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Classifications and characterizations of Baire-1 functions

P. KIRIAKOULI

Abstract. Kechris and Louveau in [5] classified the bounded Baire-1 functions, which are
defined on a compact metric space K, to the subclasses l’:o’f(K)7 & < wi. In [8], for every
ordinal £ < w; we define a new type of convergence for sequences of real-valued functions
(§-uniformly pointwise) which is between uniform and pointwise convergence. In this
paper using this type of convergence we obtain a classification of pointwise convergent
sequences of continuous real-valued functions defined on a compact metric space K, and
also we give a characterization of the classes B§ (K),1<&<wi.

Keywords: Baire-1 functions, convergence index, oscillation index, trees
Classification: 46E99, 54C30, 54C35, 54C50

1. Introduction

By N we mean the set of all natural numbers (ie. N = {1,2,...,}), by w we
mean the first infinite ordinal (i.e. w = {0,1,2,...}) and by w; we mean the
first uncountable ordinal. Mercourakis in [10] introduced a new type of point-
wise convergence (uniformly pointwise convergence) which is weaker than uni-
form convergence and stronger than pointwise convergence. Also Mercourakis
in [11] extended this convergence with the definition of m-uniformly pointwise
convergence for every 1 < m < w. For m = 1 this convergence coincides with
uniformly pointwise convergence and (m + 1)-uniformly pointwise convergence
is weaker than m-uniformly pointwise convergence and stronger than pointwise
convergence. Also in [11] it has been proved that if a sequence (fy) of continuous
real-valued functions converges m-uniformly pointwise to some function f then f
is also continuous.

In [8], for every ordinal £ < w1 we define a new type of pointwise convergence (¢-
uniformly pointwise) which extends the definition of the above convergence. Using
this convergence we obtain a complete classification of all pointwise convergent
sequences of continuous real-valued functions defined on a countably compact
space for which the limit function is continuous. An equivalent definition of -
uniformly pointwise convergence is given in [9].

In this paper, by the aid of this convergence we obtain a classification of point-
wise convergent sequences of continuous real-valued functions defined on a com-
pact metric space for which the limit function is a general function not necessarily
continuous and also we obtain a characterization of some subclasses of bounded
Baire-1 functions. These results are described in the following way.
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Kechris and Louveau in [5] defined the convergence index “y” of a sequence of
continuous real-valued functions. We prove that if K is a compact metric space,
(f) a sequence of continuous real-valued functions on K and 1 < £ < wy then
the following are equivalent: (i) for every strictly increasing sequence (ky) of
natural numbers there exists a subsequence (k) of (k) so that ~(( fir)) < wt;
(ii) for every strictly increasing sequence (ky) of natural numbers there exists a
subsequence (k;,) of (k) so that the sequence ( fk:Hl - fk;) converges &-uniformly

pointwise to zero; (iii) for every strictly increasing sequence (k) of natural num-
bers there exists a subsequence (k;z) of (kn) so that the sequence (f,,  — f,/ )
2n—+1 2n

converges ¢-uniformly pointwise to zero (cf. Theorem 3.5).
Also Kechris and Louveau in [5] classified the bounded Baire-1 functions, which

are defined on a compact metric space K, to the subclasses Bﬁ(K), ¢ <wi. Using
Theorem 3.5 we get the following: If K is a compact metric space, 1 < ¢ < wy and
f is a bounded real-valued function on K then the next conditions are equivalent:
(i) fe Bf(K ); (ii) there exists a sequence ( f,) of continuous real-valued functions
defined on K which converges pointwise to f and for every strictly increasing
sequence (ky,) of natural numbers there is a subsequence (k,,) of (ky) so that the
sequence ( fk/LJr1 - fk;) converges {-uniformly pointwise to zero; (iii) there exists

a sequence (fy,) of continuous real-valued functions defined on K which converges

pointwise to f and for every strictly increasing sequence (k) of natural numbers

there is a subsequence (k,,) of (ky,) so that the sequence ( fiy = [y ) converges
2n+1 2n

&-uniformly pointwise to zero (cf. Theorem 3.6).
2. Preliminaries

A real-valued function f defined on a set X is bounded if || f||oo := sup,ex | ()]
< 400. A sequence (fi) of real-valued functions defined on a set X is uniformly
bounded if supy, || f&]loo < +00.

Let K be a compact metric space and C(K) the set of continuous real-valued
functions on K. By R we mean the set of all real numbers. A function f: K — R
is Baire-1 if there exists a sequence (f) in C'(K) that converges pointwise to f.
Let By (K) be the set of all bounded Baire-1 real-valued functions on K. Haydon,
Odell and Rosenthal in [4], Kechris and Louveau in [5] defined the oscillation
index S(f) of a general function f : K — R and proved that f is Baire-1 iff
B(f) <wi.

Definition 2.1 (cf. [4], [5]). Let K be a compact metric space, f : K — R,
P C K and ¢ > 0. Let ng = P and for any ordinal « let PSJ}H be the set of
those x € Pf‘f such that for every open set U around x there are two points x

and xg in Ped‘f N U such that |f(z1) — f(z2)| > €.

At a limit ordinal o we set P, = Np<a ng.
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Let 8(f,€) be the least o with Kgf = () if such an « exists, and B(f,€) = w1,

otherwise. Define the oscillation index 3(f) of f by
B(f) = sup{B(f,€) : € > 0}.

For every £ < wy we define B§(K) ={f e Bi(K): B(f) <wt}.

(The class B}(K) has been studied also by Haydon, Odell and Rosenthal in [4],
where it is denoted by By /5(K).)

The complexity of pointwise convergent sequences of continuous real-valued
functions defined on a compact metric space is described by a countable ordinal
index “+” which is defined in the following way.

Definition 2.2 (cf. [5]). Let K be a compact metric space, (f;) a sequence of
continuous real-valued functions defined on K, P C K and € > 0. Let PO P

67(fk) -
and for any ordinal « let P:‘(";i) be the set of those x € PEO‘( ) such that for every

open set U around z and for every p € N there are m,n € N with m > n > p and
a point z in Pea(fk) NU such that | fom(z') — fu(z))] > e

o . - 3 .
At a limit ordinal a we set Pg(fk) = Ng<a Pe,(fk . (It can be noticed that

Pea(fk) is a closed subset of P with the relative topology in P.) Let v((f%), €) be the

least o with Kg(fk) = () if such an « exists, and y((f3), €) = w1, otherwise. (Notice

that if v((f%), €) < wi then it is a successor ordinal.) Define the convergence index

f f(fx) b
DRI () = supta(s. ) e ).
Also in [5] it is proved that v((fx)) < wi iff (fx) is pointwise converging.

Generalized Schreier families.

Definition 2.3 (cf. [1]). If F and H are finite non-empty subsets of N and n € N,
then we define F' < H if maxF < min H, n < F iff n <min F. Let Fy = {{n} :
n € N}U{0} and F; be the usual Schreier family, i.e. F1 = {A C N:|A4| <min A}.
If F¢ has been defined then we set

[e.e]

Fer1 = U {UleFi:Fl,... Fp € Fe with k< Fy <. <Fk}.
k=1
If £ is a limit ordinal with F defined for each ¢ < &, choose and fix a strictly
increasing sequence of ordinals (£;,) with £ = sup &, and let
k

o
Fe=|J{FeF mnF>k}.
k=1
It can be noticed that the families Fp,, 1 < m < w appeared for the first time in
an example constructed by Alspach and Odell ([2]).

Notice that if (k;) is a strictly increasing sequence of natural numbers, & < w;
and F' € Fg, then {k; : j € F'} € F¢ (see also [12, Lemma 3.5]).
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Trees.
Definition 2.4 (cf. [3]). Let X be a set. For every n € N we set X" :=
{(z1,...,2n) 1 21,... ,2n € X }.

(i) A tree T on X will be a subset of | J72 ; X™ with the property that

(z1,...,zn) € T whenever (21,...,Zp,Zn+1) €T.
(ii) A tree T on X is well-founded if there is no sequence (xy) in X satisfying
(z1,...,2p) € T for each n € N.

(iii) Proceeding by induction we associate to each ordinal o a new tree T¢ as
follows: We set T = T'. If T is obtained, let
Tt = 0 {(z1,. .. y2n) €T (21,... ,op,2) € T for some z € X }.
If v is a limit ordinal, define 77 = [, T'“. If there exists an ordinal o so
that T% = () then we denote by o(T) the smallest such ordinal . This is the
order of the tree 7.

Definition 2.5 (see also [8]). Let X be a set, (f3) a sequence of real-valued
functions defined on X and ¢ a positive real number. We define the tree T'((f%), )
on N as follows:

T((fe),0) = {(F U {1, k1, kn) € N*TL i1 < kg < ... < Ky and
there exists x € X so that |fy, (z)| > d forall i =1,2,... ,n}.

The §-index i((f),d) of the sequence (fy) is the order of the tree T((f),0),
ie. i(fx),0) = o(T((fr),0)). We notice that i((f),d) is a successor ordinal.

The following result is included in [8]. For completeness we give an outline of

the proof.
Lemma 2.6. If { < wi, (fr) a sequence of real-valued functions on a set X and

d > 0 such that for every I € F¢ there is x € X with |fy(x)| > ¢ for every k € F,

then (T((fy), 8))“" # 0.

PROOF: We use a technique developed by Prof. S. Negrepontis and the author (cf.
[6] or [12, Definition 3.6, Lemma 3.7]). We apply this technique as follows: For any
n €N, &,...,& < wp we say that the n-tuple (£1,... ,&,) has the property (I)
if whenever (fi) is a sequence of real-valued functions on a set X and 6 > 0 such

that for every IN € F¢,,... ,Fn € F¢, with F} < ... < I}, there exists z € X
with | fx(z)| > 0 for every k € U} F;, then (T'((f%), §))wn Wt L g
(a) By induction on £ < wy we prove that if (£1,...,&p) has the property (I),

then (£,&1,...,&,) has the property (I).

For ¢ = 0, it is proved by using the definition of the property (I) for the set
Y ={x € X :|fa(z)| > 0} and for the functions gj := for+1, k € N.

(b) By induction on ¢ < wj we prove that (§) has property (I) for every £ < wj.

[Indeed, it is obvious for £ = 0 by using Definitions 2.4 (iii) and 2.5. Let
1 < ¢ < wy and assume that it is true for every ¢ < £. If € = ( + 1, we use
that (¢, ..., () has the property (I) for all [ € N, and we use the definition of the

l—times
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property (I) and Definitions 2.4 (iii) and 2.5. If £ is a limit ordinal and (&) is
the strictly increasing sequence with supy, & = £ that defines the family F¢, we
use that (&) has the property (I) for all [ € N, and we use the definition of the
property (I) and Definitions 2.4 (iii) and 2.5.] O

Definition 2.7 (see [8]). Let (fi) be a sequence of real-valued functions defined
on a set X and £ < w;. We say that the sequence (fj) converges £-uniformly
pointwise on X to the function f if i((fz — f),8) < w® for every positive real
number 0.

We notice that for any 1 < m < w the above definition is equivalent to the
definition of m-uniformly pointwise convergence which has been introduced by
Mercourakis in [11] (cf. [8]). Also in [8] we prove the following: (i) If X is a
topological space, § < w1 and (fj) a uniformly bounded sequence of continuous
real-valued functions on X which converges -uniformly pointwise to f, then f is
also continuous. (ii) If X is a countably compact space (i.e. every infinite sequence
(rg) in X has an accumulation point in X) and (fi) a sequence of continuous
real-valued functions pointwise converging to some continuous function f on X,
then there exists £ < wy such that (f;) converges &-uniformly pointwise to f.

3. Main results

In this section we shall study the complexity of pointwise converging sequences
of continuous real-valued functions defined on a compact metric space (cf. The-
orems 3.3 and 3.5) and also we shall prove a characterization of those bounded
Baire-1 functions which have the oscillation index less than or equal to w®, where
1 <& < wj (cf. Theorem 3.6).

Before we proceed to the proof of these results we need a few propositions
which are proved by using the same technique, developed by Prof. S. Negrepontis
and the author, which is used in the proof of Lemma 2.6. We start with the
proposition:

Proposition 3.1. Let K be a compact metric space, £ < w1 and (f},) a sequence

of continuous real-valued functions on K. Assume that there is € > 0 such that

for every strictly increasing sequence (ny,) of natural numbers there exists a sub-

sequence (n;ﬁ) of (ny) so that for every E = {k1 < ... < kyx} € F¢, there exists

ve K with|f  (x)—f/ (x)] >eforall 1 <j <\ Theny((fn,),€) >w®
2k:j +1 ij

for every strictly increasing sequence (ny,) of natural numbers.

For the proof of this proposition we need the next definition and Lemmas 3.1.2
and 3.1.3.

Definition 3.1.1. For n € N and &1,...,&, < w; we say that the n-tuple
(&1, .. ,&n) has property (T') if whenever K is a compact metric space, (f) a se-
quence of continuous real-valued functions on K, ¢ > 0 and m € N such that for all
By eFey.o Bn € Fe, withm < Ey <... < Epand U E; = {k1 < ... <ky}
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(where A € N) there exists zg, g, € K with | for, 11(2E, . E,)— for,; (@R, E,)| >

e forall j =1,..., ), then there exists a limit point = of the set {zg, g, : E1 €
Fervoo Bn € Fe, with m < By < ... < By} in K such that x € K-+,

Lemma 3.1.2. If (&1,...,&,) has property (') then (£,&1,...,&,) has pro-
perty (T') for every £ < wy.

PrOOF: We proceed by induction on £ < wy.

Case 1 (€ =0). Let (&1,...,&n) have property (T'), let K be a compact metric
space, (f;) a sequence of continuous real-valued functions on K, ¢ > 0 and m € N
such that for each k € N, By € F¢ ... ,Ep € F¢, withm <k < E; <...<Ejp
and {k} UU_ | E; = {k1 < ... < ky} (where A € N) there is 23, g, € K with

|for;+1(@kEy . E,) — fok; (TkE, . B,)| > € forall j =1,... A\. We shall show that
there exists a limit point x of the set {zxp, g, 1k €N, E1 € Feyseor Bn € Fe,
with m < k < F1 < ... < Ep} in K such that z € K:f;j';'"'""“’&l"'l. Because
(&1,-..,&n) has property (I') we have that for every k € N with k& > m, there
is a limit point xj, of the set Ay = {wyp, g, : B1 € Fe¢py..., En € Fg, with
k < By < ... < Ep} such that x), € K:f;;)“*wgl. Since |fopt1(TkE, . E,) —

for(@kp, . E,)| > €forall zpp, g, € Ap and k € N with & > m, fori1, for, are
continuous and zj, is a limit point of Ay, we get that |fory1(zr) — for(zx)] > €
for all £k € N with £ > m. Since K is a compact metric space there is a sequence
m < ky < kg <...<k; <kjt1 <...such that the sequence (z},) converges to
W . Fwbl W . w141
(- Then @ €K '

[Indeed, if not, then there are an open neighborhood U of z in K:’E;f;‘“""wgl
\Jj

and kg € N such that |fip(y) — fa(y)] < e for all y € U and k,\ € N with
k,\ > kg. Since lim;_,o o}, = @ there exists i € N so that k; > ko and z, € U.
Then |for,+1(xk;) — for, (xk;)| < €, a contradiction.]

Thus the proof of Case 1 is complete.

some z in K

Case 2 (isolated ordinals). Assume that the conclusion of our lemma is true for
&; we shall show that it is true for {+1. Suppose that (£1,. .. , &) has property (T');
then, for every k, the sequence (&,...,&,&1,...,&n) has property (I'). We show

——
k
that (£ +1,&1,...,&,) has property (I'). Let K be a compact metric space, (f%)
a sequence of continuous real-valued functions on K, € > 0 and m € N such that
for each £ € F¢ i1, E1 € Fepy... By € Fe, withm < E<E; <...< Ep and
EUU E; = {ki < ... <ky} (where A € N) there is a point xpp, g, of K
with
\for;+1(@EE,. B,) — for,;(TEE, ..E,)| > € forall j=12. A
We shall show that there is a limit point = of the set
A= {,TEElEn Ee f5+1,E1 S .7:&, ..., By € fﬁn with
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m<E<E] <...<Ep},

such that z € K“’f;]";' At wtt . By Definition 2.3, Fey1 = Upey fg(k) where

—{Uk_|E;: By,...Ey € Fewith k < By < ... < Ey} for all k € N. Then
by inductive hypothesis, it follows that, for all k¥ € N with k£ > m, there is a limit
point zj, of the set
Ap={2pp,..p,  E€ F) E1 € Fey... By € Fe, with E < By < ... < By},
such that z; € K‘“f”‘;‘ Akt Now, let = be a limit point of the set {z}, :

J

k€ Nwith k > m}. Then z € (2, K& Tttt thet = KWE;J)F AL
J J

Clearly z is a limit point of the set A. Thus the proof of Case 2 is complete.

Case 3 (limit ordinal £). Assume that the conclusion of our lemma is true
for every ¢ < £. Let ((;) be the strictly increasing sequence of ordinals with
supy, (; = & that defines the family F¢. Let (£1,...,&n) have property (I'). Let
K be a compact metric space, (fi) a sequence of continuous real-valued functions
on K, € >0 and m € N such that for every £ € F¢, By € Fey,... , En € Fg,
withm < E<E; <...<Epand EUU_|E; = {k1 <...<ky} (where A € N)
there exists zpp, g, € K with |for,11(2EE, .. E,) — for;(2EE, .B,)| > € for
all j =1,...,A—1. Since ¢} < &, also ({,&1,- .- ,&n) has property (I') for any
k € N. Then for any k € N with k > m, there is a limit point xj, of the set

A = {,TEElEn ke kaaEl S .7:51, R D= fﬁn with
k<E<E <...<Ep}

such that z;, € K wf"ﬂ'ﬂ' Attt By compactuness of K, it follows that the set
{zg, : k € N with & > m} has a limit point « in K. Then z € KOSttt dut

&(f5)
and, also x is a limit point of the set
{2Ep. B, B € Fe, By € Feyyooo ,Bp € Fe, withm < E < By < ... < Ep}.
The proof of Case 3 is complete. (|

Lemma 3.1.3. For every £ < wy, (§) has property (T').

PrOOF: We shall use induction on £. Let £ = 0, (fi) be a sequence of continuous
real-valued functions defined on a compact metric space K, ¢ > 0 and m € N such
that for all {n} € Fy with m < n there exists z,, € K with | fop+1(xn)— fon(zn)| >

e. Let = be a limit point of the set {zy : n > m}. Then z € Kel(fk)' Let

1 < ¢ < wy and assume that (¢) has property (T') for every ¢ < £. If £ = (+1 then
(¢,...,¢) has property (T') for all I € N, by Lemma 3.1.2. So, using the definition
———

l—times
of the property (I') and Definition 2.2 we prove that (£) has property (T"). If £ is
limit and (&) is the strictly increasing sequence with supy, { = £ that defines the
family F¢ then using that the 1-tuple (§,) has property (I') and Definition 2.2 we
prove that (§) has property (T'). O
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PROOF OF PROPOSITION 3.1: Let (ny) be a strictly increasing sequence of natural

numbers and (n}ﬂ) a subsequence of (ny,) so that for every £ = {k; <...<k)} €

Fe¢, there is z € K with |f , (x) = f 1 (x)] >eforalll < j < A By
Mok j+1 M2k,

Lemma 3.1.3, (£) has property (I') and so K:’ff ) # (). Therefore K:’ff ) #
) n; \Ing,

Le. Y((fny) €) > wb. O

Proposition 3.2. Let K be a compact metric space, (f;,) C C(K), ¢ > 0 and

1 < ¢ < wy such that K:JE Fu) is non-empty for every strictly increasing sequence
b} nk

(ng) of natural numbers. Then there exists a subsequence (ny) of N such that
for every F' = {k1 < ... < ky} € F¢ (where \ > 2) there is vp € K such that

|fnijrl (zp) — f"kj (xp)| >e/dforalll1 <j< A—1.

Before we proceed to the proof of our proposition we need the next definitions
and Lemma 3.2.3.

Definition 3.2.1. Let X be a set, (fj) a sequence of real-valued functions defined
on X, N = (n) a strictly increasing sequence of natural numbers and ¢ > 0. We
define the tree S((fn,),€) on N as follows:

S((frg)r€) = {(n)UUZ_1{(n1,nps-. yng, ) € NP FLing <y <. <
n,, and there exists € X such that |fn, () — fni(z)| > € and |fnijrl (x) —

fry; ()] > eforall j =1,2,...,m—1}.

Definition 3.2.2. For any o < wy we say that a has property (I) if whenever
K is a compact metric space, (fx) C C(K) and € > 0 such that K?(fk) is non-

empty, then (S((fx),€/3))® is non-empty.
Lemma 3.2.3. Every a < wy has property (I”).

PROOF: We proceed by induction on o < wi. For a = 0, it is trivial (cf. Defini-
tions 2.2, 2.4 (iii) and 3.2.1).

Case 1 (« = B+ 1). Assume that the ordinal 3 < wy has property (I') and
we shall show that 3 + 1 has property (I'). Let K be a compact metric space,

(fr) € C(K) and € > 0 such that Kf?}i) is non-empty. Then it is easy to see that

thereis j € N with j > 1 and zg € Kf(fk) such that | f;j(xo)— f1(z0)| > €/3. Since

f1 and f; are continuous it follows that the set U = {x € K : |f;(x)— f1(z)| > ¢/3}
is an open neighborhood of xg. We choose an open neighborhood V' of xg such
that clV C U. We set Q = clV. Clearly @ is a compact metric subspace of K

and

B8 B8
zo € VN K@(fk) < Q@(fk)kzj'

Since (3 has the property (I') it follows that (S((fk‘Q)ij,e/3))ﬁ is non-empty,
where fle denotes the restriction of f;, on Q). The proof of Case 1 can be finished
by using the definition of Q.
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Case 2 (a is a limit ordinal). Assume that the conclusion of our lemma is true
for every 8 < « and we shall show that it is true for a. Indeed, let K be a compact

metric space, (fi) € C(K) and € > 0 such that K?‘(fk) is non-empty. Then Kﬁﬁ(fk)

is non-empty for every 3 < a. Since every 3 < a has the property (I") it follows
that (S((fx),€/3))? is non-empty for every 3 < o. Then from Definitions 2.4 (iii)
and 3.2.1 we get (1) € (S((fx), €/3))™ which finishes the proof of Case 2. O

PROOF OF PROPOSITION 3.2: By Lemma 3.2.3 the ordinal w® has the pro-
perty (I') and hence for every strictly increasing sequence (n;) of natural numbers
it holds (S((fn,), €/3))“" # 0.

For n € N and (3,...,{, < w1, we say that the n-tuple ((1,...,(,) has
property (A) if whenever P is a closed subset of K and N an infinite subset of N
such that (S((fn;p), 6/3))“’%""“"'“}Cl # () for every strictly increasing sequence
(nj) of elements of N with n; = min IV, then there exists a strictly increasing
sequence ([;) of elements of N\ {min N} such that for every Fy € F¢,,... ,Fy €
Fe, with Fi < ... < Fp and Ul F; = {k1 < ... < ky} (where A € N), there
exists © € P such that | fuyin n(x) — fu, ()| > €/4 and |flk-+1 () = fi, (x)] > €/4

J J
forallj =1,... ,A—1. It is enough to show that the 1-tuple (£) has property (A).
We divide this proof into two steps:
Step 1. For every ( < wi, whenever ((1,...,(,) has property (A) then

(¢, ¢ty -+, Cn) has also property (A).
We shall prove it by induction on ¢ < ws.

Case 1 (¢ = 0). Assume that ((1,...,{,) has property (A) and we shall show
that (0,(1,...,(n) has property (A). Indeed, let P C K be closed and N an
infinite subset of N such that (S((fnj‘P), e/3))“<n+“'+“’<1 +1 - () for every strictly

increasing sequence (n;) of elements of N with n; = min N. We set ng = min N.
For every m € N \ {no} we set Qm = {x € P : |fny(z) — fm(z)| > €/3} which is
a closed subset of K.

Claim. There is an infinite subset M of N \ {ng} such that for each infinite
subset M of M there ism € M so that for each strictly increasing sequence (n;)
of elements of M’ with ni = m we have (m) € (S((fnj1Qm)> e/3))“’cn+“'+“’cl.

Proof of the claim. Assume the contrary. Then there exists a decreasing
sequence (M) of infinite subsets of N'\ {ng} so that if my = min M}, then m) <

n S
mat1 and (my) & (S((frQum, Jke{mayubyyy - €/3))" T T for all X € N. We
get the sequence (k;) with k1 = ng and kj1 = m; for all j € N.
Then from the assumption we have that (S((fkj|P)a 6/3))“’%""""‘“’Cl"‘1 is non-
empty.
Hence there exists A € N such that (ng,my) € (S((fx;p), e/3))“’<"+“'+wg.

¢n <
Then (my) € (S((fi|Qm, Jke{ma)ubyy,  €/3)) ot
This completes the proof of the claim.

, a contradiction.
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By repeated application of the claim and using that the n-tuple (¢1,..., (n)
has property (A), we find strictly increasing sequences M) = (mﬁ‘), A €N, of
N\ {no} and a strictly increasing sequence (my)) of elements of N \ {ng} such
that for every A € N it holds m) € M), m§ < my < min M), and for every
e Fepyooo JFy € Fep with Iy < ..o < Fppand UL F; = {j1 < ... < ju}
(where v € N), there exists * € Qm, such that |fm, (z) — fm;\+1 ()] > €/4 and

1
|f a+1 () = f xs1(z)| > €/4d for every [ =1,...,v — 1. The proof of Case 1 can
J J

be ﬁerilshed by talking the sequence (1m)) and using the fact that if { < w1, (k;) a
strictly increasing sequence of natural numbers then for every F € F¢ it follows
that {k;:j € F} e F¢.

Case 2 (( =n+1). Assume that the n-tuple (1, ... ,{,) has property (A) and
we shall show that (¢, (3, . .. ,(,) has property (A). Indeed, let P be a closed subset
of K and N an infinite subset of N such that (S((fy;r), 6/3))“’%"""""“)C:l Tt g

for every strictly increasing sequence (n;) of elements on N with n; = min .
Then (S’((fnj|P),e/3))“<n+"'+“<1+k“}n # () for every k € N and for every

strictly increasing sequence (n;) of elements of N with ny = min N. From the
induction assumption we get that (n,...,n,(1,...,{,) has property (A) for ev-
——

ery k € N. We set ng = min N ancllg No = N\ {ng}. Then, by induction
on k > 1, there exists a subsequence N; = (n;“) of Nj_q such that for every
Ey,... By € Fy,F1 € Feyyooo yFn € Fg, With B < ... < Ep <F1 <...< Iy
and U§:1Ej UU L F; = {j1 < ... < jx} (where A € N) there exists 2 € P
such that |fn,(x) — f"§1 (z)] > €/4 and |fn§l (z) — fn;“ (x)] > €/4 for every
I =1,...x—1. The proof of Case 2 can bglﬁnished bly taking the diagonal
sequence (nﬁ)

Case 3 (€ is a limit ordinal). Let (7;) be the strictly increasing sequence of
ordinals with sup 7, = ¢ that defines the family F¢. Assume that (C1,...,(n)
has property (A) and we shall show that (¢,(1,...,¢,) has property (A). In-
deed, let P be a closed subset of K and N an infinite subset of N such that
(S((fnj|P), e/3))“’<n+"'+”<1+”< # ) for every strictly increasing sequence (n;) of
elements of N with ny = min N. Then

(S((fnj|P), 6/3))W<"+...+w41 +wk oy

for every k € N and for every strictly increasing sequence (n;) of elements of N
with n1 = min N. By induction assumption we get that (ng,(1,...,(n) has the
property (A) for every k € N. We set ng = min N and Ng = N \ {ng}. Then by
induction on k& > 1 and using the definition of the property (A), there exists a
subsequence Ny, = (n?) of Nj_1 such that for every F' € Fp,, F1 € F¢,... . Fn €
Fe, with F < Fy <... < Fpand FUUL F; = {j1 <...<j\} (where A € N)
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there exists x € P so that |fno(z) — f,r (x)] > €/4and [f, r (2) = fx (x)] > €/4
J Jl4+1 J

+
forevery [ =1,... ,A—1. The proof of Case 3 can be again finished by taking

the diagonal sequence (ni)

Step 2. The 1-tuple (¢) has property (A) for each { < wj.

We use induction on . For { = 0, it is proved easily by using the definition of
the property (A) and Definitions 2.4 (iii) and 3.2.4. Let 1 < { < w; and assume
that it is true for every n < (. If { =+ 1, then by using Step 1 we get that for
each | € N, the I-tuple (7, ... ,n) has property (A), and using the definition of the

——
l—times
property (A) and a diagonal argument (as in Case 2 of Step 1) we get that (¢)
has property (A). Let ¢ is a limit ordinal and let (7;) be the strictly increasing
sequence of ordinals with supy 7, = ¢ that defines the family F.. By using that
the 1-tuple (7;) has property (A) for all I € N and working as in Case 3 of Step 1,
we get the conclusion. This finishes the proof of Step 2.
The proof of the proposition is complete. O

Combining the above results we get the following characterization for the ordi-
nal index “y((f),€)” where (f) is a sequence of continuous real-valued functions
defined on a compact metric space and € > 0.

Theorem 3.3. Let K be a compact metric space, 1 < £ < wy and (f},) a sequence
of continuous real-valued functions on K. Then the following are equivalent:

(i) there are € > 0 and a strictly increasing sequence (ky) of natural numbers
such that y((f, ),€) > Wt for every strictly increasing sequence (k/n) of
(kn);

(ii) there are e > 0 and a strictly increasing sequence (ky) of natural numbers
so that for every E = {n1 < ... < ny} € F¢ (where \ > 2) there is
rp € K with |fkn.+1($E) — [, (xp)| >eforall1 <j<A-1;

J J
(iii) there are € > 0 and a strictly increasing sequence (kp) of natural numbers

such that for every subsequence (k.,) of (ky) and for every E = {n1 < ... <
nx}t € F¢ (where A € N) thereisxp € K with |f,, (xp)—fy (vp)l >
2nj+1 2nj

eforalll <j<A\.

PRrROOF: The implication (iii) = (i) follows from Proposition 3.1 and the implica-
tion (i) = (ii) follows from Proposition 3.2. Finally, the implication (ii) = (iii) is
proved by using that (a) if £ = {n1 <ng < ... <ny} € F¢ (where A € N) then
the set FF = {2n1 <2n1+1<2n2 <2n2+1<...<2ny < 2n) + 1} belongs
to F¢, and (b) if (nj) is a strictly increasing sequence of natural numbers, then
{nj:jeF}eFeforal FeFe O

Proposition 3.4. Let K be a compact metric space, 1 < & < w1, € > 0 and (f,)
a sequence of continuous real-valued functions on K such that for every strictly
increasing sequence (ky,) of natural numbers there is a subsequence (k,,) of (ky,) so
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that i((fki”r1 - fk;)’ €) > wt. Then y((f,),€) > w for every strictly increasing

sequence (ky,) of natural numbers.
PrOOF: We give the following definition: For any o < w1, we say that « has pro-
perty (B) if whenever P is a non-empty closed subset of K and N = (k;) a strictly

increasing sequence of natural numbers such that for every subsequence (k;) of
. ” ! R _ R o
N, there exists a subsequence (k;) of (k;) so that (T((fij'P fkj|P)7 €)* #0,

then Pg(fkj) # 0.

For the proof of our proposition, it is enough to show that every @ < wj has
property (B). We shall prove it by induction on o < wy. For o = 0, it is trivial
(cf. Definitions 2.2, 2.4 (iii) and 2.5).

Case 1 (a = B+1). Assume that $ has property (B) and we shall show that 841
has property (B). Indeed, let P C K be non-empty closed and N = (k;) a strictly

increasing sequence of natural numbers such that for every subsequence (k]) of N,
. ” ’ R _ ) ,6—‘1—1
there exists a subsequence (k;) of (k;) so that (T((kaﬂP fkj\P)’ €)) # 0.

For every k,l € N we set Qi ; = {v € P : |fy(x) — fi(z)| > €} which is a closed
subset of K. )
Claim. For every subsequence M of N there exist a subsequence M of M

and m, m' € M with m < m’ and Q! 7 (), such that for every subsequence

(k:;) of M’ with k; = m’ there exists a subsequence (k;) of (k:;) so that (1) €

T e, =I5, 0O

Proof of the claim. Assume the contrary and let My a subsequence of N
so that the claim fails. Then, by induction on A > 1, we find a subsequence
M, = (k])‘) of My_1 and we find a strictly increasing sequence (my)) of elements

of My such that my 1 = min M) and (1) ¢ (T((fk/-H\Q / _fk’.\Q ) €))P for
J m,m 7' Y m,m

every subsequence (k;) of My and for every m,m’ € {my,... ,my} with m < m’
and Q, ,» # 0 for all A = 1,2,.... We get the sequence (k;) with k; = m;
for every j = 1,2,.... Then, from the assumption, there exists a subsequence

” /

_ N _f, B+1 :
(k;) = (mp;) of (k;) so that (1) € (T((fij\P fkj|P)’ €))PT*. Then there exists
A €N, X\ > 1such that (1,)) € (T((fk;+1|P - fk;\P)ve))ﬁ' We set m = ky = my,

and m' = k;\-i-l = mp,,,- Also we get the sequence (I;) with [; = k;\-l-j for all

j=1,2,.... Clearly (/;) is a subsequence of M, Also it is obvious that

A+1—1-
(1) e (T((fle\Qm L _fleQm L ),€))?, a contradiction. This completes the proof
of the claim. 7 ’

By repeated application of the claim and using that the n-tuple ((1,..., (n)
has property (B), we find a strictly increasing sequence (my) of elements of N

such that for every A € N there exists x) € P with 2\ € (Qm,,m, 1), (Fuo)" By
Ry
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compactness of K, the sequence (z)) has a limit point . Then it is easy to show

8+1
that z € va(fkj).

Case 2 (« is a limit ordinal). Assume that every § < « has property (B)
and we shall show that « has property (B). Indeed, let P be a non-empty closed
subset of K and N = (k;) a strictly increasing sequence of natural numbers such

that for every subsequence (k;) of N, there exists a subsequence (k;) of (k;) &)

that (T((fk;+1|P — fk;-|P)’ €))® # (). Then (T((fk;H\P — fk;|P)’ €))8 # 0 for every
B < a. From induction assumption every 3 < « has property (B) and hence

B
Pe,(fkj) # () for every 8 < a. Then, by compactness of K, we get Peof(fkj) # 0.

This completes the proof of our proposition. O
Theorem 3.5. Let K be a compact metric space, 1 < £ < wy and (f},) a sequence
of continuous real-valued functions on K. Then the following are equivalent:
(i) for every strictly increasing sequence (k) of natural numbers there exists
a subsequence (k,,) of (k) such that Y((fir ) < wt;
(ii) for every strictly increasing sequence (kp,) of natural numbers there exists
a subsequence (k,,) of (kn) such that the sequence (fk:Hrl - fk;) converges
&-uniformly pointwise to zero;
(iii) for every strictly increasing sequence (ky,) of natural numbers there exists a
subsequence (k;@) of (ky,) such that the sequence (fk; o fk; ) converges

&-uniformly pointwise to zero.

PROOF: (i) = (ii). Assume that for every strictly increasing sequence (k) of
natural numbers there is a subsequence (k) of (k) such that Y((fir ) < wt.

Claim 1. For every ¢ > 0 and for every strictly increasing sequence M = (ky)
of natural numbers there is a subsequence M’ = (k,,) of M such that i(( fi o
n—+

fk”L)v €) < w¢ for every subsequence (k,,) of (ki,).

[Proof of Claim 1. Assume the contrary. Then there are ¢ > 0 and M, = (ky) a
strictly increasing sequence of natural numbers such that the claim fails. Then by
using Proposition 3.4 for the sequence g, = fi,,, n € N, we get v((f,’ ), €) > wb

n?
for every subsequence (k,,) of (k) which is a contradiction.]

Let (ky) be a strictly increasing sequence of natural numbers. We set My =
(kn). For any m € N and by repeated application of the claim for e = %, we
get sequences My, = (kI"), m € N, so that My, is a subsequence of M,,_1 and
((flopr = f1n)s %) < w$ for each subsequence (I,) of My,. We set (k,) = (k)

and we get the conclusion.

ii) = (iii). It is obvious since for every subsequence (k) of ky) the sequence
(i) = (iii) y q n q

(fyr — f,+ ) is a subsequence of the sequence (f,/ — f,/).
2n—+1 2n n+1 n
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(iii) = (i). Assume that for every strictly increasing sequence (k) of natural
numbers there is a subsequence (k;,) of (ky,) so that the sequence (for = fe )
2n+1 2n

converges &-uniformly pointwise to zero, i.e. i(( fk' — fk' ),€) < Wt for every
2n+1 2n

e > 0.

Claim 2. For each € > 0 and for each strictly increasing sequence M = (ky,) of

natural numbers there is a subsequence M = (k,,) of M such that Y((fyr ) €) <

wé.

[Proof of Claim 2. Assume the contrary. Then there are ¢ > 0 and a strictly
increasing sequence M = (k) of natural numbers so that for every subsequence
M' = (k) of M implies Y((fyr )s€) > w€. Then, by using Proposition 3.2 for
the sequence (f,, ), there exists a subsequence (k) of (kp) so that for each E =
{n1 <...<ny} € Fg (A >2) thereis ap € K sothat |f,  (zp)—fy (zp)| >

1 j

¢/4 for j = 1,... ,A— 1. Then for each subsequence (k) of (k) and for each

E={n1 <...<ny} € F¢ there is zp € K so that |fk2 +1(:cE) - sz (zg)| >
i "j

e/4 for all j = 1,... A. Thus by using Definition 2.5 and Lemma 2.6, we get

z((sz e sz ),€/4) > w& for each subsequence (k) of (k,), a contradiction.]

Let (ky) be a strictly increasing sequence of natural numbers. We set My =
1

(kn). For every m € N and by repeated application of Claim 2 for € = -, we get
a strictly increasing sequence My, = (ky') of My,—1 so that v((fgm), %) < Wt
We set (k,,) = (k™) and we get the conclusion. O
Theorem 3.6. Let K be a compact metric space, f a bounded real-valued func-
tion on K and 1 < £ < wy. The following are equivalent:
(i) f € By(K):;
(ii) there exists a sequence (fy) C C(K) which converges pointwise to f and
for every strictly increasing sequence (ky,) of natural numbers there exists
a subsequence (k) of (kn) such that the sequence (f,y = fi ) converges
n+1 n
&-uniformly pointwise to zero;
(iii) there exists a sequence (fi,) C C(K) which converges pointwise to f and
for every strictly increasing sequence (ky,) of natural numbers there exists

a subsequence (k,,) of (k) so that the sequence (f,y = [y ) converges
2n+1 2n
&-uniformly pointwise to zero.

PrOOF: Using [5, Theorem 1.3] or the proof of [7, Theorem 17] we get that if
1<é<wpand f € Bf(K) then there exists a sequence (fx) € C(K) pointwise
converging to f so that v((fz)) < w®. Also it is known that if (f;) € C(K)
is pointwise converging to f then S(f) < v((fx)) (cf. [5, Proposition 1.1]). The

proof can be finished by using these results, the definition of the set Bf(K ) (cf.
Definition 2.1) and Theorem 3.5.
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Remarks 3.7. (1) We note that using [5, Theorem 1.3] or the proof of [7, Theo-

rem 17] we prove that if 1 < ¢ < wy, f € Bf(K) and (f) is a (uniformly bounded)
sequence of continuous real-valued functions on a compact metric space K point-
wise converging to f, then there exists a sequence (g;) of convex blocks of (f%)
(ie. g € conv((fp)p>k), for all k) such that v((gz)) < W&, (Here conv((hy))
denotes the set of convex combinations of the h;’s.) Combining this result and
Theorem 3.5 we get that the conditions (ii) and (iii) of Theorem 3.6 are equivalent
respectively with the following conditions:

(i)’ For every (uniformly bounded) sequence (f;) C C(K) pointwise converging
to f, there exists a sequence (gj) of convex blocks of (f;) such that for every
strictly increasing sequence (k) of natural numbers there exists a subsequence
(k) of (kn) so that the sequence (gk;ﬂ - 9k;) converges ¢-uniformly pointwise
to zero.

(iii)’ For every (uniformly bounded) sequence (f,) C C(K) pointwise converg-
ing to f, there exists a sequence (gy) of convex blocks of (f}) such that for every
strictly increasing sequence (k) of natural numbers there exists a subsequence
(k) of (k) so that the sequence (gk;wr1 - gk;n) converges ¢-uniformly pointwise
to zero.

(2) Prof. S. Argyros asked me the following: If v((fx)) < w, does it hold

that for each strictly increasing sequence (k) of natural numbers the sequence
(fr, 1 [k, ) converges 1-uniformly pointwise to zero? The next example shows
that the answer of this question is negative. Let K = NU{co} be the Alexandroff’s
compactification of N, (ky) a strictly increasing sequence of natural numbers and
(Ay) a sequence of finite subsets of N with A] < Ao < ... < Ap < Apt1 < ...
so that the cardinality of each A, is equal to n. For every & € N we define the
function f; : K — R as follows: For any m € N we define fa,,(t) = 1ift = ky, with
m € Ay, and fon, (t) = 0 otherwise. Also we define fop,+1(t) = 0 for all m € N and
t € K. Then it is easy to show that v((fx)) = 2, but ((fam+1 — fom), %) =w+1.
I thank Prof. S. Argyros for the above question.

Acknowledgment. I am grateful to referee for his (her) kind corrections and
helpful comments.
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