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Classifications and characterizations of Baire-1 functions

P. Kiriakouli

Abstract. Kechris and Louveau in [5] classified the bounded Baire-1 functions, which are

defined on a compact metric space K, to the subclasses Bξ
1
(K), ξ < ω1. In [8], for every

ordinal ξ < ω1 we define a new type of convergence for sequences of real-valued functions
(ξ-uniformly pointwise) which is between uniform and pointwise convergence. In this
paper using this type of convergence we obtain a classification of pointwise convergent
sequences of continuous real-valued functions defined on a compact metric space K, and

also we give a characterization of the classes Bξ
1
(K), 1 ≤ ξ < ω1.

Keywords: Baire-1 functions, convergence index, oscillation index, trees

Classification: 46E99, 54C30, 54C35, 54C50

1. Introduction

By N we mean the set of all natural numbers (i.e. N = {1, 2, . . . , }), by ω we
mean the first infinite ordinal (i.e. ω = {0, 1, 2, . . .}) and by ω1 we mean the
first uncountable ordinal. Mercourakis in [10] introduced a new type of point-
wise convergence (uniformly pointwise convergence) which is weaker than uni-
form convergence and stronger than pointwise convergence. Also Mercourakis
in [11] extended this convergence with the definition of m-uniformly pointwise
convergence for every 1 ≤ m < ω. For m = 1 this convergence coincides with
uniformly pointwise convergence and (m + 1)-uniformly pointwise convergence
is weaker than m-uniformly pointwise convergence and stronger than pointwise
convergence. Also in [11] it has been proved that if a sequence (fk) of continuous
real-valued functions converges m-uniformly pointwise to some function f then f
is also continuous.
In [8], for every ordinal ξ < ω1 we define a new type of pointwise convergence (ξ-

uniformly pointwise) which extends the definition of the above convergence. Using
this convergence we obtain a complete classification of all pointwise convergent
sequences of continuous real-valued functions defined on a countably compact
space for which the limit function is continuous. An equivalent definition of ξ-
uniformly pointwise convergence is given in [9].
In this paper, by the aid of this convergence we obtain a classification of point-

wise convergent sequences of continuous real-valued functions defined on a com-
pact metric space for which the limit function is a general function not necessarily
continuous and also we obtain a characterization of some subclasses of bounded
Baire-1 functions. These results are described in the following way.
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Kechris and Louveau in [5] defined the convergence index “γ” of a sequence of
continuous real-valued functions. We prove that if K is a compact metric space,
(fk) a sequence of continuous real-valued functions on K and 1 ≤ ξ < ω1 then
the following are equivalent: (i) for every strictly increasing sequence (kn) of

natural numbers there exists a subsequence (k
′

n) of (kn) so that γ((fk′
n
)) ≤ ωξ;

(ii) for every strictly increasing sequence (kn) of natural numbers there exists a

subsequence (k
′

n) of (kn) so that the sequence (fk
′

n+1

−fk′
n
) converges ξ-uniformly

pointwise to zero; (iii) for every strictly increasing sequence (kn) of natural num-

bers there exists a subsequence (k
′

n) of (kn) so that the sequence (fk
′

2n+1

− f
k
′

2n

)

converges ξ-uniformly pointwise to zero (cf. Theorem 3.5).
Also Kechris and Louveau in [5] classified the bounded Baire-1 functions, which

are defined on a compact metric space K, to the subclasses Bξ
1(K), ξ < ω1. Using

Theorem 3.5 we get the following: If K is a compact metric space, 1 ≤ ξ < ω1 and
f is a bounded real-valued function on K then the next conditions are equivalent:

(i) f ∈ Bξ
1(K); (ii) there exists a sequence (fk) of continuous real-valued functions

defined on K which converges pointwise to f and for every strictly increasing

sequence (kn) of natural numbers there is a subsequence (k
′

n) of (kn) so that the
sequence (f

k
′

n+1

− fk′
n
) converges ξ-uniformly pointwise to zero; (iii) there exists

a sequence (fk) of continuous real-valued functions defined on K which converges
pointwise to f and for every strictly increasing sequence (kn) of natural numbers

there is a subsequence (k
′

n) of (kn) so that the sequence (fk
′

2n+1

−f
k
′

2n

) converges

ξ-uniformly pointwise to zero (cf. Theorem 3.6).

2. Preliminaries

A real-valued function f defined on a set X is bounded if ‖f‖∞ := supx∈X |f(x)|
< +∞. A sequence (fk) of real-valued functions defined on a set X is uniformly
bounded if supk ‖fk‖∞ < +∞.
Let K be a compact metric space and C(K) the set of continuous real-valued

functions onK. By R we mean the set of all real numbers. A function f : K → R
is Baire-1 if there exists a sequence (fk) in C(K) that converges pointwise to f .
Let B1(K) be the set of all bounded Baire-1 real-valued functions on K. Haydon,
Odell and Rosenthal in [4], Kechris and Louveau in [5] defined the oscillation
index β(f) of a general function f : K → R and proved that f is Baire-1 iff
β(f) < ω1.

Definition 2.1 (cf. [4], [5]). Let K be a compact metric space, f : K → R,

P ⊆ K and ǫ > 0. Let P 0ǫ,f = P and for any ordinal α let Pα+1
ǫ,f be the set of

those x ∈ Pα
ǫ,f such that for every open set U around x there are two points x1

and x2 in Pα
ǫ,f ∩ U such that |f(x1)− f(x2)| ≥ ǫ.

At a limit ordinal α we set Pα
ǫ,f =

⋂

β<α Pβ
ǫ,f .
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Let β(f, ǫ) be the least α with Kα
ǫ,f = ∅ if such an α exists, and β(f, ǫ) = ω1,

otherwise. Define the oscillation index β(f) of f by
β(f) = sup{β(f, ǫ) : ǫ > 0}.

For every ξ < ω1 we define B
ξ
1(K) = {f ∈ B1(K) : β(f) ≤ ωξ}.

(The class B11(K) has been studied also by Haydon, Odell and Rosenthal in [4],
where it is denoted by B1/2(K).)

The complexity of pointwise convergent sequences of continuous real-valued
functions defined on a compact metric space is described by a countable ordinal
index “γ” which is defined in the following way.

Definition 2.2 (cf. [5]). Let K be a compact metric space, (fk) a sequence of
continuous real-valued functions defined on K, P ⊆ K and ǫ > 0. Let P 0ǫ,(fk)

= P

and for any ordinal α let Pα+1
ǫ,(fk)

be the set of those x ∈ Pα
ǫ,(fk)

such that for every

open set U around x and for every p ∈ N there are m, n ∈ N with m > n > p and

a point x
′
in Pα

ǫ,(fk)
∩ U such that |fm(x

′
)− fn(x

′
)| ≥ ǫ.

At a limit ordinal α we set Pα
ǫ,(fk)

=
⋂

β<α P
β
ǫ,(fk)

. (It can be noticed that

Pα
ǫ,(fk)

is a closed subset of P with the relative topology in P .) Let γ((fk), ǫ) be the

least α withKα
ǫ,(fk)

= ∅ if such an α exists, and γ((fk), ǫ) = ω1, otherwise. (Notice

that if γ((fk), ǫ) < ω1 then it is a successor ordinal.) Define the convergence index
γ((fk)) of (fk) by

γ((fk)) = sup{γ((fk), ǫ) : ǫ > 0}.

Also in [5] it is proved that γ((fk)) < ω1 iff (fk) is pointwise converging.

Generalized Schreier families.

Definition 2.3 (cf. [1]). If F and H are finite non-empty subsets of N and n ∈ N,
then we define F < H iff maxF < minH , n ≤ F iff n ≤ minF . Let F0 = {{n} :
n ∈ N}∪{∅} andF1 be the usual Schreier family, i.e. F1 = {A ⊆ N : |A| ≤ minA}.
If Fξ has been defined then we set

Fξ+1 =

∞⋃

k=1

{

∪k
i=1Fi : F1, . . . , Fk ∈ Fξ with k ≤ F1 < . . . < Fk

}

.

If ξ is a limit ordinal with Fζ defined for each ζ < ξ, choose and fix a strictly
increasing sequence of ordinals (ξk) with ξ = sup

k
ξk and let

Fξ =

∞⋃

k=1

{
F ∈ Fξk

: minF ≥ k
}

.

It can be noticed that the families Fm, 1 ≤ m < ω appeared for the first time in
an example constructed by Alspach and Odell ([2]).

Notice that if (kj) is a strictly increasing sequence of natural numbers, ξ < ω1
and F ∈ Fξ, then {kj : j ∈ F} ∈ Fξ (see also [12, Lemma 3.5]).
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Trees.

Definition 2.4 (cf. [3]). Let X be a set. For every n ∈ N we set Xn :=
{(x1, . . . , xn) : x1, . . . , xn ∈ X}.

(i) A tree T on X will be a subset of
⋃∞

n=1Xn with the property that
(x1, . . . , xn) ∈ T whenever (x1, . . . , xn, xn+1) ∈ T .

(ii) A tree T on X is well-founded if there is no sequence (xn) in X satisfying
(x1, . . . , xn) ∈ T for each n ∈ N.

(iii) Proceeding by induction we associate to each ordinal α a new tree T α as
follows: We set T 0 = T . If T α is obtained, let
T α+1 =

⋃∞
n=1{(x1, . . . , xn) ∈ T α : (x1, . . . , xn, x) ∈ T α for some x ∈ X}.

If γ is a limit ordinal, define T γ =
⋂

α<γ T α. If there exists an ordinal α so

that T α = ∅ then we denote by o(T ) the smallest such ordinal α. This is the
order of the tree T .

Definition 2.5 (see also [8]). Let X be a set, (fk) a sequence of real-valued
functions defined on X and δ a positive real number. We define the tree T ((fk), δ)
on N as follows:

T ((fk), δ) = {(1)} ∪
⋃∞

n=1{(1, k1, . . . , kn) ∈ Nn+1 : 1 < k1 < . . . < kn and
there exists x ∈ X so that |fki

(x)| > δ for all i = 1, 2, . . . , n}.
The δ-index i((fk), δ) of the sequence (fk) is the order of the tree T ((fk), δ),

i.e. i((fk), δ) = o(T ((fk), δ)). We notice that i((fk), δ) is a successor ordinal.

The following result is included in [8]. For completeness we give an outline of
the proof.
Lemma 2.6. If ξ < ω1, (fk) a sequence of real-valued functions on a set X and
δ > 0 such that for every F ∈ Fξ there is x ∈ X with |fk(x)| > δ for every k ∈ F ,

then (T ((fk), δ))
ωξ

6= ∅.

Proof: We use a technique developed by Prof. S. Negrepontis and the author (cf.
[6] or [12, Definition 3.6, Lemma 3.7]). We apply this technique as follows: For any
n ∈ N, ξ1, . . . , ξn < ω1 we say that the n-tuple (ξ1, . . . , ξn) has the property (I)
if whenever (fk) is a sequence of real-valued functions on a set X and δ > 0 such
that for every F1 ∈ Fξ1 , . . . , Fn ∈ Fξn

with F1 < . . . < Fn there exists x ∈ X

with |fk(x)| > δ for every k ∈ ∪n
i=1Fi, then (T ((fk), δ))

ωξn+...+ωξ1 6= ∅.

(a) By induction on ξ < ω1 we prove that if (ξ1, . . . , ξn) has the property (I),
then (ξ, ξ1, . . . , ξn) has the property (I).
For ξ = 0, it is proved by using the definition of the property (I) for the set

Y = {x ∈ X : |f2(x)| > δ} and for the functions gk := f2k+1, k ∈ N.

(b) By induction on ξ < ω1 we prove that (ξ) has property (I) for every ξ < ω1.
[Indeed, it is obvious for ξ = 0 by using Definitions 2.4 (iii) and 2.5. Let

1 ≤ ξ < ω1 and assume that it is true for every ζ < ξ. If ξ = ζ + 1, we use
that (ζ, . . . , ζ

︸ ︷︷ ︸

l−times

) has the property (I) for all l ∈ N, and we use the definition of the
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property (I) and Definitions 2.4 (iii) and 2.5. If ξ is a limit ordinal and (ξk) is
the strictly increasing sequence with supk ξk = ξ that defines the family Fξ , we
use that (ξl) has the property (I) for all l ∈ N, and we use the definition of the
property (I) and Definitions 2.4 (iii) and 2.5.] �

Definition 2.7 (see [8]). Let (fk) be a sequence of real-valued functions defined
on a set X and ξ < ω1. We say that the sequence (fk) converges ξ-uniformly

pointwise on X to the function f if i((fk − f), δ) ≤ ωξ for every positive real
number δ.

We notice that for any 1 ≤ m < ω the above definition is equivalent to the
definition of m-uniformly pointwise convergence which has been introduced by
Mercourakis in [11] (cf. [8]). Also in [8] we prove the following: (i) If X is a
topological space, ξ < ω1 and (fk) a uniformly bounded sequence of continuous
real-valued functions on X which converges ξ-uniformly pointwise to f , then f is
also continuous. (ii) IfX is a countably compact space (i.e. every infinite sequence
(xk) in X has an accumulation point in X) and (fk) a sequence of continuous
real-valued functions pointwise converging to some continuous function f on X ,
then there exists ξ < ω1 such that (fk) converges ξ-uniformly pointwise to f .

3. Main results

In this section we shall study the complexity of pointwise converging sequences
of continuous real-valued functions defined on a compact metric space (cf. The-
orems 3.3 and 3.5) and also we shall prove a characterization of those bounded

Baire-1 functions which have the oscillation index less than or equal to ωξ, where
1 ≤ ξ < ω1 (cf. Theorem 3.6).
Before we proceed to the proof of these results we need a few propositions

which are proved by using the same technique, developed by Prof. S. Negrepontis
and the author, which is used in the proof of Lemma 2.6. We start with the
proposition:

Proposition 3.1. Let K be a compact metric space, ξ < ω1 and (fk) a sequence
of continuous real-valued functions on K. Assume that there is ǫ > 0 such that
for every strictly increasing sequence (nk) of natural numbers there exists a sub-

sequence (n
′

k) of (nk) so that for every E = {k1 < . . . < kλ} ∈ Fξ, there exists

x ∈ K with |f
n
′

2kj+1

(x) − f
n
′

2kj

(x)| > ǫ for all 1 ≤ j ≤ λ. Then γ((fnk
), ǫ) > ωξ

for every strictly increasing sequence (nk) of natural numbers.

For the proof of this proposition we need the next definition and Lemmas 3.1.2
and 3.1.3.

Definition 3.1.1. For n ∈ N and ξ1, . . . , ξn < ω1 we say that the n-tuple
(ξ1, . . . , ξn) has property (Γ) if whenever K is a compact metric space, (fk) a se-
quence of continuous real-valued functions onK, ǫ > 0 andm ∈ N such that for all
E1 ∈ Fξ1 , . . . , En ∈ Fξn

with m ≤ E1 < . . . < En and ∪n
i=1Ei = {k1 < . . . < kλ}
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(where λ ∈ N) there exists xE1...En
∈ K with |f2kj+1(xE1...En

)−f2kj
(xE1...En

)| >

ǫ for all j = 1, . . . , λ, then there exists a limit point x of the set {xE1...En
: E1 ∈

Fξ1 , . . . , En ∈ Fξn
with m ≤ E1 < . . . < En} in K such that x ∈ Kωξn+...+ωξ1

ǫ,(fk)
.

Lemma 3.1.2. If (ξ1, . . . , ξn) has property (Γ) then (ξ, ξ1, . . . , ξn) has pro-
perty (Γ) for every ξ < ω1.

Proof: We proceed by induction on ξ < ω1.
Case 1 (ξ = 0). Let (ξ1, . . . , ξn) have property (Γ), let K be a compact metric

space, (fj) a sequence of continuous real-valued functions on K, ǫ > 0 and m ∈ N
such that for each k ∈ N, E1 ∈ Fξ1 , . . . , En ∈ Fξn

with m ≤ k < E1 < . . . < En

and {k} ∪ ∪n
i=1Ei = {k1 < . . . < kλ} (where λ ∈ N) there is xkE1...En

∈ K with
|f2kj+1(xkE1...En

)− f2kj
(xkE1...En

)| > ǫ for all j = 1, . . . , λ. We shall show that

there exists a limit point x of the set {xkE1...En
: k ∈ N, E1 ∈ Fξ1 , . . . , En ∈ Fξn

with m ≤ k < E1 < . . . < En} in K such that x ∈ Kωξn+...+ωξ1+1
ǫ,(fj)

. Because

(ξ1, . . . , ξn) has property (Γ) we have that for every k ∈ N with k ≥ m, there
is a limit point xk of the set Ak = {xkE1...En

: E1 ∈ Fξ1 , . . . , En ∈ Fξn
with

k < E1 < . . . < En} such that xk ∈ Kωξn+...+ωξ1

ǫ,(fj)
. Since |f2k+1(xkE1...En

) −

f2k(xkE1...En
)| > ǫ for all xkE1...En

∈ Ak and k ∈ N with k ≥ m, f2k+1, f2k are
continuous and xk is a limit point of Ak, we get that |f2k+1(xk) − f2k(xk)| ≥ ǫ
for all k ∈ N with k ≥ m. Since K is a compact metric space there is a sequence
m ≤ k1 < k2 < . . . < ki < ki+1 < . . . such that the sequence (xki

) converges to

some x in Kωξn+...+ωξ1

ǫ,(fj)
. Then x ∈ Kωξn+...+ωξ1+1

ǫ,(fj)
.

[Indeed, if not, then there are an open neighborhood U of x in Kωξn+...+ωξ1

ǫ,(fj)

and k0 ∈ N such that |fk(y) − fλ(y)| < ǫ for all y ∈ U and k, λ ∈ N with
k, λ ≥ k0. Since limi→∞ xki

= x there exists i ∈ N so that ki > k0 and xki
∈ U .

Then |f2ki+1(xki
)− f2ki

(xki
)| < ǫ, a contradiction.]

Thus the proof of Case 1 is complete.

Case 2 (isolated ordinals). Assume that the conclusion of our lemma is true for
ξ; we shall show that it is true for ξ+1. Suppose that (ξ1, . . . , ξn) has property (Γ);
then, for every k, the sequence (ξ, . . . , ξ

︸ ︷︷ ︸

k

, ξ1, . . . , ξn) has property (Γ). We show

that (ξ + 1, ξ1, . . . , ξn) has property (Γ). Let K be a compact metric space, (fk)
a sequence of continuous real-valued functions on K, ǫ > 0 and m ∈ N such that
for each E ∈ Fξ+1, E1 ∈ Fξ1 , . . . , En ∈ Fξn

with m ≤ E < E1 < . . . < En and
E ∪ ∪n

i=1Ei = {k1 < . . . < kλ} (where λ ∈ N) there is a point xEE1...En
of K

with

|f2kj+1(xEE1...En
)− f2kj

(xEE1...En
)| > ǫ for all j = 1, 2, . . . , λ.

We shall show that there is a limit point x of the set

A = {xEE1...En
: E ∈ Fξ+1, E1 ∈ Fξ1 , . . . , En ∈ Fξn

with
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m ≤ E < E1 < . . . < En},

such that x ∈ Kωξn+...+ωξ1+ωξ+1

ǫ,(fj)
. By Definition 2.3, Fξ+1 =

⋃∞
k=1F

(k)
ξ where

F
(k)
ξ = {∪k

i=1Ei : E1, . . . Ek ∈ Fξ with k ≤ E1 < . . . < Ek} for all k ∈ N. Then

by inductive hypothesis, it follows that, for all k ∈ N with k ≥ m, there is a limit
point xk of the set

Ak = {xEE1...En
: E ∈ F

(k)
ξ , E1 ∈ Fξ1 , . . . , En ∈ Fξn

with E < E1 < . . . < En},

such that xk ∈ Kωξn+...+ωξ1+kωξ

ǫ,(fj)
. Now, let x be a limit point of the set {xk :

k ∈ N with k ≥ m}. Then x ∈
⋂∞

k=1Kωξn+...+ωξ1+kωξ

ǫ,(fj)
≡ Kωξn+...+ωξ1+ωξ+1

ǫ,(fj)
.

Clearly x is a limit point of the set A. Thus the proof of Case 2 is complete.

Case 3 (limit ordinal ξ). Assume that the conclusion of our lemma is true
for every ζ < ξ. Let (ζk) be the strictly increasing sequence of ordinals with
supk ζk = ξ that defines the family Fξ . Let (ξ1, . . . , ξn) have property (Γ). Let
K be a compact metric space, (fk) a sequence of continuous real-valued functions
on K, ǫ > 0 and m ∈ N such that for every E ∈ Fξ , E1 ∈ Fξ1 , . . . , En ∈ Fξn

with m ≤ E < E1 < . . . < En and E ∪ ∪n
i=1Ei = {k1 < . . . < kλ} (where λ ∈ N)

there exists xEE1...En
∈ K with |f2kj+1(xEE1,...,En

) − f2kj
(xEE1...En

)| > ǫ for

all j = 1, . . . , λ − 1. Since ζk < ξ, also (ζk, ξ1, . . . , ξn) has property (Γ) for any
k ∈ N. Then for any k ∈ N with k ≥ m, there is a limit point xk of the set

Ak = {xEE1...En
: E ∈ Fζk

, E1 ∈ Fξ1 , . . . , En ∈ Fξn
with

k ≤ E < E1 < . . . < En},

such that xk ∈ Kωξn+...+ωξ1+ωζk

ǫ,(fj)
. By compactness of K, it follows that the set

{xk : k ∈ N with k ≥ m} has a limit point x in K. Then x ∈ Kωξn+...+ωξ1+ωξ

ǫ,(fj)

and, also x is a limit point of the set
{xEE1...En

: E ∈ Fξ, E1 ∈ Fξ1 , . . . , En ∈ Fξn
with m ≤ E < E1 < . . . < En}.

The proof of Case 3 is complete. �

Lemma 3.1.3. For every ξ < ω1, (ξ) has property (Γ).

Proof: We shall use induction on ξ. Let ξ = 0, (fk) be a sequence of continuous
real-valued functions defined on a compact metric space K, ǫ > 0 and m ∈ N such
that for all {n} ∈ F0 withm ≤ n there exists xn ∈ K with |f2n+1(xn)−f2n(xn)| >
ǫ. Let x be a limit point of the set {xn : n ≥ m}. Then x ∈ K1ǫ,(fk)

. Let

1 ≤ ξ < ω1 and assume that (ζ) has property (Γ) for every ζ < ξ. If ξ = ζ+1 then
(ζ, . . . , ζ
︸ ︷︷ ︸

l−times

) has property (Γ) for all l ∈ N, by Lemma 3.1.2. So, using the definition

of the property (Γ) and Definition 2.2 we prove that (ξ) has property (Γ). If ξ is
limit and (ξk) is the strictly increasing sequence with supk ξk = ξ that defines the
family Fξ then using that the 1-tuple (ξn) has property (Γ) and Definition 2.2 we
prove that (ξ) has property (Γ). �
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Proof of Proposition 3.1: Let (nk) be a strictly increasing sequence of natural

numbers and (n
′

k) a subsequence of (nk) so that for every E = {k1 < . . . < kλ} ∈
Fξ , there is x ∈ K with |f

n
′

2kj+1

(x) − f
n
′

2kj

(x)| > ǫ for all 1 ≤ j ≤ λ. By

Lemma 3.1.3, (ξ) has property (Γ) and so Kωξ

ǫ,(f
n
′

k

) 6= ∅. Therefore Kωξ

ǫ,(fnk
) 6= ∅

i.e. γ((fnk
), ǫ) > ωξ. �

Proposition 3.2. Let K be a compact metric space, (fk) ⊆ C(K), ǫ > 0 and

1 ≤ ξ < ω1 such that Kωξ

ǫ,(fnk
) is non-empty for every strictly increasing sequence

(nk) of natural numbers. Then there exists a subsequence (nk) of N such that
for every F = {k1 < . . . < kλ} ∈ Fξ (where λ ≥ 2) there is xF ∈ K such that
|fnkj+1

(xF )− fnkj
(xF )| > ǫ/4 for all 1 ≤ j ≤ λ − 1.

Before we proceed to the proof of our proposition we need the next definitions
and Lemma 3.2.3.

Definition 3.2.1. LetX be a set, (fk) a sequence of real-valued functions defined
on X , N = (nk) a strictly increasing sequence of natural numbers and ǫ > 0. We
define the tree S((fnk

), ǫ) on N as follows:

S((fnk
), ǫ) = {(n1)} ∪

⋃∞
m=1{(n1, nk1 , . . . , nkm

) ∈ Nm+1 : n1 < nk1 < . . . <
nkm

and there exists x ∈ X such that |fnk1
(x) − fn1(x)| > ǫ and |fnkj+1

(x) −

fnkj
(x)| > ǫ for all j = 1, 2, . . . , m − 1}.

Definition 3.2.2. For any α < ω1 we say that α has property (Γ′) if whenever
K is a compact metric space, (fk) ⊆ C(K) and ǫ > 0 such that Kα

ǫ,(fk)
is non-

empty, then (S((fk), ǫ/3))
α is non-empty.

Lemma 3.2.3. Every α < ω1 has property (Γ
′).

Proof: We proceed by induction on α < ω1. For α = 0, it is trivial (cf. Defini-
tions 2.2, 2.4 (iii) and 3.2.1).

Case 1 (α = β + 1). Assume that the ordinal β < ω1 has property (Γ
′) and

we shall show that β + 1 has property (Γ′). Let K be a compact metric space,

(fk) ⊆ C(K) and ǫ > 0 such that Kβ+1
ǫ,(fk)

is non-empty. Then it is easy to see that

there is j ∈ N with j > 1 and x0 ∈ Kβ
ǫ,(fk)

such that |fj(x0)−f1(x0)| > ǫ/3. Since

f1 and fj are continuous it follows that the set U = {x ∈ K : |fj(x)−f1(x)| > ǫ/3}
is an open neighborhood of x0. We choose an open neighborhood V of x0 such
that clV ⊆ U . We set Q = clV . Clearly Q is a compact metric subspace of K
and

x0 ∈ V ∩ K
β
ǫ,(fk)

⊆ Q
β
ǫ,(fk)k≥j

.

Since β has the property (Γ′) it follows that (S((fk|Q)k≥j , ǫ/3))
β is non-empty,

where fk|Q denotes the restriction of fk on Q. The proof of Case 1 can be finished

by using the definition of Q.
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Case 2 (α is a limit ordinal). Assume that the conclusion of our lemma is true
for every β < α and we shall show that it is true for α. Indeed, let K be a compact

metric space, (fk) ⊆ C(K) and ǫ > 0 such thatKα
ǫ,(fk)

is non-empty. ThenK
β
ǫ,(fk)

is non-empty for every β < α. Since every β < α has the property (Γ′) it follows

that (S((fk), ǫ/3))
β is non-empty for every β < α. Then from Definitions 2.4 (iii)

and 3.2.1 we get (1) ∈ (S((fk), ǫ/3))
α which finishes the proof of Case 2. �

Proof of Proposition 3.2: By Lemma 3.2.3 the ordinal ωξ has the pro-
perty (Γ′) and hence for every strictly increasing sequence (nj) of natural numbers

it holds (S((fnj ), ǫ/3))
ωξ

6= ∅.
For n ∈ N and ζ1, . . . , ζn < ω1, we say that the n-tuple (ζ1, . . . , ζn) has

property (A) if whenever P is a closed subset of K and N an infinite subset of N

such that (S((fnj |P ), ǫ/3))
ωζn+...+ωζ1 6= ∅ for every strictly increasing sequence

(nj) of elements of N with n1 = minN , then there exists a strictly increasing
sequence (lj) of elements of N \ {minN} such that for every F1 ∈ Fζ1 , . . . , Fn ∈
Fζn

with F1 < . . . < Fn and ∪n
i=1Fi = {k1 < . . . < kλ} (where λ ∈ N), there

exists x ∈ P such that |fminN (x)− flk1
(x)| > ǫ/4 and |flkj+1

(x)− flkj
(x)| > ǫ/4

for all j = 1, . . . , λ−1. It is enough to show that the 1-tuple (ξ) has property (A).
We divide this proof into two steps:
Step 1. For every ζ < ω1, whenever (ζ1, . . . , ζn) has property (A) then

(ζ, ζ1, . . . , ζn) has also property (A).
We shall prove it by induction on ζ < ω1.
Case 1 (ζ = 0). Assume that (ζ1, . . . , ζn) has property (A) and we shall show

that (0, ζ1, . . . , ζn) has property (A). Indeed, let P ⊆ K be closed and N an

infinite subset of N such that (S((fnj |P ), ǫ/3))
ωζn+...+ωζ1+1 6= ∅ for every strictly

increasing sequence (nj) of elements of N with n1 = minN . We set n0 = minN .
For every m ∈ N \ {n0} we set Qm = {x ∈ P : |fn0(x) − fm(x)| ≥ ǫ/3} which is
a closed subset of K.

Claim. There is an infinite subset M of N \ {n0} such that for each infinite

subsetM
′
ofM there is m ∈ M

′
so that for each strictly increasing sequence (nj)

of elements of M
′
with n1 = m we have (m) ∈ (S((fnj |Qm

), ǫ/3))ω
ζn+...+ωζ1 .

Proof of the claim. Assume the contrary. Then there exists a decreasing
sequence (Mλ) of infinite subsets of N \{n0} so that if mλ = minMλ, then mλ <

mλ+1 and (mλ) /∈ (S((fk|Qmλ
)k∈{mλ}∪Mλ+1

, ǫ/3))ω
ζn+...+ωζ1 for all λ ∈ N. We

get the sequence (kj) with k1 = n0 and kj+1 = mj for all j ∈ N.

Then from the assumption we have that (S((fkj |P ), ǫ/3))
ωζn+...+ωζ1+1 is non-

empty.

Hence there exists λ ∈ N such that (n0, mλ) ∈ (S((fkj |P ), ǫ/3))
ωζn+...+ωζ1 .

Then (mλ) ∈ (S((fk|Qmλ
)k∈{mλ}∪Mλ+1

, ǫ/3))ω
ζn+...+ωζ1 , a contradiction.

This completes the proof of the claim.
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By repeated application of the claim and using that the n-tuple (ζ1, . . . , ζn)

has property (A), we find strictly increasing sequences Mλ = (m
λ
j ), λ ∈ N, of

N \ {n0} and a strictly increasing sequence (mλ) of elements of N \ {n0} such
that for every λ ∈ N it holds mλ ∈ Mλ, mλ

λ ≤ mλ < minMλ+1 and for every
F1 ∈ Fζ1 , . . . , Fn ∈ Fζn

with F1 < . . . < Fn and ∪n
i=1Fi = {j1 < . . . < jν}

(where ν ∈ N), there exists x ∈ Qmλ
such that |fmλ

(x) − f
mλ+1

j1

(x)| > ǫ/4 and

|f
mλ+1

jl+1

(x)− f
mλ+1

jl

(x)| > ǫ/4 for every l = 1, . . . , ν − 1. The proof of Case 1 can

be finished by taking the sequence (mλ) and using the fact that if ζ < ω1, (kj) a
strictly increasing sequence of natural numbers then for every F ∈ Fζ it follows
that {kj : j ∈ F} ∈ Fζ .

Case 2 (ζ = η+1). Assume that the n-tuple (ζ1, . . . , ζn) has property (A) and
we shall show that (ζ, ζ1, . . . , ζn) has property (A). Indeed, let P be a closed subset

of K and N an infinite subset of N such that (S((fnj |P ), ǫ/3))
ωζn+...+ωζ1+ωζ

6= ∅

for every strictly increasing sequence (nj) of elements on N with n1 = minN .

Then (S((fnj |P ), ǫ/3))
ωζn+...+ωζ1+kωη

6= ∅ for every k ∈ N and for every

strictly increasing sequence (nj) of elements of N with n1 = minN . From the
induction assumption we get that (η, . . . , η

︸ ︷︷ ︸

k

, ζ1, . . . , ζn) has property (A) for ev-

ery k ∈ N. We set n0 = minN and N0 = N \ {n0}. Then, by induction
on k ≥ 1, there exists a subsequence Nk = (n

k
j ) of Nk−1 such that for every

E1, . . . , Ek ∈ Fη, F1 ∈ Fζ1 , . . . , Fn ∈ Fζn
with E1 < . . . < Ek < F1 < . . . < Fn

and ∪k
j=1Ej ∪ ∪n

i=1Fi = {j1 < . . . < jλ} (where λ ∈ N) there exists x ∈ P

such that |fn0(x) − fnk
j1

(x)| > ǫ/4 and |fnk
jl+1

(x) − fnk
jl

(x)| > ǫ/4 for every

l = 1, . . . λ − 1. The proof of Case 2 can be finished by taking the diagonal
sequence (nk

k).

Case 3 (ζ is a limit ordinal). Let (ηk) be the strictly increasing sequence of
ordinals with supk ηk = ζ that defines the family Fζ . Assume that (ζ1, . . . , ζn)
has property (A) and we shall show that (ζ, ζ1, . . . , ζn) has property (A). In-
deed, let P be a closed subset of K and N an infinite subset of N such that

(S((fnj |P ), ǫ/3))
ωζn+...+ωζ1+ωζ

6= ∅ for every strictly increasing sequence (nj) of

elements of N with n1 = minN . Then

(S((fnj |P ), ǫ/3))
ωζn+...+ωζ1+ωηk 6= ∅

for every k ∈ N and for every strictly increasing sequence (nj) of elements of N
with n1 = minN . By induction assumption we get that (ηk , ζ1, . . . , ζn) has the
property (A) for every k ∈ N. We set n0 = minN and N0 = N \ {n0}. Then by
induction on k ≥ 1 and using the definition of the property (A), there exists a
subsequence Nk = (n

k
j ) of Nk−1 such that for every F ∈ Fηk

, F1 ∈ Fζ1 , . . . , Fn ∈

Fζn
with F < F1 < . . . < Fn and F ∪ ∪n

i=1Fi = {j1 < . . . < jλ} (where λ ∈ N)
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there exists x ∈ P so that |fn0(x)−fnk
j1

(x)| > ǫ/4 and |fnk
jl+1

(x)−fnk
jl

(x)| > ǫ/4

for every l = 1, . . . , λ − 1. The proof of Case 3 can be again finished by taking
the diagonal sequence (nk

k).

Step 2. The 1-tuple (ζ) has property (A) for each ζ < ω1.
We use induction on ζ. For ζ = 0, it is proved easily by using the definition of

the property (A) and Definitions 2.4 (iii) and 3.2.4. Let 1 ≤ ζ < ω1 and assume
that it is true for every η < ζ. If ζ = η + 1, then by using Step 1 we get that for
each l ∈ N, the l-tuple (η, . . . , η

︸ ︷︷ ︸

l−times

) has property (A), and using the definition of the

property (A) and a diagonal argument (as in Case 2 of Step 1) we get that (ζ)
has property (A). Let ζ is a limit ordinal and let (ηk) be the strictly increasing
sequence of ordinals with supk ηk = ζ that defines the family Fζ . By using that
the 1-tuple (ηl) has property (A) for all l ∈ N and working as in Case 3 of Step 1,
we get the conclusion. This finishes the proof of Step 2.

The proof of the proposition is complete. �

Combining the above results we get the following characterization for the ordi-
nal index “γ((fk), ǫ)” where (fk) is a sequence of continuous real-valued functions
defined on a compact metric space and ǫ > 0.

Theorem 3.3. LetK be a compact metric space, 1 ≤ ξ < ω1 and (fk) a sequence
of continuous real-valued functions on K. Then the following are equivalent:

(i) there are ǫ > 0 and a strictly increasing sequence (kn) of natural numbers

such that γ((fk′
n
), ǫ) > ωξ for every strictly increasing sequence (k

′

n) of

(kn);
(ii) there are ǫ > 0 and a strictly increasing sequence (kn) of natural numbers
so that for every E = {n1 < . . . < nλ} ∈ Fξ (where λ ≥ 2) there is
xE ∈ K with |fknj+1

(xE)− fknj
(xE)| > ǫ for all 1 ≤ j ≤ λ − 1;

(iii) there are ǫ > 0 and a strictly increasing sequence (kn) of natural numbers

such that for every subsequence (k
′

n) of (kn) and for everyE = {n1 < . . . <
nλ} ∈ Fξ (where λ ∈ N) there is xE ∈ K with |f

k
′

2nj+1

(xE)−f
k
′

2nj

(xE)| >

ǫ for all 1 ≤ j ≤ λ.

Proof: The implication (iii) ⇒ (i) follows from Proposition 3.1 and the implica-
tion (i) ⇒ (ii) follows from Proposition 3.2. Finally, the implication (ii) ⇒ (iii) is
proved by using that (a) if E = {n1 < n2 < . . . < nλ} ∈ Fξ (where λ ∈ N) then
the set F = {2n1 < 2n1 + 1 < 2n2 < 2n2 + 1 < . . . < 2nλ < 2nλ + 1} belongs
to Fξ , and (b) if (nj) is a strictly increasing sequence of natural numbers, then
{nj : j ∈ F} ∈ Fξ for all F ∈ Fξ . �

Proposition 3.4. Let K be a compact metric space, 1 ≤ ξ < ω1, ǫ > 0 and (fk)
a sequence of continuous real-valued functions on K such that for every strictly

increasing sequence (kn) of natural numbers there is a subsequence (k
′

n) of (kn) so
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that i((f
k
′

n+1

− fk′
n
), ǫ) > ωξ. Then γ((fkn

), ǫ) > ωξ for every strictly increasing

sequence (kn) of natural numbers.
Proof: We give the following definition: For any α < ω1, we say that α has pro-
perty (B) if whenever P is a non-empty closed subset ofK and N = (kj) a strictly

increasing sequence of natural numbers such that for every subsequence (k
′

j) of

N , there exists a subsequence (k”j ) of (k
′

j) so that (T ((fk”j+1|P
− fk”j |P

), ǫ))α 6= ∅,

then Pα
ǫ,(fkj

) 6= ∅.

For the proof of our proposition, it is enough to show that every α < ω1 has
property (B). We shall prove it by induction on α < ω1. For α = 0, it is trivial
(cf. Definitions 2.2, 2.4 (iii) and 2.5).
Case 1 (α = β+1). Assume that β has property (B) and we shall show that β+1

has property (B). Indeed, let P ⊆ K be non-empty closed and N = (kj) a strictly

increasing sequence of natural numbers such that for every subsequence (k
′

j) of N,

there exists a subsequence (k”j ) of (k
′

j) so that (T ((fk”j+1|P
− fk”j |P

), ǫ))β+1 6= ∅.

For every k, l ∈ N we set Qk,l = {x ∈ P : |fk(x) − fl(x)| ≥ ǫ} which is a closed
subset of K.
Claim. For every subsequence M of N there exist a subsequence M

′
of M

and m, m
′
∈ M

′
with m < m

′
and Qm,m′ 6= ∅, such that for every subsequence

(k
′

j) of M
′
with k

′

1 = m
′
there exists a subsequence (k”j ) of (k

′

j) so that (1) ∈

(T ((fk”j+1|Qm,m
′
− fk”j |Qm,m

′
), ǫ))β .

Proof of the claim. Assume the contrary and let M0 a subsequence of N
so that the claim fails. Then, by induction on λ ≥ 1, we find a subsequence
Mλ = (k

λ
j ) of Mλ−1 and we find a strictly increasing sequence (mλ) of elements

ofM0 such that mλ+1 = minMλ and (1) /∈ (T ((f
k
′

j+1|Qm,m
′
−f

k
′

j|Qm,m
′
), ǫ))β for

every subsequence (k
′

j) of Mλ and for every m, m
′
∈ {m1, . . . , mλ} with m < m

′

and Qm,m′ 6= ∅ for all λ = 1, 2, . . . . We get the sequence (k
′

j) with k
′

j = mj

for every j = 1, 2, . . . . Then, from the assumption, there exists a subsequence

(k”j ) = (mpj ) of (k
′

j) so that (1) ∈ (T ((fk”j+1|P
− fk”j |P

), ǫ))β+1. Then there exists

λ ∈ N, λ > 1 such that (1, λ) ∈ (T ((fk”j+1|P
− fk”j |P

), ǫ))β . We set m = k”λ = mpλ

and m
′
= k”λ+1 = mpλ+1

. Also we get the sequence (lj) with lj = k”λ+j for all

j = 1, 2, . . . . Clearly (lj) is a subsequence of Mpλ+1−1. Also it is obvious that

(1) ∈ (T ((flj+1|Q
m,m

′
−flj |Q

m,m
′
), ǫ))β , a contradiction. This completes the proof

of the claim.

By repeated application of the claim and using that the n-tuple (ζ1, . . . , ζn)
has property (B), we find a strictly increasing sequence (mλ) of elements of N

such that for every λ ∈ N there exists xλ ∈ P with xλ ∈ (Qmλ,mλ+1
)β
ǫ,(fkj

)
. By
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compactness of K, the sequence (xλ) has a limit point x. Then it is easy to show

that x ∈ P
β+1
ǫ,(fkj

)
.

Case 2 (α is a limit ordinal). Assume that every β < α has property (B)
and we shall show that α has property (B). Indeed, let P be a non-empty closed
subset of K and N = (kj) a strictly increasing sequence of natural numbers such

that for every subsequence (k
′

j) of N , there exists a subsequence (k”j ) of (k
′

j) so

that (T ((fk”j+1|P
− fk”j |P

), ǫ))α 6= ∅. Then (T ((fk”j+1|P
− fk”j |P

), ǫ))β 6= ∅ for every

β < α. From induction assumption every β < α has property (B) and hence

P
β
ǫ,(fkj

)
6= ∅ for every β < α. Then, by compactness of K, we get Pα

ǫ,(fkj
) 6= ∅.

This completes the proof of our proposition. �

Theorem 3.5. LetK be a compact metric space, 1 ≤ ξ < ω1 and (fk) a sequence
of continuous real-valued functions on K. Then the following are equivalent:

(i) for every strictly increasing sequence (kn) of natural numbers there exists

a subsequence (k
′

n) of (kn) such that γ((fk′
n
)) ≤ ωξ ;

(ii) for every strictly increasing sequence (kn) of natural numbers there exists

a subsequence (k
′

n) of (kn) such that the sequence (fk
′

n+1

−fk′
n
) converges

ξ-uniformly pointwise to zero;
(iii) for every strictly increasing sequence (kn) of natural numbers there exists a

subsequence (k
′

n) of (kn) such that the sequence (fk
′

2n+1

−f
k
′

2n

) converges

ξ-uniformly pointwise to zero.

Proof: (i) ⇒ (ii). Assume that for every strictly increasing sequence (kn) of

natural numbers there is a subsequence (k
′

n) of (kn) such that γ((fk′
n
)) ≤ ωξ .

Claim 1. For every ǫ > 0 and for every strictly increasing sequence M = (kn)

of natural numbers there is a subsequence M
′
= (k

′

n) of M such that i((fk”n+1
−

fk”n
), ǫ) < ωξ for every subsequence (k”n) of (k

′

n).

[Proof of Claim 1. Assume the contrary. Then there are ǫ > 0 andMǫ = (kn) a
strictly increasing sequence of natural numbers such that the claim fails. Then by
using Proposition 3.4 for the sequence gn = fkn

, n ∈ N, we get γ((fk′
n
), ǫ) > ωξ

for every subsequence (k
′

n) of (kn) which is a contradiction.]

Let (kn) be a strictly increasing sequence of natural numbers. We set M0 =

(kn). For any m ∈ N and by repeated application of the claim for ǫ = 1
m , we

get sequences Mm = (k
m
n ), m ∈ N, so that Mm is a subsequence of Mm−1 and

i((fln+1 − fln),
1
m) < ωξ for each subsequence (ln) of Mm. We set (k

′

n) = (k
n
n)

and we get the conclusion.

(ii) ⇒ (iii). It is obvious since for every subsequence (k
′

n) of (kn) the sequence
(f

k
′

2n+1

− f
k
′

2n

) is a subsequence of the sequence (f
k
′

n+1

− fk′
n
).



746 P.Kiriakouli

(iii) ⇒ (i). Assume that for every strictly increasing sequence (kn) of natural

numbers there is a subsequence (k
′

n) of (kn) so that the sequence (fk
′

2n+1

− f
k
′

2n

)

converges ξ-uniformly pointwise to zero, i.e. i((f
k
′

2n+1

− f
k
′

2n

), ǫ) < ωξ for every

ǫ > 0.
Claim 2. For each ǫ > 0 and for each strictly increasing sequence M = (kn) of

natural numbers there is a subsequence M
′
= (k

′

n) of M such that γ((fk′
n
), ǫ) <

ωξ .

[Proof of Claim 2. Assume the contrary. Then there are ǫ > 0 and a strictly
increasing sequence M = (kn) of natural numbers so that for every subsequence

M
′
= (k

′

n) of M implies γ((fk′
n
), ǫ) > ωξ. Then, by using Proposition 3.2 for

the sequence (fkn
), there exists a subsequence (k

′

n) of (kn) so that for each E =
{n1 < . . . < nλ} ∈ Fξ (λ ≥ 2) there is xE ∈ K so that |fk′

nj+1

(xE)− fk′
nj

(xE)| >

ǫ/4 for j = 1, . . . , λ − 1. Then for each subsequence (k”n) of (k
′

n) and for each
E = {n1 < . . . < nλ} ∈ Fξ there is xE ∈ K so that |fk”

2nj+1
(xE)− fk”

2nj

(xE)| >

ǫ/4 for all j = 1, . . . , λ. Thus by using Definition 2.5 and Lemma 2.6, we get

i((fk”
2n+1

− fk”
2n
), ǫ/4) > ωξ for each subsequence (k”n) of (k

′

n), a contradiction.]

Let (kn) be a strictly increasing sequence of natural numbers. We set M0 =

(kn). For every m ∈ N and by repeated application of Claim 2 for ǫ = 1
m , we get

a strictly increasing sequence Mm = (k
m
n ) of Mm−1 so that γ((fkm

n
), 1m ) < ωξ.

We set (k
′

n) = (k
n
n) and we get the conclusion. �

Theorem 3.6. Let K be a compact metric space, f a bounded real-valued func-
tion on K and 1 ≤ ξ < ω1. The following are equivalent:

(i) f ∈ Bξ
1(K);

(ii) there exists a sequence (fk) ⊆ C(K) which converges pointwise to f and
for every strictly increasing sequence (kn) of natural numbers there exists

a subsequence (k
′

n) of (kn) such that the sequence (fk
′

n+1

−fk′
n
) converges

ξ-uniformly pointwise to zero;
(iii) there exists a sequence (fk) ⊆ C(K) which converges pointwise to f and

for every strictly increasing sequence (kn) of natural numbers there exists

a subsequence (k
′

n) of (kn) so that the sequence (fk
′

2n+1

−f
k
′

2n

) converges

ξ-uniformly pointwise to zero.

Proof: Using [5, Theorem 1.3] or the proof of [7, Theorem 17] we get that if

1 ≤ ξ < ω1 and f ∈ Bξ
1(K) then there exists a sequence (fk) ⊆ C(K) pointwise

converging to f so that γ((fk)) ≤ ωξ . Also it is known that if (fk) ⊆ C(K)
is pointwise converging to f then β(f) ≤ γ((fk)) (cf. [5, Proposition 1.1]). The

proof can be finished by using these results, the definition of the set Bξ
1(K) (cf.

Definition 2.1) and Theorem 3.5. �
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Remarks 3.7. (1) We note that using [5, Theorem 1.3] or the proof of [7, Theo-

rem 17] we prove that if 1 ≤ ξ < ω1, f ∈ Bξ
1(K) and (fk) is a (uniformly bounded)

sequence of continuous real-valued functions on a compact metric space K point-
wise converging to f , then there exists a sequence (gk) of convex blocks of (fk)

(i.e. gk ∈ conv((fp)p≥k), for all k) such that γ((gk)) ≤ ωξ. (Here conv((hk))
denotes the set of convex combinations of the hk’s.) Combining this result and
Theorem 3.5 we get that the conditions (ii) and (iii) of Theorem 3.6 are equivalent
respectively with the following conditions:

(ii)′ For every (uniformly bounded) sequence (fk) ⊆ C(K) pointwise converging
to f , there exists a sequence (gk) of convex blocks of (fk) such that for every
strictly increasing sequence (kn) of natural numbers there exists a subsequence

(k
′

n) of (kn) so that the sequence (gk
′

n+1

− gk′
n
) converges ξ-uniformly pointwise

to zero.

(iii)′ For every (uniformly bounded) sequence (fk) ⊆ C(K) pointwise converg-
ing to f , there exists a sequence (gk) of convex blocks of (fk) such that for every
strictly increasing sequence (kn) of natural numbers there exists a subsequence

(k
′

n) of (kn) so that the sequence (gk
′

2n+1

− g
k
′

2n

) converges ξ-uniformly pointwise

to zero.

(2) Prof. S. Argyros asked me the following: If γ((fk)) ≤ ω, does it hold
that for each strictly increasing sequence (kn) of natural numbers the sequence
(fkn+1

− fkn
) converges 1-uniformly pointwise to zero? The next example shows

that the answer of this question is negative. LetK = N∪{∞} be the Alexandroff’s
compactification of N, (kn) a strictly increasing sequence of natural numbers and
(An) a sequence of finite subsets of N with A1 < A2 < . . . < An < An+1 < . . .
so that the cardinality of each An is equal to n. For every k ∈ N we define the
function fk : K → R as follows: For anym ∈ N we define f2m(t) = 1 if t = kn with
m ∈ An and f2m(t) = 0 otherwise. Also we define f2m+1(t) = 0 for allm ∈ N and
t ∈ K. Then it is easy to show that γ((fk)) = 2, but i((f2m+1−f2m),

1
2 ) = ω+1.

I thank Prof. S. Argyros for the above question.

Acknowledgment. I am grateful to referee for his (her) kind corrections and
helpful comments.
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