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Rectangular modulus, Birkhoff orthogonality

and characterizations of inner product spaces

Ioan Şerb

Abstract. Some characterizations of inner product spaces in terms of Birkhoff orthogo-
nality are given. In this connection we define the rectangular modulus µ

X
of the normed

space X. The values of the rectangular modulus at some noteworthy points are well-
known constants of X. Characterizations (involving µ

X
) of inner product spaces of

dimension ≥ 2, respectively ≥ 3, are given and the behaviour of µ
X
is studied.

Keywords: characterizations of inner product spaces, orthogonality, moduli of Banach
spaces

Classification: 46C15, 46B20

1. Introduction

In the present paper we shall give, at the beginning, natural generalizations
of some known characterizations of inner product spaces (i.p.s. for short). By
introducing a parameter λ > 0 we obtain, in the particular case λ = 1, the known
results collected in D. Amir’s book [3, p. 79]. The characterizations are expressed
in terms of Birkhoff orthogonality and the new conditions will be given in an
“anti-symmetric” manner with respect to λ. In this direction one obtains a more
general form (depending on λ) of M. Baronti’s Lemma 1 in [4] and a generalization
of M. del Rio and C. Benitez’s Lemma 3 in [15].
These generalizations (especially Lemma 1 in the sequel) suggest to introduce

a function µ
X
: (0,∞) → R, with the property that µ

X
(1) is the well-known

rectangular constant of the normed spaceX . We call this function the rectangular
modulus of X . The rectangular modulus is an increasing convex function and
Lipschitz continuous of best Lipschitz constant 2. Moreover, µ

X
(0+) is another

well-known constant of the normed space X .
For any fixed λ > 0 a characterization of i.p.s. in terms of the rectangular mo-

dulus is also given. In the limit case when λց 0, the analogous characterization
of i.p.s. is valid only for normed spaces of dimension ≥ 3.

2. Preliminary results and notation

We denote by (X, ‖ · ‖) a real normed space of dimension ≥ 2. For x ∈ X and
r > 0 let S

X
(x, r) = {y ∈ X : ‖x−y‖ = r} and B

X
(x, r) = {y ∈ X : ‖x−y‖ ≤ r},

be the sphere respectively closed ball with center x and radius r. The unit sphere
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S
X
(0, 1) and the closed unit ball B

X
(0, 1) of the space X will be denoted by

S
X
and B

X
respectively. The symbol ⊥ is used for Birkhoff orthogonality in X ;

namely x ⊥ y if ‖x‖ ≤ ‖x + t y‖, for all t ∈ R. Geometrically, this means that
the line through x in the y−direction supports the ball B

X
(0, ‖x‖) at x. For

x, y ∈ X , x 6= y, the closed line segment with vertices x and y is denoted by [x; y].
Any two-dimensional subspace of X will be identified with R

2 equipped with an
appropriate norm and an orientation ω. The orientation ω of the ordered pair
(x, y) of vectors (with x + y 6= 0 and ‖x‖ = ‖y‖) is recorded by x ≺ y ≺ −x.
Denote by ⊥A the area orthogonality ([1], [3, p. 65]) defined for (R2, ‖ · ‖) by
x ⊥A y if the radius vectors ±x, ±y divide the unit ball of R

2 into four parts of
equal area. The following known lemmas will be used in Section 3.

Lemma A ([2]). Let S
R2
be the unit sphere of (R2, ‖ · ‖) and s(α) be the point

of SR2 which is to a given point s(0) at an angle 0 ≤ α < 2π, measured with a
given orientation of the plane. Then for every λ > 0 the real continuous functions

α ∈ [0, π)→ ‖s(0) + λs(α)‖,
and

α ∈ [0, π)→ ‖s(0)− λs(α)‖,
are decreasing and increasing respectively.

If (R2, ‖ · ‖) is strictly convex then the aforementioned functions are strictly
monotonic.
In the two-dimensional normed space X let u∗, v∗ ∈ S

X
be such that u∗ ⊥ v∗

and let us consider the corresponding (u∗, v∗)-coordinate system in which u∗, v∗

are versors. For u, v ∈ X let Au,v be the area of the parallelogram {αu + βv :
α, β ∈ [0, 1]} in the (u∗, v∗)-coordinate system. It is clear that if r, s > 0 then
Aru,sv = rsAu,v.

Lemma B ([3, p. 78]). Let X be a two-dimensional normed space in which or-
thogonality is symmetric. Then Au,v = Au∗,v∗ = 1, ∀u, v ∈ S

X
, u ⊥ v.

3. Characterizations of inner product spaces and Birkhoff

orthogonality

For u, v ∈ S
X
, u 6= ±v and λ > 0 we define the function ϕλ,u,v : (0,∞) →

(0,∞) by
ϕλ,u,v(t) =

λ2 + t

‖λu+ tv‖ , ∀ t > 0.

With the above notation we have the following generalization of Lemma 1 in [4].

Lemma 1. Let u, v ∈ S
X
, u 6= ±v and λ, t0 > 0 be fixed. The following are

equivalent:

(a) (λu + t0v) ⊥ (u− λv).
(b) ϕλ,u,v(t0) ≥ ϕλ,u,v(t), ∀ t > 0.
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Proof: If we suppose that (a) holds then we have

(

u− t0
λ2 + t0

(u − λv)

)

⊥ (u − λv),

which implies

(1)

∥

∥

∥

∥

u− t0
λ2 + t0

(u− λv)

∥

∥

∥

∥

≤
∥

∥

∥

∥

u− t

λ2 + t
(u− λv)

∥

∥

∥

∥

, ∀ t > 0.

and hence
λ2 + t0

‖λu+ t0v‖
≥ λ2 + t

‖λu+ tv‖ , ∀ t > 0.

Now, if (b) is satisfied then (1) holds and this shows that in the two-dimensional
space X2 generated by u and v the straight line containing the open line segment

l =

{

u− t

λ2 + t
(u− λv) : t > 0

}

supports the ball B
X
(0, ‖w0‖) at w0, where w0 = u− t0(u− λv)/(λ2 + t0). Then

w0 ⊥ (u− λv) or equivalently (λu + t0v) ⊥ (u − λv). �

Remark. If we consider the function ψλ,u,v : (0,∞)→ (0,∞) defined by

ψλ,u,v(t
′) = λϕ1/λ,u,v

(

1

t′

)

=
λ2 + t′

‖t′u+ λv‖ ,

then we easily deduce:

Lemma 1′. With the previous notation, let t′0 > 0 be fixed. The following are
equivalent:

(a′) (t′0u+ λv) ⊥ (λu− v).
(b′) ψλ,u,v(t

′
0) ≥ ψλ,u,v(t

′), ∀ t′ > 0.

The next theorem is known for λ = 1, see Propositions 10.1–10.3, 10.3′ and
10.4 in [3] (see also [4] and [15]).

Theorem 2. Let λ > 0 be fixed. The following are equivalent:

1) ∀u, v ∈ S
X
, u ⊥ v ⇒ (λu + v) ⊥ (u− λv);

2) ∀u, v ∈ S
X
, u ⊥ v ⇒ ‖λu+ v‖ = ‖u− λv‖;

3) ∀u, v ∈ S
X
, u ⊥ v ⇒ ‖λu+ v‖ ≤

√
1 + λ2;

4) ∀u, v ∈ S
X
, u ⊥ v ⇒ ‖λu+ v‖ ≥

√
1 + λ2;

5) ∀u, v ∈ S
X
, u ⊥ v ⇒ ‖λu+ v‖ =

√
1 + λ2;

6) the normed space X is an i.p.s.
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Remarks. As we can see a little later the equivalences 3) ⇔ 4) ⇔ 5) are simple
consequences of a result in [12]. The implication 5)⇒ 6) is a strong result recently
obtained (among other results) by C. Benitez, K. Przeslawski and D. Yost in [6].
We note that the weaker result 5′)⇒ 6) was also proved and used in [18, pp. 388–
389], where 5′) is given by

∀u, v ∈ SX , u ⊥ v ⇒ ‖λu+ v‖ =
√

1 + λ2, ‖u+ λv‖ =
√

1 + λ2,

λ > 0 being fixed.

Proof of Theorem 2: We show that 1) ⇒ 2). Suppose that 1) is verified and
let u, v ∈ S

X
, u ⊥ v, and λ > 0 be fixed. It follows that

(

λ
λu+ v

‖λu+ v‖ +
u− λv

‖u− λv‖

)

⊥
(

λu + v

‖λu+ v‖ − λ
u− λv

‖u− λv‖

)

.

If we put t = ‖u− λv‖/‖λu+ v‖ then, by Lemma 1, we have:

λ2 + 1

‖ λ(λu + v)/‖λu+ v‖+ (u− λv)/‖u− λv‖ ‖

≥ λ2 + t

‖ λ(λu + v)/‖λu+ v‖+ t(u− λv)/‖u− λv‖ ‖ ,

and consequently

λ2 + 1

‖λ2u+ λv + (1/t)(u− λv)‖ ≥ λ2 + t

‖λ2u+ λv + u− λv‖ .

From u ⊥ v one obtains

(λ2 + 1)2 ≥ (λ2 + t) ·
∥

∥

∥

∥

(λ2 +
1

t
)u+ λ(1 − 1

t
)v

∥

∥

∥

∥

≥ (λ2 + t)
(

λ2 +
1

t

)

,

yielding
(√

t− 1√
t

)2

≤ 0 ⇔ t = 1.

This implies that ‖λu+ v‖ = ‖u− λv‖.
Now we show that 2) implies the strict convexity of X . Suppose that 2) is

satisfied and, on the contrary, there exists a support line l of S
X
such that l∩S

X
=

[u1, u2], u1 6= u2. Then any u ∈ [u1, u2] can be written as u = ut = u1+t(u2−u1),
t ∈ [0, 1] and ‖ut‖ = 1. The function t → ‖u1 + t(u2 − u1)‖, t ∈ R is 1 on [0, 1],
strictly increasing for t > 1 and strictly decreasing for t < 0. Denoting by
v = (u2 − u1)/‖u2 − u1‖ we have that ut ⊥ v, ∀ t ∈ [0, 1], and the application

t→ ‖λut + v‖ = λ
∥

∥

∥

∥

u1 + t(u2 − u1) +
u2 − u1

λ‖u2 − u1‖

∥

∥

∥

∥

, t ∈ (1 − ε1, 1]
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with sufficiently small ε1 > 0 is strictly increasing. On the other hand, the
application

t→ ‖ut − λv‖ =
∥

∥

∥

∥

u1 + t(u2 − u1)− λ
u2 − u1

‖u2 − u1‖

∥

∥

∥

∥

, ∀ t ∈ (1− ε2, 1],

with small enough ε2 > 0 is constant or strictly decreasing. But from 2) we have
that ‖λut + v‖ = ‖ut − λv‖, ∀ t ∈ (1 −min{ε1, ε2}, 1], a contradiction.
We prove that if 2) is satisfied then

(2) u, v ∈ S
X
and ‖λu+ v‖ = ‖u− λv‖ ⇒ u ⊥ v.

Suppose that 2) holds and, on the contrary, there exist u, v′ ∈ S
X
such that

‖λu+v′‖ = ‖u−λv′‖ and u is not orthogonal to v′. In the spaceX ′
2 generated by u

and v′ (understood as (R2, ‖·‖)) we choose the orientation such that u ≺ v′ ≺ −u,
(v′ 6= ±u). Let v ∈ SX′

2

be such that u ⊥ v and u ≺ v ≺ −u. Then v 6= v′.

Supposing that u ≺ v′ ≺ v ≺ −u, by Lemma A and the strict convexity of X we
have

‖u− λv′‖ < ‖u− λv‖
respectively

‖λu+ v′‖ = λ‖u+ 1
λ
v′‖ > λ‖u+ 1

λ
v‖ = ‖λu+ v‖,

implying ‖λu + v‖ < ‖u − λv‖, a contradiction. The case u ≺ v ≺ v′ ≺ −u can
be treated in a similar way.
Suppose now that 2) holds. Then 1) holds as well. Indeed, if u, v ∈ S

X
, u ⊥ v

and λ > 0 is fixed then
∥

∥

∥

∥

λ
λu+ v

‖λu+ v‖ +
u− λv

‖u− λv‖

∥

∥

∥

∥

=
λ2 + 1

‖λu+ v‖ =
∥

∥

∥

∥

λu + v

‖λu+ v‖ − λ
u− λv

‖u− λv‖

∥

∥

∥

∥

.

From (2) we have
λu+ v

‖λu+ v‖ ⊥ u− λv

‖u− λv‖ ,

which yields (λu + v) ⊥ (u− λv).
Observe now that 2) implies the symmetry of orthogonality. Indeed, if u, v ∈

S
X
and λ > 0 then from 2) and (2) one obtains:

u ⊥ v ⇔ u ⊥ −v ⇔ ‖λu− v‖ = ‖u+ λv‖ ⇔

⇔ ‖λv + u‖ = ‖v − λu‖ ⇔ v ⊥ u.

Moreover, since X is strictly convex, it follows that X is also smooth (see [3,
p. 78]).
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In order to prove 3)⇒ 4), it is sufficient to consider the case of two-dimensional
spaces, i.e. X may be considered R

2 with the norm ‖ · ‖. It follows that S
X
is a

rectifiable simple closed Jordan curve. Denoting

Sλ = {λu+ v : u, v ∈ S
X
, u ⊥ v},

it follows that Sλ is also a closed rectifiable Jordan curve. A parametrization
of Sλ may be given as in J. Joly [12, p. 304]. More precisely, let u = u(θ) =
(u1(θ), u2(θ)), θ ∈ [0, 2π) be the parametrization of S

X
in a rectangular system

of axes with u(0) ≺ u(θ) ≺ −u(0), for all θ ∈ [0, π). Now, consider the vectors
u, v ∈ S

X
, u ⊥ v such that u ≺ v ≺ −u. We have

u = u(θ(σ)) = (u1(θ(σ)), u2(θ(σ))),

v = v(ν(σ)) = (v1(ν(σ)), v2(ν(σ))),

where θ, ν : [0, 4π) → [0, 2π), are continuous increasing and surjective functions
and u1, u2, v1, v2 are continuous functions with bounded variation. Moreover,
σ = θ(σ) + ν(σ) and the decomposition is unique. Then Sλ can be rewritten

Sλ = {λu(θ(σ)) + v(ν(σ)) : σ ∈ [0, 4π)}.

Let A be the area of the unit ball of X and let Aλ be the area enclosed by Sλ.
Then with a similar computation as in [12], we have:

(3) Aλ = λ
2
∫

S
X

u1 du2 +

∫

S
X

v1 dv2 = (λ
2 + 1)A.

Now, from 3) and the continuity of the functions u1, u2, v1, v2, θ and ν we have:

‖λu+ v‖ ≥
√

1 + λ2,

for all u, v ∈ S
X
, u ⊥ v proving that 3) ⇒ 4). Analogously 4) ⇒ 3) and finally

we have 3) ⇔ 4) ⇔ 5).
We shall show that 2)⇒ 5). Since the Birkhoff orthogonality inX is symmetric,

as it is well known, dim (X) ≥ 3 implies that X is an i.p.s. ([11], [3, p. 143]), and in
this case the result follows. Suppose X is two-dimensional and for fixed u∗, v∗ ∈
S

X
, u∗ ⊥ v∗, consider the (u∗, v∗)-coordinate system of X . Let u, v ∈ S

X
, u ⊥ v

be given. Then the area Aλu+v,u−λv can be computed by Aλu+v,u−λv = |∆|·Au,v,
where

∆ =

∣

∣

∣

∣

∣

∣

λ 1 1
1 −λ 1
0 0 1

∣

∣

∣

∣

∣

∣

= −λ2 − 1.
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Now, from Lemma B, Aλu+v,u−λv = λ2 + 1 in the (u∗, v∗)-coordinate system.
Since by 2) ⇔ 1), λu+ v ⊥ u− λv, we have

A(λu+v)/‖λu+v‖, (u−λv)/‖u−λv‖ = 1

=
Aλu+v,u−λv

‖λu+ v‖ · ‖u− λv‖ =
λ2 + 1

‖λu+ v‖ · ‖u− λv‖ ,

and again by 2) ‖λu + v‖ = ‖u − λv‖ =
√
λ2 + 1, ∀u, v ∈ S

X
, u ⊥ v. From

u ⊥ v ⇔ u ⊥ −v we obtain the desired result.
Now, by the quoted result in [6], we have 5) ⇒ 6). In fact in [6] it was proved

that 5) implies the symmetry of Birkhoff orthogonality and that the Birkhoff

orthogonality ⊥ implies the area orthogonality ⊥A. By [15] it follows that X is
an i.p.s. Since the implications 6) ⇒ 5) and 5) ⇒ 2) are trivial the theorem is
completely proved. �

4. The rectangular modulus of a normed space

For the normed space X the rectangular constant µ(X) was defined in [12] by

µ(X) = sup{µ[x, y] : x, y ∈ X \ {0}, x ⊥ y},

where

µ[x, y] = sup
s∈R

‖x‖+ ‖sy‖
‖x+ sy‖ , ∀x, y ∈ X \ {0}, x ⊥ y.

Since x ⊥ y ⇔ x ⊥ −y we easily deduce that

µ(X) = sup







1 + |s| ‖y‖/‖x‖
∥

∥

∥

x
‖x‖

± |s| ‖y‖/‖x‖ · y
‖y‖

∥

∥

∥

: s 6= 0, x, y ∈ X \ {0}, x ⊥ y







= sup

{

1 + t

‖u+ tv‖ : t > 0, u, v ∈ S
X
, u ⊥ v

}

.

We define the rectangular modulus of X as the function µ
X
: (0,∞)→ R

µ
X
(λ) = sup{max{ϕλ,u,v(t), λϕ1/λ,u,v(t)} : t > 0, u, v ∈ S

X
, u ⊥ v}

= sup

{

max

{

λ2 + t

‖λu+ tv‖ ,
1 + λ2t

‖u+ λtv‖

}

: t > 0, u, v ∈ S
X
, u ⊥ v

}

,

for all λ > 0. From the definition it is clear that µ
X
(1) = µ(X). As it is well

known the modulus of convexity of X ([7]), denoted by δ
X
and the modulus of

smoothness of X ([13]), denoted by ρ
X
satisfy Nordlander’s type inequalities, i.e.

δ
X
(ε) ≤ δ

H
(ε) = 1−

√

1− ε2/4, ∀ ε ∈ [0, 2]



114 I. Şerb

and
ρ

X
(τ) ≥ ρ

H
(τ) =

√

τ2 + 1− 1, ∀ τ ≥ 0,
where H is an i.p.s.

G. Nordlander [14] has conjectured that if δ
X
(ε) = 1 −

√

1− ε2/4 for a fixed
ε ∈ (0, 2) then X is an i.p.s. J. Alonso and C. Benitez [2] proved that this assertion
is true exactly for ε ∈ (0, 2)\D where D = {2 cos(kπ/(2n)) : k = 1, . . . , n−1;n =
2, 3, . . . }. Analogous results were obtained for the modulus of smoothness and
for other known moduli. Generally, if γ

X
denotes such a modulus and t is fixed

then from γ
X
(t) = γ

H
(t) it follows that X is an i.p.s. except for a countable set

of points t in the domain of γ
X
([21]).

The modulus of squareness ξ
X
studied in [6], [16], [17], [18] satisfies also the

inequality

ξ
X
(β) ≥ ξ

H
(β) = 1/

√

1− β2, ∀β ∈ [0, 1).

Moreover, if ξ
X
(β) = 1/

√

1− β2, for a fixed β ∈ (0, 1) then X is an i.p.s.
For the rectangular modulus we have:

Theorem 3. (a) If H is an i.p.s. then µ
H
(λ) =

√
1 + λ2, ∀λ > 0.

(b) If X is a normed space and H is an i.p.s. then

µ
X
(λ) ≥ µ

H
(λ), ∀λ > 0.

(c) If µ
X
(λ) =

√
1 + λ2 for a fixed λ > 0 then X is an i.p.s.

Proof: (a) µ
H
(λ) =

= sup

{

max

{

λ2 + t

‖λu+ tv‖ ,
1 + λ2t

‖u+ λtv‖

}

: t > 0, u, v ∈ S
H
, u ⊥ v

}

= sup

{

max

{

λ2 + t√
λ2 + t2

,
1 + λ2t√
1 + λ2t2

}

: t > 0

}

.

It is easily seen that the function fλ : (0,∞)→ R

fλ(t) =
λ2 + t√
λ2 + t2

− 1 + λ2t√
1 + λ2t2

, t > 0

satisfies the condition signf
′

λ(t) = sign(1 − λ) and from fλ(1) = 0, ∀λ > 0 we
deduce that µ

H
(λ) =

√
1 + λ2, ∀λ > 0.

(b) Let λ ∈ (0,∞) be a fixed number. We can suppose that X is a two-
dimensional normed space. By using formula (3) we conclude that

inf {‖λu+ v‖ : u, v ∈ S
X
, u ⊥ v} ≤

√

λ2 + 1
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and this implies

µ
X
(λ) ≥ sup

{

λ2 + t

‖λu+ tv‖ : t > 0, u, v ∈ S
X
, u ⊥ v

}

≥ sup
{

λ2 + 1

‖λu+ v‖ : u, v ∈ S
X
, u ⊥ v

}

=
λ2 + 1

inf{‖λu+ v‖ : u, v ∈ S
X
, u ⊥ v} ≥ λ2 + 1√

λ2 + 1
=

√

λ2 + 1.

In particular µ(X) = µX (1) ≥
√
2, as in [12].

µ
X
(λ) =

√

1 + λ2(c)

≥ sup
{

max

{

λ2 + 1

‖λu+ v‖ ,
1 + λ2

‖u+ λv‖

}

: u, v ∈ S
X
, u ⊥ v

}

≥ λ2 + 1

‖λu+ v‖ , ∀u, v ∈ S
X
, u ⊥ v,

λ > 0 being fixed. Hence ‖λu+v‖ ≥
√
λ2 + 1, ∀u, v ∈ S

X
, u ⊥ v. By Theorem 2,

4) ⇔ 6), we have that X is an i.p.s. �

Remark. Let us define the *-rectangular modulus by the simpler formula

µ∗
X
(λ) = sup{ϕλ,u,v(t) : t > 0, u, v ∈ S

X
, u ⊥ v}

= sup

{

λ2 + t

‖λu+ tv‖ : t > 0, u, v ∈ S
X
, u ⊥ v

}

, ∀λ > 0.

It is clear (with similar proofs) that:

(a′) µ∗
H
(λ) =

√
λ2 + 1, ∀λ > 0, H being an i.p.s.;

(b′) for each normed space X , µ∗
X
(λ) ≥ µ∗

H
(λ) =

√
λ2 + 1, ∀λ > 0;

(c′) if µ∗X (λ) =
√
1 + λ2, for a fixed λ > 0 then X is an i.p.s.

Some properties of the rectangular modulus are collected in

Theorem 4. (a) For each λ > 0

µ
X
(λ) = max{µ∗

X
(λ), λµ∗

X
(1/λ)} and µ

X
(λ) = λµ

X
(1/λ).

(b) The rectangular modulus (*-rectangular modulus) is an increasing and
convex function on (0,∞).

(c) We have

(4) µ
X
(λ) ≤ max{λ+ 2, 1 + 2λ}, ∀λ > 0.
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Proof: (a) The first part of (a) easily follows from the definitions of µ
X
and µ∗

X
.

The second part of (a) follows from the first part.

(b) The modulus µ∗
X
can be rewritten as

µ∗
X
(λ) = sup

{

λ+ t/λ

‖u+ (t/λ)v‖ : t > 0, u, v ∈ S
X
, u ⊥ v

}

= sup

{

λ+ t′

‖u+ t′v‖ : t
′ > 0, u, v ∈ S

X
, u ⊥ v

}

, λ > 0.

Consequently, µ∗
X
and, by analogy, µ

X
are increasing and convex functions as

suprema of families of increasing and convex functions of variable λ.

(c) For t ≤ 2, by u ⊥ v we have:

λ+ t

‖u+ tv‖ ≤ λ+ 2

‖u‖ = λ+ 2, ∀λ > 0.

For t > 2, by the triangle inequality one obtains

λ+ t

‖u+ tv‖ ≤ λ+ t

t− 1 < λ+ 2, ∀λ > 0.

It follows that µ∗
X
(λ) ≤ λ+ 2, ∀λ > 0,

λµ∗
X
(1/λ) ≤ λ(1/λ + 2) = 1 + 2λ, ∀λ > 0,

and
µ

X
(λ) ≤ max{λ+ 2, 1 + 2λ}.

In particular, the rectangular constant µ(X) satisfies the inequality:
µ(X) = µ

X
(1) ≤ 3 ([12]). �

Remark. The inequality (4) is sharp. Indeed, let X be the two-dimensional
l1-space and let u1 = (1, 0) and v1 = (−1/2, 1/2) be in SX

. We have

‖u1 + tv1‖ = |1− t

2
|+ | t
2
| ≥ 1 = ‖u1‖, ∀ t ∈ R,

implying u1 ⊥ v1. It follows that

µ∗
X
(λ) = sup

{

λ+ t

‖u+ tv‖ : t > 0, u, v ∈ S
X
, u ⊥ v

}

≥ λ+ 2

‖u1 + 2v1‖
=

λ+ 2

|1− 1|+ 1 = λ+ 2, ∀λ > 0.

Then µ∗
X
(λ) = λ + 2, ∀λ > 0, and consequently µ

X
(λ) = max{λ + 2, 1 + 2λ},

∀λ > 0.
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Now, by Theorem 4 (b), (c) and Theorem 3 (b) it follows that there exists

µ
X
(0+) := lim

λց0
µ

X
(λ) ∈ [1, 2].

The extension (by continuity) of µ
X
in origin (denoted by µ

X
) remains an in-

creasing and convex function on [0,∞). The function

λ→ µ
X
(λ) − µ

X
(0+), ∀λ ≥ 0

is convex, zero in origin and, consequently, the function

λ→ µ
X
(λ)− µ

X
(0+)

λ
, λ > 0,

is increasing on (0,∞).
By Theorem 4. (b), µ

X
is locally Lipschitz on (0,∞). Moreover it is Lipschitz

continuous as it will be shown by the following theorem:

Theorem 5. The rectangular modulus verifies the inequality

µ
X
(λ2)− µ

X
(λ1) ≤ µ

X
(0+)(λ2 − λ1) ≤ 2(λ2 − λ1),

for all λ1, λ2 > 0, λ1 ≤ λ2, and the absolute constant 2 is the best possible.

Proof: We have

µ
X
(λ) − µ

X
(0+) = λµ

X
(
1

λ
)− µ

X
(0+)

=
µ

X
(1/λ)− µ

X
(0+)

1/λ
+ µ

X
(0+)(λ− 1),

and

µ
X
(λ2)− µ

X
(λ1) = µX

(λ2)− µ
X
(0+)− (µ

X
(λ1)− µ

X
(0+))

=
µ

X
(1/λ2)− µ

X
(0+)

1/λ2
− µ

X
(1/λ1)− µ

X
(0+)

1/λ1
+ µ

X
(0+)(λ2 − λ1)

≤ µ
X
(0+)(λ2 − λ1) ≤ 2(λ2 − λ1).

The constant 2 is attained for instance when X is the two-dimensional l1-space.
�

In the following, we are interested to know the properties of the constant
µ

X
(0+) ∈ [1, 2]. At the beginning let us recall some notions:
The radial projection constant ([20]) of the space X is the best Lipschitz con-

stant k(X) for the radial projection r : X → B
X
defined by

r(x) =

{

x, for ‖x‖ ≤ 1
x/‖x‖, for ‖x‖ > 1.
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One of the representations of k(X) is given in [4, p. 1075] by:

k(X) = sup

{

1

‖tu+ v‖ : t ∈ R, v ∈ S
X
, u ⊥ v

}

.

The radial projection constant is equal to other four constants of X , denoted
byMPB(X),MPB′(X),MPB(X), β(X) respectively. For more information on
this subject see [4], [5] and [8]–[10].
Recall that by Theorem 3, for a fixed λ > 0 and for a normed space X , with

dim (X) ≥ 2 we have

µ
X
(λ) =

√

1 + λ2 ⇔ X is an i.p.s.

In the limit case when λ ց 0 we are interested to see the relevance of the
equality µ

X
(0+) = 1 to the geometry of X .

Theorem 6. (a) For any normed space X we have:

µ
X
(0+) = k(X).

(b) The equality µ
X
(0+) = 1 is equivalent to the symmetry of Birkhoff or-

thogonality.

Proof: (a) A continuity argument and the equivalence x ⊥ y ⇔ −x ⊥ y show
that

µ∗
X
(0+) = sup

{

t

‖u+ tv‖ : t > 0, u, v ∈ S
X
, u ⊥ v

}

= sup

{

1

‖t′u+ v‖ : t
′ ∈ R, v ∈ S

X
, u ⊥ v

}

= k(X).

But from λµ∗
X
(1/λ) ≤ 1 + 2λ, ∀λ > 0 it follows that:

µ∗
X
(0+) ≤ µ

X
(0+) = max

{

µ∗
X
(0+), lim

λց0
λµ∗

X
(1/λ)

}

≤ max{µ∗
X
(0+), 1} = µ∗

X
(0+) = k(X).

(b) The equality µ
X
(0+) = 1 is equivalent to BMP (X) = 1, which in its turn

is equivalent to the symmetry of Birkhoff orthogonality ([19]). �

Remarks. If dim (X) ≥ 3 then µ
X
(0+) = 1 implies that X is an i.p.s. On the

other hand, by a result of M.A. Smith [19], 1 ≤MPB(X) < 2, ⇔ X is uniformly
non-square. It follows that X is uniformly non-square ⇔ 1 ≤ µ

X
(0+) < 2, and

we expect that the rectangular modulus characterizes new geometric properties
of X . Such geometric considerations will be given elsewhere.
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