perfect.

Now let gf be (R, r)-perfect, we must show that the left hand square in the
diagram below is a pullback.

A

v

��,
,,

,
,,

,
,,

,
,,

,
,
,,

,
,,

,

h

!!C
C

C
C

u

**UUUUUUUUUUUUUUUUUUUUUU

X

rX

��

f
// Y

rY

��

g // Z

rZ

��
RX

Rf // RY
Rg // RZ

Say we have a source (A, (u, v)) such that rY u = Rfv then rZgu = RgrY u =
RgRfv = R(gf)v, so there is a unique h : A → X such that gfh = gu and
rXh = v. Since g is a monomorphism, h is also the unique morphism such that
rXh = v and fh = u, so f is (R, r)-perfect.

(b) Let gf be weakly (R, r)-perfect and A
h
→ B ∈ ΣR with morphisms u and

v such that fu = vh.

A

u

��

h // B

d

wwo o o o o o o o o o o o o o

d∗

��~
~

~
~

~
~

~
~

gv

��
X

f // Y
g // Z

There is a unique d : B → X such that dh = u and gfd = gv. There is also a
unique d∗ : B → Y such that d∗h = fu and gd∗ = gv. But then since fdh = fu,
gfd = gv, vh = fu and gv = gv the uniqueness condition on d∗ gives that
fd = v = d∗. Thus d is a unique diagonal for the square fu = vh and f is weakly
(R, r)-perfect.

The case for both gf and g (R, r)-perfect is a simple application of [1, Propo-
sition 11.10(2)].
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(c) Say gf is weakly (R, r)-perfect and we have A
h
→ B ∈ ΣR and morphisms

u and v such that gu = vh.

A

u

��

h // B

v

��

d

wwo o o o o o o o o o o o o o

X
f //

Y
g //

s
oo Z

f has a right inverse s, so gfsu = gu = vh and thus there is a unique d : B → X
such that dh = su and gfd = v. Put d∗ := fd then d∗h = fdh = fsu = u and
gd∗ = gfd = v. Then d∗ is a unique diagonal for the square gu = vh, since any
other d′ such that d′h = u and gd′ = v would give sd′h = su and gfsd′ = v and
so by the uniqueness condition on d, sd′ = d and then d′ = fsd′ = fd = d∗. �

4.7 Proposition. Let f : X → Y be a morphism in X with codomain Y in
Fix(R, r).

(a) f is (R, r)-perfect iff X is in Fix(R, r).
(b) If (R, r) is idempotent and well-pointed then f is weakly (R, r)-perfect iff

X is in Fix(R, r).

Proof: (a) Clear since if rY is an isomorphism, then the commutative square
(∗) is a pullback iff rX is an isomorphism.

(b) The reverse implication is immediate since if X is in Fix(R, r), then by (a)
f is (R, r)-perfect, hence weakly (R, r)-perfect. On the other hand assume that
(R, r) is idempotent and well-pointed and that f is weakly (R, r)-perfect.

X

1X

��

rX // RX

d

���
�

�
�

�
�

�
�

�
Rf

��
RY

X
f // Y

rY

OO

f1X = r−1Y RfrX so since rX ∈ ΣR, there is a unique d : RX → X such that

drX = 1X and fd = r−1Y Rf . But rXdrX = rX and so since rX ∈ ΣR and
RX ∈ Fix(R, r), Lemma 4.3 gives that rXd = 1RX , thus rX is an isomorphism
and X is in Fix(R, r). �
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4.8 Corollary. Let X have a terminal object T such that T ∼= RT . (If (R, r)
is idempotent and well-pointed) an X-object X is in Fix(R, r) iff the unique

morphism X
tX→ T is (weakly) (R, r)-perfect.

4.9 Remark. In most instances it is the case that T ∼= RT (for example if (R, r)
is pointwise epimorphic). It is worth noting that this condition is not needed

to prove that X ∈ Fix(R, r) ⇒ X
tX→ T is (R, r)-perfect. (An alternative proof

can be given.) Also the assumption of idempotence and well-pointedness is only
needed for the one direction in the weakly (R, r)-perfect case.

4.10 Proposition. Let X have products of pairs. If X ∈ Fix(R, r), then for any
Y ∈ ObX, the projection π2 : X × Y → Y is weakly (R, r)-perfect.

Proof: Let X ∈ Fix(R, r) and Y ∈ ObX. Say π2u = vh with A
h
→ B ∈ ΣR

A
rA

xxqqqqqqqqqqqq

u

��

h // B

v

��

rB

!!C
CC

CC
CC

C

RA

Ru

��

Rh // RB

Rv

��

X × Y
rX×Y

xxrrrrrrrrrr
π1

��@
@@

@@
@@

@@
@@

@@
@@

@@
@@

π2 // Y
rY

  B
BB

BB
BB

B

R(X × Y )

Rπ1 &&MMMMMMMMMM

Rπ2 // RY

RX X
rXoo

Put d := 〈r−1X Rπ1Ru(Rh)−1rB , v〉, then π1dh = r−1X Rπ1Ru(Rh)−1rBh =

r−1X Rπ1RurA = r−1X Rπ1rX×Y u = r−1X rXπ1u = π1u and π2dh = vh = π2u, so
dh = u and d is a diagonal for the square π2u = vh.

Say we have a morphism d∗ such that d∗h = u and π2d
∗ = v then since

π1d
∗h = π1dh and h ∈ ΣR and X ∈ Fix(R, r) Lemma 4.3 gives that π1d

∗ = π1d.
We also have that π2d

∗ = v = π2d, so d∗ = d and π2 is weakly (R, r)-perfect. �

4.11 Remark. The extent of the work done on perfectness is such that some
similar results in various guises have appeared in many publications considering
different definitions of perfectness (cf. for example [2], [13], [28] and [14]). Good
summaries of the basic results in topology that these results extend can be found
in [3, § 10] and [11, § 3.7].
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5. Perfect morphisms defined via orthogonality classes

As has been mentioned, early categorical investigations into perfectness gen-
eralised the fact that in Tych the perfect maps are exactly those in the class
(HComp⊥w

∩ Epi )↓. For a class X of X-objects, a morphism in X was called

X -perfect iff it was in the class (X⊥w
∩ EpiX)↓. This notion was introduced

in [16] and in its final investigations was extended to sources in [27]. Theorem 4
of [27] touches on some of the links between this notion of X -perfectness and our
present notion of (R, r)-perfectness. We now explore these matters further. For
any class X of X-objects we will use the term X -perfect as above. Note that for
X = Fix(R, r) the term Fix(R, r)-perfect should not be confused with the term
(R, r)-perfect already being used.
We explore the links between Fix(R, r)-perfect morphisms and (weakly) (R, r)-

perfect morphisms. Crucial to this is understanding how ΣR relates to the class
Fix(R, r)⊥w

∩ EpiX.

5.1 Proposition. ΣR ⊆ Fix(R, r)⊥ ⊆ {Fix(R, r)-cancellable}.

Proof: Let f : X → Y be in ΣR and let g : X → Z have codomain Z in Fix(R, r).

X

rX

��

g
""E

EE
EE

EE
EE

f // Y

h||y
y

y
y

y

rY

��

Z

rZ

��

RX

Rg ""E
EE

EE
EE

E
Rf // RY

RZ

Put h := r−1Z Rg(Rf)−1rY then hf = r−1Z Rg(Rf)−1rY f = r−1Z RgrX = g. By
Lemma 4.3, h is a unique extension so f ∈ Fix(R, r)⊥.
If we have a morphism f : X → Y in Fix(R, r)⊥ and morphisms u, v : Y → Z

with codomain in Fix(R, r) such that uf = vf , then since uf = vf is a morphism
from X to Z it follows immediately that u = v is the unique extension of f to Z
over uf = vf . Thus f is Fix(R, r)-cancellable. �

5.2 Proposition. If E ⊆ EpiX, then {Φ(R,r)-dense} ⊆ {Fix(R, r)-cancellable}.

Proof: Let f : X → Y be Φ(R,r)-dense, and u, v : Y → Z have codomain in

Fix(R, r) with uf = vf . The diagram below shows the construction of Φ(R,r)(m)

where me = f is the (E ,M) factorisation of f and ne′ is the (E ,M) factorisation
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of Rm.

X

rX

��

e

""F
FF

FF
FF

FF
f // Y

u //
v

//

rY

��

Z

rZ

��

M

rM

��

j
//

m

66mmmmmmmmmmmmmmmm
M

rY

��

Φ(m)

=={{{{{{{{

RX

Re ##F
FFFFFFF

Rf // RY
Ru //

Rv
// RZ

RM
e′

//

Rm

66llllllllllllll
N

n

==zzzzzzzz

Since E ⊆ EpiX, RuRm = RvRm and Run = Rvn. Hence RunrY =
RvnrY ⇒ RurY Φ(R,r)(m) = RvrY Φ(R,r)(m) ⇒ rZuΦ(R,r)(m) = rZvΦ(R,r)(m).

But since Z is in Fix(R, r) and f is Φ(R,r)-dense, both rZ and Φ(R,r)(m) are

isomorphisms, so u = v. �

5.3 Proposition. If (R, r) is idempotent, then Fix(R, r)⊥ ⊆ {Φ(R,r)-dense}.

Proof: Let me = f be the (E ,M) factorisation of a morphism f : X → Y in
Fix(R, r)⊥, and construct Φ(R,r)(m).

X

rX

��

e
##F

FF
FF

FF
FF

f // Y

rY

��

k

���
�
�
�
�
�
�
�

h

||z
z

z
z

z
z

z
z

z
z

z
z

z
z

z
z

M

rM

��

j !!D
DD

DD
DD

D

m

66llllllllllllllll

M

rY

��

Φ(m)

FF���������������

RX

Re ##F
FFFFFFF

Rf // RY

RM

Rm

66llllllllllllll

e′ ""E
EE

EE
EE

E

N

n

FF���������������

Since RX is in Fix(R, r) there is a (unique) h : Y → RX such that hf = rX

which gives that ne′Rehf = Rfhf = rY f . By Proposition 5.1, f is Fix(R, r)-
cancellable, so ne′Reh = rY . This means that there is a unique k : Y → M such
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that rY k = e′Reh and Φ(R,r)(m)k = 1Y . Hence Φ(R,r)(m) is an isomorphism

and f is Φ(R,r)-dense. �

5.4 Proposition. If (R, r) is idempotent and well-pointed, then Fix(R, r)⊥ ⊆
ΣR.

Proof: Construct the diagram below for f : X → Y in Fix(R, r)⊥. RX ∈
Fix(R, r), so there is a unique h : Y → RX such that hf = rX .

X

rX

��

f // Y

h

}}{
{

{
{

{
{

{
{

{

rY

��
RX

Rf //
RY

h∗
oo_ _ _ _ _ _

By Proposition 5.1 f is Fix(R, r)-cancellable, so Rfhf = rY f ⇒ Rfh = rY .
But since (R, r) is both idempotent and well-pointed, rY ∈ ΣR ⊆ Fix(R, r)⊥
so there is a unique h∗ : RY → RX such that h∗rY = h. Then because rY is
Fix(R, r)-cancellable, we see that Rfh∗ = 1RY . Similarly h∗RfrX = h∗rY f =
hf = rX implies that h∗Rf = 1RX and so Rf is an isomorphism and f ∈ ΣR.

�

These results combine to give us the following valuable result which generalises
Proposition 3.3 of [5] which is given for the case that (R, r) is a reflection.

5.5 Proposition. If (R, r) is idempotent and well-pointed, then:

Fix(R, r)⊥w
∩ {Fix(R, r)-cancellable} = Fix(R, r)⊥ = ΣR.

If in addition E ⊆ EpiX, these classes are also equal to Fix(R, r)⊥w
∩ {Φ(R,r)-

dense}.

Proof: Propositions 5.1 and 5.4 combine to give that ΣR = Fix(R, r)⊥ and
with the knowledge of Proposition 5.1 it is clear that Fix(R, r)⊥w

∩ {Fix(R, r)-
cancellable} = Fix(R, r)⊥. Furthermore Proposition 5.3 gives that Fix(R, r)⊥ ⊆
Fix(R, r)⊥w

∩ {Φ(R,r)-dense} and if E ⊆ EpiX, then Proposition 5.2 completes

the argument by showing that Fix(R, r)⊥w
∩ {Φ(R,r)-dense} ⊆ Fix(R, r)⊥w

∩

{Fix(R, r)-cancellable}. �

5.6 Corollary. If (R, r) is idempotent and well-pointed, then {(R, r)-perfect} ⊆
{Weakly (R, r)-perfect} ⊆ {Fix(R, r)-perfect}. If in addition ΣR ⊆ EpiX, then
{Weakly (R, r)-perfect} = {Fix(R, r)-perfect}.

Proof: The first inclusion is already known. By the above proposition, ΣR ∩
EpiX = Fix(R, r)⊥ ∩ EpiX = Fix(R, r)⊥w

∩ EpiX, from which it follows that
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Fix(R, r)⊥w
∩EpiX ⊆ ΣR and so Σ

↓
R ⊆ (Fix(R, r)⊥w

∩EpiX)↓. This establishes
the second inclusion.
If ΣR ⊆ EpiX, then obviously ΣR = ΣR ∩ EpiX = Fix(R, r)⊥w

∩ EpiX and
so {Weakly (R, r)-perfect} = {Fix(R, r)-perfect}. �

5.7 Theorem. If (R, r) is idempotent, well-pointed and direct (and ΣR ⊆
EpiX), then:

(R, r)-perfect =Weakly (R, r)-perfect ⊆ (=)Fix(R, r)-perfect

If furthermore E ⊆ EpiX, then (Φ(R,r)-dense Fix(R, r)-extendable, (R, r)-perfect)
is a factorisation structure for morphisms in X.

Proof: The second inclusion/equality follows from the above corollary. Under
the assumption of directness, [20, Corollary 17] tells us that the first equality

holds. That same result gives that (ΣR,Σ
↓
R) is a factorisation structure for mor-

phisms inX, and by Proposition 5.5 ΣR is just the class of Φ(R,r)-dense Fix(R, r)-

extendable morphisms.
�

5.8 Remarks. (1) It is not generally the case that ΣR ⊆ EpiX. For example
if (R, r) is the Top0 reflection in Top, then any embedding of a point into any
indiscrete space with more than 1 point is in ΣR while obviously it is not an
epimorphism in Top. If (R, r) is pointwise monomorphic, however, then we do
have that ΣR ⊆ EpiX.

(2) It is also notable that in general {Φ(R,r)-dense} 6= {Fix(R, r)-cancellable},

this is something typical of the regular closure (cf. [8, Remark (2), p. 137]). As
an example, let (R, r) be the Top0 reflection again. Take the space N ∪ {∞}
which has the topology generated by basic opens of the form Un = {m ∈ N | m ≥
n} ∪ {∞} for n ∈ N. The topological embedding of N into N ∪ {∞} is b-dense
but not Φ(R,r)-dense and it is well known that in Top the b-dense maps are

Top0-cancellable.

It is of course theoretically possible to have Σ
↓
R = (Fix(R, r)⊥w

∩EpiX)↓ with-
out necessarily having that ΣR = Fix(R, r)⊥w

∩ EpiX. In most of the examples
we consider, this cannot happen.
The class Fix(R, r)⊥w

∩ EpiX contains all isomorphisms and is closed under
composition, pushouts and cointersections (cf. [25, Proposition 1 (viii)]). Thus if
X has pushouts and cointersections, Fix(R, r)⊥w

∩EpiX is the first component of
a factorisation structure for sources in X ([1, Theorem 15.14]). In such cases, the
source factorisation structure induces the factorisation structure ((Fix(R, r)⊥w

∩

EpiX), (Fix(R, r)⊥w
∩EpiX)↓) for morphisms inX. Thus if Σ

↓
R = (Fix(R, r)⊥w

∩

EpiX)↓ it would mean that ΣR ⊆ Σ
↓↑
R = Fix(R, r)⊥w

∩EpiX. If furthermore the
conditions of Proposition 5.4 hold, then Fix(R, r)⊥w

∩EpiX ⊆ ΣR, and equality
would follow.
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So far we have only considered possible links between these notions from
one perspective, namely given an endofunctor (R, r) how Fix(R, r)-perfect and
(weakly) (R, r)-perfect morphisms relate. What if we have an arbitrary class X
of X-objects and consider the X -perfect morphisms?
If in our category X both pushouts of (X⊥w

∩EpiX)-morphisms along any X-
morphism and cointersections of arbitrary families of (X⊥w

∩ EpiX)-morphisms
exist, then there is a conglomerateM of sources inX such that ((X⊥w

∩EpiX),M)
is a factorisation structure for sources in X (cf. [25, Proposition 1 (vii)] and [1,
Theorem 15.14]). This means that X has a (X⊥w

∩ EpiX)-reflective hull in X.
Denote the objects of this hull by E(X ) and let (RX , r) be the reflector.

Since X ⊆ E(X ) obviously E(X )⊥w
⊆ X⊥w

. Consider X
f
→ Y ∈ X⊥w

∩EpiX
and g : X → Z with codomain Z in E(X ). Z ∈ E(X ) means that there is a source
(mi : Z → Ai)i∈I ∈M with each Ai ∈ X , so we have the diagram below.

X

g

��

f // Y

hi

���
�
�
�
�
�

d

~~~
~

~
~

~
~

~
~

Z
mi // Ai

For each i ∈ I there is an hi : Y → Ai such that hif = mig. Then by the
((X⊥w

∩EpiX),M) diagonalisation property there is a morphism d : Y → Z such
that in particular df = g, giving that f ∈ E(X )⊥w

.
So we can conclude that E(X )⊥w

∩ EpiX = X⊥w
∩ EpiX which means

(rewriting E(X ) as Fix(RX , r)) that the X -perfect morphisms, (X⊥w
∩EpiX)↓ =

(Fix(RX , r) ∩ EpiX)↓, which are just the Fix(RX , r)-perfect morphisms.

Since (RX , r) is a reflection it fulfills the conditions of Corollary 5.6 above,
so we can conclude that {(RX , r)-perfect} ⊆ {Weakly (RX , r)-perfect} ⊆ {X -
perfect}. Moreover if ΣRX

is a class of epimorphisms, then {Weakly (RX , r)-
perfect} = {X -perfect} and these in turn equal the (RX , r)-perfect morphisms if
(RX , r) is a direct reflection.

6. Summarising theorem and examples

The interrelation of the five notions of perfect morphism we have investigated
can be presented in the following theorem, an improvement of [20, Theorem 23].

6.1 Theorem. Let f : X → Y in X. The properties of f in the boxes below
imply others along the arrows drawn. The numerals alongside certain arrows
represent conditions that are sufficient for the associated implication to hold.
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A

(a) f is (R,r)-perfect

(iv)

(i)
(vi)

(v)

(e) ∀ Z ∈ObX f×1Z

is (R,r)-perfect

(b) f is weakly

(R,r)-perfect

(ii) (iii) (vii) (viii)

(d) f is Φ(R,r)-preserving

and ∀ T
m
→Y ∈M

f−1(T )∈Fix(R,r)

(f) ∀ Z ∈ObX f×1Z

is Φ(R,r)-preserving

(g) f is Φ(R,r)-preserving

and ∀ T
m
→Y ∈M

f−1(T ) is Φ(R,r)-compact

(c) f ∈ (Fix(R,r)⊥w∩EpiX)↓

(i) (R, r) is direct and either ΣR ⊆ EpiX or (R, r) is idempotent.
(ii) (R, r) is idempotent and well-pointed.
(iii) (ii) and ΣR ⊆ EpiX.
(iv) (i) or for any A, B ∈ ObX the canonical morphism k : R(A × B)→

RA × RB is a monomorphism.
(v) E is stable under pullback and Re ∈ E for every e ∈ E .
(vi) (v) and (R, r) is pointwise epimorphic.
(vii) (i) and (v).
(viii) E is stable under pullback, (R, r) is direct and idempotent, X has a ter-

minal object T and each T
m
→ Y ∈ M is Φ(R,r)-closed.

For (e), (f) and (g) to be accessed we need to assume that X has products of
pairs.

Proof: (a) ⇒ (b): Proposition 4.2.

(b)⇒ (a): This is proved for (R, r) direct and idempotent in [20, Theorem 23].
That ΣR ⊆ EpiX can be substituted for idempotence is shown in [19, The-
orem 2.3.5]. (This will appear in work on directness combining [5] and [19],
presently in preparation.)

(b) ⇒ (c): Corollary 5.6.
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(c) ⇒ (b): Corollary 5.6.
(b) ⇒ (c): The proof for (R, r) direct and idempotent is given in [20]. As in

the proof of (b) ⇒ (a), ΣR ⊆ EpiX can be substituted for idempotence of (R, r).
On the other hand assume that for any A, B ∈ ObX the canonical morphism
k : R(A × B)→ RA × RB is a monomorphism. Consider the diagram below
where u : A → Y × Z and v : A → R(X × Z) are such that rY ×Zu = R(f ×1Z)v.
The morphisms p1, q1 and π1 are projections.

A

h

���
�
�
�
�
�
�
�
�
�

g
%%K

K
K

K
K

K

u

--ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

v

��-
--

--
--

--
--

--
--

--
--

--
--

--
--

--

X × Z
p1

����
��

��
��

��
��

��
�

rX×Z

��

f×1Z
// Y × Z

rY ×Z

��

q1

��;
;;

;;
;;

;;
;;

;;
;;

X

rX

��

f // Y

rY

��

R(X × Z)

Rp1

����
��

��
��

��
��

��
�� k

''NNNNNNNNNNN

R(f×1Z ) // R(Y × Z)

Rq1

��8
88

88
88

88
88

88
88

8

RX × RZ

π1
sshhhhhhhhhhhhhhhhhhhhh

RX
Rf // RY

Since f is (R, r)-perfect and rY q1u = Rq1rY ×Zu = Rq1R(f × 1Z)v =
R(q1(f × 1Z))v = R(fp1)v = RfRp1v, there is a unique h : A → X such that
fh = q1u and rXh = Rp1v.
Put g := 〈h, q2u〉 : A → X × Z and note that q1(f × 1Z)g = fp1g = fh =

q1u and q2(f × 1Z)g = 1Zp2g = q2u, so (f × 1Z)g = u. Also π1krX×Zg =
Rp1rX×Zg = rXp1g = rXh = Rp1v = π1kv and π2krX×Zg = Rp2rX×Zg =
rZp2g = rZq2u = Rq2rY ×Zu = Rq2R(f × 1Z)v = R1ZRp2v = Rp2v = π2kv so
since k is a monomorphism we conclude that rX×Zg = v.
Say g∗ : A → X × Z is such that (f × 1Z)g

∗ = u and rX×Zg∗ = v. This
gives fp1g

∗ = q1(f × 1Z)g
∗ = q1u and rXp1g

∗ = Rp1rX×Zg∗ = Rp1v so by
the uniqueness condition on h, p1g

∗ = h. On the other hand p2g
∗ = 1Zp2g

∗ =
q2(f × 1Z)g

∗ = q2u, so in fact g∗ = 〈h, q2u〉 = g.
The implications (a)⇒ (d), (e)⇒ (a), (e)⇒ (f) and (f)⇒ (g) are proved in [20].

The proof of (d) ⇒ (g) follows from [20] with the substitution of ΣR ⊆ EpiX for
idempotence as in (b) ⇒ (a) above. �
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6.2 Remark. These many conditions may seem a little cluttered, but for certain
(R, r) there are a number of conditions that are fulfilled simultaneously in which
case the following clear deductions can be made.
(1) If (R, r) is a direct reflection, E is stable under pullback and for every

e ∈ E , R(e) ∈ E , then all implications except (c) ⇒ (b), (a) ⇒ (d) and
(f) ⇒ (g) follow immediately from the theory.

(2) If in addition to (1) above, (R, r) is an epireflection, then only (c) ⇒ (b)
and (f) ⇒ (g) cannot be concluded from the theorem.

(3) If moreover (R, r) is a bireflection, only (f) ⇒(g) does not automatically
hold. It is notable that condition (viii) is unnecessarily strong, in the
examples below we show that the implication (f) ⇒ (g) can in fact hold
without (viii) being fulfilled.

6.3 Examples

We conclude with a number of examples. In each instance we have specifically
investigated whether or not conditions (i) to (viii) of Theorem 6.1 are satisfied.
Only (ii) and (iv) are satisfied by all examples. For the failure of each of the other
conditions — with the exception of (viii) — we have been able to show in an
example that the associated implication is not true. While this does not establish
the necessity of the conditions given, it does give credence to the emphasis placed
on them.

6.3.1 Čech-Stone compactification. Let (R, r) denote the Čech-Stone com-
pactification in the category X of Tychonoff spaces and continuous maps. (E ,M)
is the (Surjection, Embedding) factorisation structure for morphisms in X. Φ(R,r)

is the usual topological closure. All conditions (i) to (viii) in Theorem 6.1 are
satisfied, hence all the implications are true.
Knowing what we do about (R, r) and E , we see from Proposition 5.5 that ΣR =

Fix(R, r)⊥ = Fix(R, r)⊥w
∩ {Φ(R,r)-dense} which is the class of dense HComp-

extendable morphisms. Furthermore, Theorem 5.7 tells us that (Dense HComp-
extendable, (R, r)-perfect) is a factorisation structure for morphisms in X. These
facts are of course well known.
6.3.2 Top0 reflection. Let (R, r) be the Top0 reflector in X = Top. E is

again the class of surjective continuous maps, andM the embeddings. In [5] it is
shown that (R, r) is direct. Knowing this, that (R, r) is an E-reflection and that
surjective continuous maps are stable under pullback, it is immediately clear that
conditions (i), (ii), (iv), (v), (vi) and (vii) of Theorem 6.1 are true.
Let j : {•} → I2 be an embedding of a singleton space into a two point in-

discrete space. Then j ∈ ΣR, j is not Φ(R,r)-closed, j is not (R, r)-perfect and

j ∈ (Fix(R, r)⊥w
∩ EpiX)↓. Thus conditions (iii) and (viii) in Theorem 6.1 do

not hold, nor does the implication (c) ⇒ (b).
The properties of (R, r) and E are such that we can conclude from Theo-

rem 5.7 that we have a factorisation structure (Φ(R,r)-dense Top0-extendable,

(R, r)-perfect) for morphisms in Top.
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6.3.3 Uniform completion. Let (R, r) be the completion reflector in Unif0.
In this setting, E is the class of surjective uniformly continuous maps, andM is
the class of uniform embeddings.
(R, r) is a bireflection and is shown in [5] to be direct. However, while E is

stable under pullback in Unif0, (R, r) does not preserve E-morphisms. (The
uniformly continuous image of a complete space need not be complete.)
Thus conditions (i) to (vii) of Theorem 6.1 are satisfied, but not (v) to (vii).

Since Φ(R,r) is the underlying topological closure ([19]), (viii) holds.

Taking X to be the real line with discrete uniformity, and Y the real line with
the usual uniformity, we see that both X and Y are complete, 1R : X → Y is
(R, r)-perfect (Proposition 4.7). However, 1R does not preserve the closure (e.g.
(0, 1) is closed in X but not in Y ) so both implications (a) ⇒ (d) and (e) ⇒ (f)
of Theorem 6.1 fail.
Also, since Y is in Fix(R, r) but not Φ(R,r)-compact, the surjection f : Y → {•}

to a singleton provides a counterexample to (d) ⇒ (g).
We again conclude from Theorem 5.7 that (Dense complete-extendable, (R, r)-

perfect) is a factorisation structure for morphisms in Unif0. (Dense means with
respect to the underlying topology.)
In [14] it is observed that a uniformly continuous map f : X → Y is (R, r)-

perfect iff for any Cauchy filter U in X , U converges in X if f(U) converges in Y .
6.3.4 Sobrification. Let (S, s) be the sobrification reflector in Top0. As with

the other examples thus far (E ,M) is the (Surjection, Embedding) factorisation
structure for morphisms restricted to Top0. Also in this setting E is stable under
pullback, and again in [5] it is shown that (S, s) is direct.
Since in addition to the above (S, s) is a bireflection, conditions (i) to (iv) of

Theorem 6.1 hold, and since Φ(S,s) is the b-closure (cf. [20]) (viii) holds too. (S, s)

does not, however, preserve surjective continuous maps as the following example
shows.
Let X be the natural numbersN endowed with the discrete topology. Let Y be

the natural numbers endowed with the co-finite topology. Both are Top0 spaces.
X is clearly a sober space. Y however is not, since N is a closed irreducible subset
of Y yet it cannot be expressed as the closure of a single point.

SY has underlying set N∪{•}. U is an open set in SY iff {•} ⊆ U and U ∩N
is open in Y .
The identity function on N, 1N : X → Y is a surjective Top0 morphism, yet

S1N : SX → SY is not surjective. Thus (S, s) does not satisfy conditions (v) to
(vii) of Theorem 6.1.
Consider now the spaces X and Y , both with underlying set N ∪ {∞} (n ≤

∞ ∀ n ∈ N). Let X have the discrete topology and let Y have the upper topology,
namely the topology with open sets of the form Un := {m ∈ N | n ≤ m} ∪ {∞}
for n ∈ N. Both X and Y are sober spaces.
Let 1N∪{∞} be the identity function on N∪{∞}. Then 1N∪{∞} : X → Y is a

Sob-morphism and is thus (S, s)-perfect (cf. Proposition 4.7). Observe now that
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N is a b-closed subset of X yet it is not b-closed in Y , thus since the b-closure is
idempotent this means that 1N∪{∞} : X → Y is not b-closure preserving. Φ(S,s)

is the b-closure, thus we have an example of an (S, s)-perfect map that is not
Φ(S,s)-preserving. From this we conclude that in this example neither of the

implications (a) ⇒ (d) and (e) ⇒ (f) of Theorem 6.1 holds.
It has been shown (cf. [12, Corollary 2] and [8, Example 3.2]) that in Top0 the

b-compact spaces are properly contained in the sober spaces. Let X be a sober
space that is not b-compact. The map f : X → {•} of X onto a singleton space
then gives a simple example to show that the implication (d)⇒ (g) of Theorem 6.1
does not hold either.
The properties of (S, s) are such that we can conclude from Theorem 5.7 that

we have a factorisation structure (b-dense Sob-extendable, (S, s)-perfect) for mor-
phisms in Top0.

6.3.5 Endofunctors induced by congruence relations in varieties. In
a number of algebraic settings, many pointed endofunctors are induced by con-
gruence relations. We give these examples in Groups, but the material can be
extended to an arbitrary variety (cf. [19]).
A congruence relation ∼G on a group G is an equivalence relation such that ∼G

is a subgroup of G × G. A family (∼G)G∈Grp of congruence relations is termed
a natural family if for any homomorphism f : G → H : x ∼G y ⇒ f(x) ∼H f(y).
Such a family induces a pointed endofunctor (R, q) on Grp, with qG : G → RG
being the quotient G → G/∼G

.
If Φ is the pullback closure operator induced by (R, q), then it is not difficult

to show that:

1. For a group homomorphism f : G → H the following are equivalent:
(a) f is Φ preserving.
(b) f [[eG]∼G

] = [eH ]∼H
. (e the identity element)

(c) For every g ∈ G, f [[g]∼G
] = [f(g)]∼H

.
2. A group G ∈ Fix(R, q)⇔ [eG]∼G

= {eG}.
3. A homomorphism f : G → H is (R, q)-perfect iff f is Φ-preserving and

f−1(eH) ∩ [eG]∼G
= {eG}.

If furthermore for each subgroup H of G, ∼H=∼G ∩H × H ((∼G)G∈Grp is
hereditary) then:

4. f : G → H is (R, q)-perfect iff f is Φ-preserving and f−1(eH) ∈ Fix(R, q).

Now we look at two specific examples in the categories of Grp and AbGrp.

(1) Let (R, q) be the reflector from Grp to AbGrp, induced by the family
(∼G)G∈Grp, where x ∼G y ⇔ xCG = yCG for the commutator subgroup CG

of G.

(R, q) is not direct. (Consider the inclusion {e}
i
→ S3 for the group of permu-

tations on 3 elements, noting that RS3 = Z2.) So conditions (i), (vii) and (viii)
of Theorem 6.1 do not hold. Condition (iii) of that theorem does not hold either.
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Clearly conditions (ii), (v) and (vi) hold, and according to [21] (R, q) preserves
products, so condition (iv) holds too.

[19, Theorem 2.3.7] tells us that in this setting (R, q)-perfect coincides with
weakly (R, q)-perfect iff (R, q) is direct. From this we can conclude that the
implication (b) ⇒ (a) in Theorem 6.1 does not hold.

Consider the embeddingm : Z2 → S3 where 0 is mapped to the identity permu-
tation, and 1 is mapped to any one of the three transpositions. Since the domain
of m is an abelian group, it is clear that m ∈ (Fix(R, q)⊥w

∩ Epi )↓. Considering

the commutative square 1S3m = m1Z2 we see, however, that m is not in Σ
↓
R so

the implication (c) ⇒ (b) of Theorem 6.1 also does not hold in this example.

The results 1 & 3 above enable us to characterise the (R, q)-perfect homomor-
phisms as those f : G → H for which f [CG] = CH and f−1(eH) ∩ CG = {eG}.
(Note that the family of congruence relations in this example is not hereditary, so
we cannot apply 4. In fact the reflection map qS3 : S3 → Z2 is Φ-preserving and

f−1(0) = A3 ∈ Fix(R, q) yet it is not (R, q)-perfect.)

(2) Let (R, q) be the reflector from AbGrp to TfAb. The natural family
of congruence relations that induces this reflection is defined by: x ∼G y ⇔
∃ nonzero integer n such that nx = ny. It is easy to see that this family of
congruence relations is both hereditary and finitely productive (for G and H ,
(x, y) ∼G×H (z, w) ⇔ x ∼G z and y ∼H w), from which it follows that the
reflector (R, q) is direct. Hence all conditions in Theorem 6.1 except (iii) and
(viii) hold.

Result 4 above tells us that a homomorphism f : G → H is (R, q)-perfect iff
f [tG] = tH and f−1(eH) is torsion free. (Where tG = [eG]∼G

is the torsion
subgroup.)

Since the congruence relations involved are productive, it is not difficult to see
that every Abelian group is Φ-compact. Thus for a homomorphism f : G → H,
f is Φ-preserving and f−1(eH) is Φ-compact iff f is Φ-preserving. Note that this
tells us that the implication (f) ⇒ (g) is true even though condition (viii) does
not hold.

The inclusion map i : {0} → Z2 ∈ (Fix(R, q)⊥w
∩ Epi )↓ yet it is not in Σ↓R

(consider the square 1Z2i = i1{0}). So yet again the implication (c) ⇒ (b) does

not hold.

Lastly, we conclude from Theorem 5.7 that (Φ-dense TfAb-extendable, (R, q)-
perfect) is a factorisation structure for morphisms in AbGrp.
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