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A Carleson inequality for BMOA functions

with their derivatives on the unit ball

Hasi Wulan

Abstract. The main purpose of this note is to give a new characterization of the well-
known Carleson measure in terms of the integral for BMOA functions with their deriva-
tives on the unit ball.
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1. Introduction

Let B denote the unit ball in Cn(n ≥ 1), and v the 2n-dimensional Lebesgue
measure on B normalized so that v(B) = 1, while σ is the normalized surface
measure on the boundary S of B.
For z = (z1, . . . , zn) and w = (w1, . . . , wn) in Cn , we let 〈z, w〉 = z1w1 +

· · ·+ znwn so that |z|2 = 〈z, z〉. For α = (α1, . . . , αn) with each αi a nonnegative
integer, we write |α| = α1 + · · ·+ αn, zα = zα1

1 · · · zαn
n , wα = w1

α1 · · ·wn
αn , and

∂|α|f(z)

∂zα =
∂|α|f(z)

∂zα1
1 · · · ∂zαn

n
,

where ∂0f(z)/∂z0 = f(z).
For a ∈ B, a 6= 0, let ϕa denote the automorphism of B taking 0 to a defined

by

ϕa(z) =
a − Pa(z)−

√

(1− |z|2)Qa(z)

1− 〈z, a〉 ,

where Pa is the projection of C
n onto the one-dimensional subspace span of a

and Qa is I − Pa. If a = 0, let ϕ0(z) = z. For 0 < r < 1 and a ∈ B, let
E(a, r) = {z ∈ B : |ϕa(z)| < r} as a pseudohyperbolic ball on B. It is easy to see
that E(a, r) = ϕa(rB) and v(E(a, r)) ∼ (1 − |a|)n+1 (see [Ru, 2.2.7]), where the
symbol “∼” indicates that the quantities have ratios bounded and bounded away
from zero as a varies.
The Hardy space Hp(0 < p < ∞) is defined as the space of holomorphic

functions f on B satisfying

(1.1) ‖f‖p = sup
0<r<1

{
∫

S
|f(rξ)|p dσ(ξ)

}1/p

< ∞ .
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The space BMOA consists of the functions f ∈ H1 for which

‖f‖BMOA = sup
1

σ(Q)

∫

Q

∣

∣f − fQ

∣

∣ dσ < ∞ ,

where fQ denotes the averages of f over Q and the supremum is taken over all
Q = Qδ(ξ) = {η ∈ S : |1 − 〈η, ξ〉| < δ} for ξ ∈ S and 0 < δ ≤ 2. Here we have
identified f with its boundary function.
In the work on interpolation by bounded analytic functions on the unit disc D

of C, L. Carleson [Ca1], [Ca2] found the following well-known result:
Let µ be a positive measure on D and 0 < p < ∞. Then an estimate of the

form

(1.2)

(
∫

D
|f(z)|p dµ(z)

)1/p

≤ Cp‖f‖p

holds for all f ∈ Hp if and only if there exists a constant C′ > 0 such that

µ(S(I)) ≤ C′|I|
for all S(I) = {z ∈ D : z/|z| ∈ I, 1 − |I| ≤ |z| < 1}, where |I| denotes the arc
length of the subarc I on the unit circle and S(I) = D if |I| ≥ 1. Here µ is called
a Carleson measure on D.
We say that a positive measure µ on B is a Carleson measure if there exists a

constant C > 0 such that
µ(Bδ(ξ)) ≤ Cδn

for all ξ ∈ S and all δ(0 < δ ≤ 2), where Bδ(ξ) = {z ∈ B : |1− 〈z, ξ〉| < δ} is said
to be a Carleson region. The definition above tells us that a Carleson measure is
finite. Here and in the sequel, constants are denoted by C, they are positive and
may differ from one occurrence to the other.
Hörmander [Hö] proved the higher dimensional version of Carleson’s theorem

above and gave a simple proof of Carleson’s estimates. In this paper we shall
give a new characterization of Carleson measures in terms of integrals for BMOA
functions with their derivatives on the unit ball. Our main result is the following:

Theorem 1. Let µ be a positive Borel measure on B, 0 < p < ∞ and α a
multiindex. Then there exists a constant C > 0 such that

(1.3) sup
a∈B

∫

B

∣

∣

∣

∣

∣

∂|α|f(z)

∂zα − ∂|α|f(a)

∂zα

∣

∣

∣

∣

∣

p
(1− |a|2)n+

3|α|p
2 (1− |z|2)

|α|p
2

|1− 〈z, a〉|2n+2|α|p
dµ(z)

≤ C‖f‖p
BMOA

for all f ∈ BMOA if and only if there exists a constant C′ > 0 such that

(1.4) µ(Bδ(ξ)) ≤ C′δn+|α|p

for all ξ ∈ S and all δ(0 < δ ≤ 2).
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2. Preliminary lemmas

Lemma 1. For 0 < r < 1 let a be a point in B with 1− |a| < 2
(

1 +
√

2
1−r

)−2
.

Then E(a, r) ⊂ Bδ(ξ), where ξ = a/|a| and δ = (1 − |a|)
(

1 +
√

2
1−r

)2
.

Proof: By the identity ([Ru])

1− |ϕa(z)|2 =
(1− |a|2)(1 − |z|2)

|1− 〈z, a〉|2

for a ∈ B and z ∈ E(a, r) we have (see [Je])

(2.1)
1− r

1 + r
≤ 1− |a|2
1− |z|2 ≤ 1 + r

1− r
,

and

(2.2) |1− 〈z, a〉|2 = (1 − |a|2)(1 − |z|2)
1− |ϕa(z)|2

≤ 4
(

1− |a|
1− r

)2

.

Let ξ = a/|a|. We obtain

|1− 〈z, ξ〉| 12 ≤ |1 − 〈z, a〉| 12 + |1− 〈a, ξ〉| 12

≤ (1 − |a|) 12
(

1 +

√

2

1− r

)

.

Taking δ = (1− |a|)
(

1 +
√

2
1−r

)2
we get that E(a, r) ⊂ Bδ(ξ). �

Lemma 2. Let f ∈ BMOA and let |α| be a positive integer. Then there exists
constant C > 0 such that

(2.3)

∣

∣

∣

∣

∣

∂|α|f(a)

∂zα

∣

∣

∣

∣

∣

≤ C‖f‖BMOA(1− |a|)−|α|

for all a ∈ B.

Proof: It is known that BMOA ⊂ B(B), where B(B) is the Bloch space of
holomorphic functions f on B with ‖f‖B = sup{(1 − |z|2)| ▽ f(z)| : z ∈ B} <
∞, where ▽f(z) = (∂f/∂z1, · · · , ∂f/∂zn) is the analytic gradient of f . From
Theorem A in [Zh], for f ∈ BMOA and positive integer |α|, we have

∣

∣

∣

∣

∣

∂|α|f(a)

∂zα

∣

∣

∣

∣

∣

≤ C‖f‖B(1 − |a|)−|α| ≤ C‖f‖BMOA(1− |a|)−|α|

for all a ∈ B. Here we used the estimate ‖f‖B ≤ C‖f‖BMOA. �
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Lemma 3 ([Wu]). Let µ be a finite positive measure on B, 0 < r < 1 and β > 0.
Then

(2.4) sup
a∈B

∫

B

(

1− |a|2
|1− 〈z, a〉|2

)n+β

dµ(z) < ∞

if and only if there exists a constant C > 0 such that

(2.5) µ(E(a, r)) ≤ C(1 − |a|)n+β

is fulfilled for all a ∈ B.

3. Proof of Theorem 1

We first consider the case |α| = 0. Suppose that (1.4) holds for all ξ ∈ S and all
δ(0 < δ ≤ 2), that is, µ is a Carleson measure on B. For a holomorphic function
f on B and 0 < p < ∞, from [Ch] we have that ‖f‖BMOA < ∞ implies

(3.1) sup
a∈B

{
∫

S
|f(ξ)− f(a)|p (1− |a|2)n

|1− 〈ξ, a〉|2n dσ(ξ)

}1/p

< ∞ .

Thus for each a ∈ B and each f ∈ BMOA we have

Fa(z) = (f(z)− f(a))

(

(1− |a|2)n
(1 − 〈z, a〉)2n

)1/p

∈ Hp, 0 < p < ∞ .

By Hörmander’s result we have
∫

B
|Fa(z)|pdµ ≤ Cp

∫

S
|Fa(ξ)|p dσ(ξ),

it follows that

sup
a∈B

{
∫

B
|f(z)− f(a)|p (1− |a|2)n

|1− 〈z, a〉|2n dµ(z)

}1/p

≤ C′ sup
a∈B

{
∫

S
|f(ξ)− f(a)|p (1− |a|2)n

|1− 〈ξ, a〉|2n dσ(ξ)

}1/p

≤ C′‖f‖BMOA.

To prove that (1.4) follows from (1.3) we only need to prove that (1.4) is valid

for all ξ ∈ S and all δ(0 < δ ≤ 1
4 ) since µ is finite. For each ξ ∈ S and each

δ(0 < δ ≤ 1
4 ) we take a′ = (1− 2δ)ξ ∈ B. For z ∈ Bδ(ξ) we have

(3.2)
2δ ≤ |1− 〈z, a′〉| ≤ (|1 − 〈z, ξ〉| 12 + |1− 〈ξ, a′〉| 12 )2

≤
√
5δ < 3δ < 4δ(1− δ) = 1− |a′|2.
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For fixed a′ ∈ B above we choose a function f(z) = (1 − 〈z, a′〉)−n ∈ BMOA.
From (3.2) we have

(3.3)

sup
a∈B

∫

B
|f(z)− f(a)|p (1 − |a|2)n

|1− 〈z, a〉|2n dµ(z)

≥
∫

B
|f(z)− f(a′)|p (1− |a′|2)n

|1− 〈z, a′〉|2n dµ(z)

≥
∫

Bδ(ξ)

(

|1− 〈z, a′〉|−n − (1− |a′|2)−n
)p (1− |a′|2)n

|1− 〈z, a′〉|2n dµ(z)

≥ ( 1√
5
− 1
3
)npδ−np

∫

Bδ(ξ)

(1 − |a′|2)n
|1− 〈z, a′〉|2n dµ(z)

≥ Cδ−np−nµ(Bδ(ξ)).

On the other hand,

(3.4) ‖f‖p
BMOA ≤ C(1 − |a′|)−np ≤ Cδ−np.

Therefore, from (1.3), (3.3) and (3.4) there exists a constant C′ = C(n, p) such
that

µ(Bδ(ξ)) ≤ C′δn,

this shows that µ is a Carleson measure on B since µ is finite.
Now we consider the case |α| > 0. Assume that µ satisfies (1.4) and let f ∈

BMOA. By Lemma 2 and the elementary inequality

(a+ b)p ≤ 2p(ap + bp), 0 < p < ∞, a > 0, b > 0,

we have

(3.5)

∫

B

∣

∣

∣

∣

∣

∂|α|f(z)

∂zα − ∂|α|f(a)

∂zα

∣

∣

∣

∣

∣

p
(1− |a|2)n+

3|α|p
2 (1− |z|2)

|α|p
2

|1− 〈z, a〉|2n+2|α|p
dµ(z)

≤ C‖f‖p
BMOA

∫

B

(1 − |a|2)n+
3|α|p
2 (1− |z|2)−

|α|p
2

|1− 〈z, a〉|2n+2|α|p
dµ(z)+

+ C‖f‖p
BMOA

∫

B

(1 − |a|2)n+
|α|p
2 (1− |z|2)

|α|p
2

|1− 〈z, a〉|2n+2|α|p
dµ(z)

≤ C‖f‖p
BMOA

∫

B

(

1− |a|2
|1− 〈z, a〉|2

)n+ |α|p
2

dν(z),
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where dν(z) = (1 − |z|2)−
|α|p
2 dµ(z). For a fixed r(0 < r < 1) and a ∈ B with

1− |a| < 2
(

1 +
√

2
1−r

)−2
, we set ξ = a/|a| and δ = (1− |a|)

(

1 +
√

2
1−r

)2
. By

(1.4), (2.1) and Lemma 1 we have

(3.6) ν(E(a, r)) =

∫

E(a,r)
(1− |z|2)−

|α|p
2 dµ(z) ≤ C(1− |a|)n+

|α|p
2 .

Since µ is finite, we see that (3.6) holds for all a ∈ B. Using Lemma 3 for the
case |α| > 0 and 0 < p < ∞ we obtain

(3.7) sup
a∈B

∫

B

(

1− |a|2
|1− 〈z, a〉|2

)n+ |α|p
2

dν(z) < ∞ .

Therefore, from the estimates (3.5) and (3.7) we get (1.3).

Conversely, suppose that (1.3) holds for all f ∈ BMOA. Let a ∈ B with |a| >
191/192 and take a′ = (32|a|− 31)a/|a|, then Qa(a

′) = 0 and |ϕa(a
′)| > 176/197.

Given r, 0 < r < 1/33, then a′ /∈ E(a, r). By Lemma 1 and (2.2) for z ∈ E(a, r)
we have

(3.8) |1− 〈z, a′〉| ≤ (|1− 〈z, a〉| 12 + |1− 〈a, a′〉| 12 )2 ≤ 825
16
(1− |a|),

and

(3.9)
176

3
(1− |a|) ≤ 1− |a′|2 ≤ 64(1− |a|).

Combining (3.8) with (3.9) we have

(3.10) |1− 〈z, a′〉| ≤
(

15

16

)2

(1 − |a′|2), z ∈ E(a, r).

For fixed a′ above we take f(z) = (1−〈z, a′〉)−n. It is easy to see that f ∈ BMOA
and for any positive integer |α| we have

(3.11)
∂|α|f(z)

∂zα = n(n+ 1) · · · (n+ |α| − 1)a′|α|(1− 〈z, a′〉)−n−|α| .

From (2.1), (3.9), (3.10) and (3.11) we get
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(3.12)

sup
a∈B

∫

B

∣

∣

∣

∣

∣

∂|α|f(z)

∂zα − ∂|α|f(a)

∂zα

∣

∣

∣

∣

∣

p
(1 − |a|2)n+

3|α|p
2 (1− |z|2)

|α|p
2

|1− 〈z, a〉|2n+2|α|p
dµ(z)

≥
∫

B

∣

∣

∣

∣

∣

∂|α|f(z)

∂zα − ∂|α|f(a′)

∂zα

∣

∣

∣

∣

∣

p
(1− |a′|2)n+

3|α|p
2 (1− |z|2)

|α|p
2

|1− 〈z, a′〉|2n+2|α|p
dµ(z)

≥ C(n, |α|, p)
∫

E(a,r)

(

|1− 〈z, a′〉|−n−|α| − (1− |a′|2)−n−|α|
)p

×

× (1− |a′|2)n+
3|α|p
2 (1 − |z|2)

|α|p
2

|1− 〈z, a′〉|2n+2|α|p
dµ(z)

≥ C(1 − |a′|2)−np−|α|p
∫

E(a,r)

(1 − |a′|2)n+
3|α|p
2 (1− |z|2)

|α|p
2

|1− 〈z, a′〉|2n+2|α|p
dµ(z)

≥ C(1 − |a|)−n−np−|α|pµ(E(a, r)).

Also, we have

(3.13) ‖f‖p
BMOA ≤ C(1− |a|)−np.

Hence, from the estimates (3.12), (3.13) above and (1.3), we obtain

(3.14) µ(E(a, r)) ≤ C′(1− |a|)n+|α|p

for 191192 < |a| < 1. In fact, we can get that (3.14) is fulfilled for all a ∈ B since
µ is finite. Since |α| > 0 and 0 < p < ∞, then by Lemma 3 we know that (3.14)
implies

(3.15) K = sup
a∈B

∫

B

(

1− |a|2
|1− 〈z, a〉|2

)n+|α|p

dµ(z) < ∞ .

For each ξ ∈ S and each δ(0 < δ ≤ 2), we set a = (1 − δ
2 )ξ. For z ∈ Bδ(ξ), we

have
|1− 〈z, a〉| ≤ (|1− 〈z, ξ〉| 12 + |1− 〈ξ, a〉| 12 )2 ≤ 4δ.

This implies that

(3.16)

K ≥
∫

B

(

1− |a|2
|1− 〈z, a〉|2

)n+|α|p

dµ(z)

≥
∫

Bδ(ξ)

(

1− |a|2
|1− 〈z, a〉|2

)n+|α|p

dµ(z)

≥ C(p, n, |α|)δ−n−|α|pµ(Bδ(ξ)).
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Therefore, from (3.15) and (3.16), we have

µ(Bδ(ξ)) ≤ Cδn+|α|p

for all ξ ∈ S and all 0 < δ ≤ 2. Thus the proof of Theorem 1 is complete. �

From the second part of the proof of Theorem 1, we can get the following
result:

Theorem 2. Let µ be a finite positive measure on B, 0 < r < 1 and α > n.
Then the following statements are equivalent:

(i) µ(Bδ(ξ)) ≤ Cδα for all ξ ∈ S and all 0 < δ ≤ 2;
(ii) µ(E(a, r)) ≤ C(1− |a|)α for all a ∈ B.

Notice that (i) implies (ii), but the converse fails if α = n (see [Lu] for case
n = 1), that is, the Carleson region Bδ(ξ) cannot be replaced by the pseudohy-
perbolic ball E(a, r) for case n = α.
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