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On Asplund functions

Wee-Kee Tang

Abstract. A class of convex functions where the sets of subdifferentials behave like the
unit ball of the dual space of an Asplund space is found. These functions, which we
called Asplund functions also possess some stability properties. We also give a sufficient
condition for a function to be an Asplund function in terms of the upper-semicontinuity
of the subdifferential map.

Keywords: Fréchet differentiability, convex functions, Asplund spaces

Classification: 46B03

Introduction

It is known that a Banach space is an Asplund space if and only if BX∗ is dentable
if and only if (BX∗ , w∗) is fragmentable by norm, and if and only if every separable
subspace Y of X has separable dual Y ∗. It is also known that being an Asplund
space is a three-space property.
The purpose of this note is to present a functional version of this theory. We

study these equivalent conditions in a certain class of functions which may be
defined on a non-Asplund space. For instance, suppose g is a continuous convex
function defined on an Asplund space Y and T : X → Y is a bounded linear map.
Then regardless of X , the function defined by f = g ◦ T is a generically Fréchet
differentiable convex function. The function f and all convex functions bounded
above by f belong to the class which we want to consider. These functions exhibit
properties similar to those of continuous convex functions defined on an Asplund
space.
In Section 1, we present a theorem that consists of several equivalent condi-

tions that are well known in the Asplund space version. We call a continuous
convex function an Asplund function if it satisfies any of these conditions. As a
consequence, a Banach space is an Asplund space if and only if its norm is an
Asplund function.
In Section 2, we show that the property of being an Asplund function is stable

under restriction and taking quotient to a subspace. However, it does not enjoy
a three-space like property. Nevertheless, a condition of a subspace is given to
ensure a function is Asplund whenever its restriction to that subspace is Asplund.
Further, we modify the proof of a theorem in [C-P] to yield a sufficient condition
for a function to be Asplund.
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Some related problems were studied in [T1] and [T2]. In contrast to these
two articles, we do not attempt to establish any approximation theorem in this
paper, for we know that Asplund spaces in general may not even admit a Gâteaux
differentiable norm.

Notation and preliminaries

We will use the standard notation in the theory of convex functions on a Banach
space and Banach space theory. Given a continuous convex function f on a
Banach space X , the subdifferential of f at a point x is defined by ∂f(x) =
{x∗ ∈ X∗ : x∗(y − x) ≤ f(y) − f(x) for all y ∈ X}. The Legendre-Fenchel
conjugate f∗ of f is defined by f∗(x∗) = sup{(x∗, x) − f(x) : x ∈ X} for all
x ∈ X . The function f∗ is w∗-lower semicontinuous, i.e., {x∗ ∈ X∗ : f∗(x∗) ≤ r}
is w∗-closed for all r ∈ R. A continuous convex function is said to be generically
Fréchet differentiable if it is Fréchet differentiable on a dense Gδ set. Given a
bounded convex set A ⊂ X∗, the indicator function δA(·) is a convex function
that takes values zero on A and +∞ elsewhere. The function δA(·) is w

∗-lower
semicontinuous if and only if A is w∗-closed. A slice of A ⊂ X∗ is a set of the
form S(A, x∗∗, α) = {x∗ ∈ X∗ : x∗∗(x∗) > supx∗∗(A) − α}, for some x∗∗ ∈ X∗∗

and α > 0. If x∗∗ ∈ X , then S(A, x∗∗, α) is called a w∗-slice. We say that a
set F is dentable (w∗-dentable) if for every ε > 0 every bounded subset of F
has slices (w∗-slices) of diameter less than ε. Let (Z, τ) be a topological space
and ρ be a metric on Z that is not necessarily related to the topology of Z.
The space Z is said to be fragmentable by ρ if every non-empty subset of Z
admits relatively open sets of arbitrarily small ρ-diameter. We refer the readers to
[J-N-R] for the theory of fragmentability. An infinite tree in a set A ⊂ X is a

sequence {xn} in A such that xn =
1
2 (x2n + x2n+1) for each n. An infinite tree

such that ‖x2n−x2n+1‖ > 2ε for all n is called an infinite ε-tree. Unless otherwise
stated, all topological notions in the dual space refer to the norm topology. We
refer to [Ph] and [D-G-Z] for all other unexplained notions and results. We also
refer the reader to [Y] for an excellent introduction to the theory of Asplund
spaces.

1. Asplund functions

In this section, we establish using known techniques some equivalent definitions
of an Asplund function. These properties will be used in the subsequent sections.
We find the following fact useful:

Lemma 1. If f is a continuous convex function defined on X , then we have the

following inclusions: ∂f(X) ⊂ dom f∗ ⊂ ∂f(X)
‖·‖
.

The first inclusion is clear. For the second inclusion, we apply Ekeland’s vari-
ational principle as in [F] (see also the proof of (iii) ⇒ (i) in [T1, Theorem 1]).
The main result in this section is the following:
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Theorem 2. Let f be a continuous convex function defined on a Banach spaceX .
Then the following assertions are equivalent.

(1) If h is a continuous convex function on X such that h ≤ f on X , then h
is generically Fréchet differentiable on X .

(2) For each positive integer n, every bounded subset of (Cn, w
∗), where

Cn = {x∗ ∈ X∗ : f∗(x∗) ≤ n}, is fragmentable by the norm.
(3) For each separable subspace Y of X , the set dom (f↾Y )

∗ is separable.

(4a) Every compact subset of (dom f∗, w∗) is fragmentable by the norm.
(4b) Every compact subset of (dom f∗, w∗) is w∗-dentable.

(5) For every ε > 0, no w∗-compact subset of dom f∗ contains an ε-tree.
(6) Every compact subset of (dom f∗, w∗) is dentable.

If moreover, f is bounded on bounded sets, then the above conditions are also
equivalent to:

(7) let Y be a separable subspace of X . If h is a continuous convex function
on X such that h ≤ f then there is a selector s for ∂h↾Y such that

s(Y ) = {s(y) : y ∈ Y } is separable.

Proof: (1) ⇒ (2). Indeed, for otherwise, there exists a bounded w∗-closed
subset A of Cn that is not fragmentable by the norm. The function h(·) =
((δA(·) + n)

∗)↾X is bounded above by f and it can be checked that h is nowhere
Fréchet differentiable (cf., for instance, [Ph, 2.18]).

(2) ⇒ (3). Let Y be a separable subspace of X . By Lemma 1, to show the
separability of dom(f↾Y )

∗, it suffices to establish the separability of ∂f↾Y (Y ). Let
R : X∗ → Y ∗ be the restriction map. The map R is w∗ to w∗ continuous. By
Hahn-Banach theorem, we have

(1) R∂f(y) = ∂f↾Y (y) for all y ∈ Y.

For each positive integer n, we define the sets CY
n and Hn as follows:

CY
n =

{

y∗ ∈ Y ∗ : f∗↾Y (y
∗) ≤ n

}

, and

Hn = ∂f↾Y (Y ) ∩ C
Y
n .

We note that

(2)

∞
⋃

n=1

Hn =

∞
⋃

n=1

(

∂f↾Y (Y ) ∩ C
Y
n

)

= ∂f↾Y (Y ) ∩
(

∞
⋃

n=1

CY
n

)

= ∂f↾Y (Y ) ∩ dom f∗↾Y = ∂f↾Y (Y ).

We claim that Hn ⊂ R(Cn) for each n ∈ N. Indeed, let y∗ ∈ Hn, then
y∗ ∈ ∂f↾Y (y) for some y ∈ Y . According to (1), we can find a ŷ∗ ∈ ∂f(y) such
that R(ŷ∗) = y∗.
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We have

f∗(ŷ∗) = (ŷ∗, y)− f(y)

= (y∗, y)− f↾Y (y)

= f∗↾Y (y
∗) ≤ n.

Therefore ŷ∗ ∈ Cn, and hence y
∗ = R(ŷ∗) ∈ R(Cn). From the claim and (2)

we have ∂f↾Y (Y ) ⊂
⋃∞

n=1R(Cn). Suppose ∂f↾Y (Y ) is not separable, then there
exists an integer N such that R(CN ) is not separable. Therefore there exists
a k ∈ N such that R(CN ∩ kBX∗) is not separable. For simplicity, we write
C = CN ∩ kBX∗ .
Note that R(C) is a w∗-compact subset of Y ∗. Since Y is separable and R(C)

is a nonseparable subset of Y ∗, by the arguments as in [Ph, 2.19], we obtain an
uncountable set A ⊂ R(C) and ε > 0 such that any w∗-open subset of A contains
two distinct points x∗ and y∗ such that ‖x∗ − y∗‖ > ε.
Now we follow the proof of [Ph, 5.4]; let A1 ⊂ C be a minimal w∗-compact set

such that R(A1) = A
w∗

. If U is a non-empty relatively w∗-open subset of A1,
then A1\U is w

∗-compact and A2 = R(A1\U) is a proper w
∗-compact subset of

A
w∗

(since A1 is minimal). Thus A\A2 is a non-empty w
∗-open subset of A and

it contains two distinct points which are at least ε far apart. Therefore there exist
x∗ and y∗ in U such that ‖x∗ − y∗‖ > ε, contradicting the assumption that C is
norm fragmentable.

(3) ⇒ (1). According to the proof of [Ph, Theorem 2.11], f↾Y is generically
differentiable for each separable subspace Y ⊂ X . By the separable reduction
theorem in [Gi] (see also [Pr]), f is generically Fréchet differentiable.

(2) ⇒ (4a). We first note that (dom f∗, w∗) is a countable union of norm
fragmentable (compact) subsets. Indeed dom f∗ =

⋃

n,k∈N Cn,k, where Cn,k =

Cn∩kBX∗ . Each Cn,k is norm fragmentable by assumption. Hence (dom f∗, w∗)
is σ-fragmentable by the norm. Consequently by [J-N-R, Theorem 3.1], every
compact subset is norm fragmentable.

(4b) ⇒ (2). Given a bounded subset B of Cn, there exists a k ∈ N such
that B ⊂ Cn ∩ kBX∗ . Since Cn ∩ kBX∗ is w∗-compact, B admits slices of small
diameter.

(4a)⇔ (4b). It is clear that (4b)⇒ (4a). The proof of (4a)⇒ (4b) is identical
to that of [N-Ph, Lemma 3].

(4b) ⇒ (6). This is clear as every w
∗-slice is a (weak) slice.

(6) ⇒ (5). From the definition of a tree, every slice of an infinite ε-tree has
diameter at least ε.

(5) ⇒ (4a). It is enough to follow [Du-N] or the proof of [Ph, 5.6].

Clearly (3) ⇒ (7).
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Finally, suppose f is bounded on bounded sets. We shall show (7) ⇒ (3). Let
Y be a given separable subspace of X . For each n define a convex function on Y ∗

by

gn (y
∗) =

{

(

f↾Y
)∗
(y∗) if y∗ ∈ CY

n =
{

z∗ ∈ dom
(

f↾Y
)∗

|
(

f↾Y
)∗
(z∗) ≤ n

}

∞ otherwise.

Then gn is a w
∗-lower semicontinuous function such that gn ≥

(

f↾Y
)∗
and

dom gn = CY
n . Note that

⋃∞
n=1C

Y
n = dom

(

f↾Y
)∗
, hence it suffices to show

that CY
n is separable for all n. Let fn be a continuous convex function on Y such

that (fn)
∗ = gn, then fn ≤ f↾Y . The function fn may be extended to a convex

function on X that is bounded above by f . (For instance, the convex hull of
the epigraphs of fn and f is the epigraph of a required extension of fn.) By the
hypothesis, there is a selector s of ∂fn such that s(Y ) is separable. Put B = s(Y ).
Without loss of generality, assume that f(0) < 0. Therefore gn(y

∗) > 0 for all

y∗ ∈ Y ∗. Let γ = inf {gn(y∗)|y∗ ∈ B} ≥ 0. To establish the separability of CY
n ,

it is sufficient to show that CY
n ⊂ conv‖·‖B. Suppose this is not the case, let

y∗0 ∈ CY
n \ conv‖·‖B. By the separation theorem, there exists z ∈ Y ∗∗, α, β ∈ R

such that

z (y∗0) > β > α > z (y∗)

for all y∗ ∈ B. By scaling z, α and β if necessarily, we may assume that β−α
2 >

gn(y
∗
0)− γ. Let E =

{

y ∈ Y : ‖y‖ ≤ ‖z‖ , (y, y∗0) > β
}

.

Let
{

y∗k
}

k≥1 be a countable dense subset of B. Now, for every positive integer

n let yn ∈ E be such that

|(z − yn, y
∗
k)| <

1

n
for k = 1, 2, . . . , n.

Then for each k we have

lim
n→∞

(z − yn, y
∗
k) = 0.

As {yn} is bounded, limn→∞(z − yn, y
∗) = 0 for each y∗ ∈ B. For each y ∈ Y ,

define a function hy on B by

hy (y
∗) = (y∗, y)− gn (y

∗) .

For each k ∈ N, let hk = hyk
. By the boundedness of the function f , the sequence

{hk} is uniformly bounded on B.

Note that for any y =
∞
∑

k=1
λkyk, where λk ≥ 0 and

∞
∑

k=1
λk = 1, we have



126 Wee-Kee Tang

s(y) ∈ B and

∞
∑

k=1

λkhk (s (y)) =

∞
∑

k=1

λk {(s (y) , yk)− gn (s (y))}

= hy (s (y))

= fn (y)

= sup {(y∗, y)− gn (y
∗) : y∗ ∈ dom gn}

= sup

{(

y∗,
∞
∑

k=1

λkyk

)

− gn (y
∗) : y∗ ∈ CY

n

}

= sup

{

∞
∑

k=1

λkhk (y
∗) : y∗ ∈ CY

n

}

.

Since z (y∗) < α, we have lim supk hk(y
∗) ≤ α − gn(y

∗) for all y∗ ∈ B. Conse-
quently

sup

{

lim sup
k

hk (y
∗) : y∗ ∈ B

}

≤ α− γ.

But by Simons’ inequality ([S]), there is a function h,

h =
N
∑

k=1

ρkhk,

where ρk ≥ 0 and
∑N

k=1 ρk = 1, such that

sup
{

h (y∗) : y∗ ∈ CY
n

}

≤
α+ β

2
− γ.

On the other hand,

h (y∗0) =

N
∑

k=1

ρkhk (y
∗
0)

=

(

y∗0 ,

N
∑

k=1

ρkyk

)

− gn (y
∗
0) > β − gn (y

∗
0)

and hence β − gn(y
∗
0) <

α+β
2 − γ. Therefore β−α

2 < gn(y
∗
0) − γ and this contra-

diction shows that (7) implies (3).
�

Definition 3. Let f be a convex function on a Banach space X , we say that f
is an Asplund function if f satisfies any of conditions (1) to (6).
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Corollary 4. If f is an Asplund function, then every w∗-compact subset of

dom f∗ is w∗-sequentially compact.

Proof: Let K be a w∗-compact subset of dom f∗. By Theorem 2, K is w∗-
dentable, therefore by [St, 3.4], K is w∗-sequentially compact.

�

The following theorem is a consequence of Theorem 2.

Theorem 5. For a Banach space (X, ‖ · ‖), the following are equivalent:

(i) X is an Asplund space;
(ii) every continuous convex function on X is an Asplund function;
(iii) ‖ · ‖ is an Asplund function.

Remark 1. In [Gi-Sc], the authors gave a sufficient condition for a continuous
convex function defined on a open subset A of a Banach space to be generically
Fréchet differentiable. They showed that such a function φ is generically Fréchet
differentiable if for every separable subspace Y where A∩ Y 6= ∅, ∂φ↾Y (A∩ Y ) is
separable. This follows from our Theorem 2 when A = X .

2. Stability of Asplund functions

Definition 6. Let f be a continuous convex function defined on a Banach space
X and let M be a subspace of X . The quotient function f̃M induced by f is a
continuous convex function on the quotient space X/M defined by

f̃M (x̂) = inf{f(x+m) : m ∈M},

where x̂ denotes the coset x +M . If f is a norm, f̃M is precisely the quotient
norm.

Given a subspace M of a Banach space X , the dual space of X/M is isometri-

cally isomorphic to M⊥, the isomorphism is given by Φ :M⊥ → (X/M)∗, where
Φ(x∗)(x̂) = x∗(x), x∗ ∈ M⊥, x ∈ X . We shall see in the following lemma that
the above identification also behaves well in a non-linear situation.

Lemma 7. Under the above notation, we have Φ(dom f∗ ∩M⊥) = dom (f̃M )
∗.

Proof: Let x∗ ∈ dom f∗ ∩M⊥ and let ϕ = Φ(x∗). We need to verify that ϕ

∈ dom (f̃M )
∗. To this end, let x̂ ∈ (X/M) and let ε > 0. Pick an m ∈ M such

that f̃M (x̂) ≥ f(x+m)− ε. Then

ϕ(x̂)− f̃M (x̂) ≤ ϕ(x̂)− f(x+m) + ε

= Φx∗(x̂)− f(x+m) + ε

= x∗(x+m)− f(x+m) + ε ≤ f∗(x∗) + ε.
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Therefore sup{ϕ(x̂) − f̃M (x̂) : x̂ ∈ (X/M)} ≤ f∗(x∗), which means that ϕ ∈

dom (f̃M )
∗. To see the reverse inclusion, let ψ ∈ dom (f̃M )

∗. Let y∗ ∈ X∗ be such

that Φ(y∗) = ψ. Then clearly y∗ ∈M⊥. Now, given any x ∈ X ,

y∗(x)− f(x) ≤ y∗ (x)− f̃M (x̂)

= ψ(x̂)− f̃M (x̂) ≤ (f̃M )
∗(ψ).

�

Proposition 8. Under the above notation, suppose f is an Asplund function,
then so is f̃M .

Proof: Let K be a w∗-compact subset of dom (f̃M )
∗. Since Φ is w∗ to w∗

continuous, Φ−1(K) is a w∗-compact subset of dom f∗, and thus it is norm frag-
mentable by Theorem 2. Therefore K is also norm fragmentable, as Φ is an
isometric isomorphism. �

Proposition 9. Suppose f is an Asplund function, then so is f↾M .

Proof: Note that, if Y ⊂M ⊂ X , then (f↾M )↾Y = f↾Y ; so Theorem 2 applies.
�

At this point, one who is familiar with the theory of Asplund spaces may
conjecture that an Asplund function admits a three-space like property, i.e., if
f↾M and f̃M are both Asplund functions, then so is the function f . However, we
shall see in the following example that such a trivial generalization does not hold.

Example 10. Let X = ℓ1 ⊕ c0, M = c0 and ‖ · ‖ be a nowhere Fréchet differ-

entiable norm on ℓ1. Let T : c0 → ℓ1 be defined by T (xi) =
(

xi

2i

)

, then T (c0) is

norm dense in ℓ1.

Now we define a real valued function on X as follows:

f(x, y) = ‖x− Ty‖ for x ∈ ℓ1 and y ∈ c0.

It is easy to see that f is a continuous convex function and it is nowhere Fréchet
differentiable (and thus not an Asplund function). The restriction f↾M = f↾c0 is

an Asplund function, as c0 is an Asplund space. The quotient function f̃M is the

null function. Indeed, let (̂x, y) ∈ X/M , then

f̃M (̂x, y) = inf{f(x, y +m) : m ∈ c0}

= inf{‖x− T (y +m)‖ : m ∈ c0}

= 0,

as T (c0) is dense in ℓ1. �

From the above example, we understand that a stricter condition must be
imposed upon the quotient function in order to obtain a three-space like property
for the Asplund functions.
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Proposition 11. Let f be a continuous convex function on a Banach space X
and M be a subspace of X . Suppose that X/M is an Asplund space and that

f↾M is an Asplund function, then f is an Asplund function.

Before we proceed on with the proof, we first establish the separable version
of the proposition.

Lemma 12. Let X be a separable Banach space, suppose that dom (f↾M )
∗ and

M⊥ are both separable, then dom f∗ is also separable. (Equivalently, if f↾M is

an Asplund function and (X/M)∗ is separable, then f is an Asplund function.)

Proof: Let R : X∗ → M∗ = (X∗/M⊥) be the restriction map. It is easy to
check that R∂f(M) = ∂f↾M (M). Let {x

∗
k : k ∈ N} be a countable set in ∂f(M)

such that {R(x∗k) : k ∈ N} is dense in ∂f↾M (M) (and thus dense in dom(f
∗
↾M )).

Let {m⊥
n : n ∈ N} be a countable dense set of M⊥.

Given x∗ ∈ dom f∗ and ε > 0, there is an R(x∗k) such that ‖R(x
∗)−R(x∗k)‖ <

ε/3. This means that there is anm⊥
k ∈M⊥ such that ‖x∗−x∗k+m

⊥
k ‖ < ε. Hence

dom f∗ lies in the closed linear span of {x∗k : k ∈ N} ∪ {m⊥
n : n ∈ N}. �

Proof of Proposition 11: Let S be a separable subspace of X . According to
Theorem 2, it suffices to show that dom (f↾S)

∗ is separable. To this end, we follow
the arguments from [Y] to obtain a separable subspace Z ofX that contains S with
the additional property thatM+Z is closed and Z/(Z∩M)=̃(M+Z)/M ⊂ X/M .

So Z/(Z ∩M) is also Asplund. Hence (Z/(Z ∩M))∗ = (Z ∩M)⊥ is separable.
Since Z ∩M is a subspace of M and f↾M is Asplund, f↾Z∩M is also Asplund.
Therefore by Lemma 12, f↾Z is an Asplund function. According to Proposition 9,
f↾S is also Asplund, as S is a subspace of Z. �

As noted in Section 1, a Banach space X is an Asplund space if and only if X
admits a norm that is an Asplund function. Hence a consequence of Proposition 11
is the following:

Corollary 13 ([N-P, Theorem 14]). Let X be a Banach space and Y be a sub-
space of X . If both X and X/Y are Asplund spaces, then so is X .

Definition 14 ([C-P], [Gi-Gr-Si]). Let f be a continuous convex function on X .
We say that f is quite smooth at x if for every weak neighbourhood W of 0 ∈
X∗, there exists a δ > 0 such that

∂f(y) ⊂ ∂f(x) +W

whenever y ∈ B(x, δ). We say that f is quite smooth on X if it is quite smooth
at each point of X .

Proposition 15. Let f be a convex function defined on a separable Banach
space X . Suppose that f is bounded on bounded sets of X . If every convex
continuous function h ≤ f is quite smooth, then dom f∗ is separable.

Proof: Our proof is a slight modification of the proof of [C-P, Theorem 1.2].
As in the proof of Theorem 2, it suffices to show that for each n, Cn = {x∗ :
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f∗(x∗) ≤ n} is separable. The function fn defined as in the proof of Theorem 2
[(7)⇒ (3)] is a continuous convex function on X that is bounded above by f and
dom f∗n = Cn. By our hypothesis, fn is quite smooth. For simplicity, we denote
fn by f .
According to Mazur’s theorem, there exists a countable dense set {xk} in X

such that f is Gâteaux differentiable at each xk. For each k ∈ N, we write
x∗k = f ′(xk) and F = {x∗k : k ∈ N}. To show that dom f∗ = Cn is separable,

it suffices to show that dom f∗ ⊂ conv‖·‖F . Suppose that this is not the case;

then there exists y∗0 ∈ dom f∗\conv‖·‖F . By the separation theorem, there exists
z∗∗ ∈ X∗∗ such that

z∗∗(y∗0) > β > α > sup{z∗∗(x∗) : x∗ ∈ F}

for some β > α. By scaling the functional z∗∗, α and β, we may assume that
β − α > f∗(y∗0) − γ + 1, where γ = inf{f∗(x∗) : x∗ ∈ dom f∗} > −∞. Let
E = {x ∈ X : ‖x‖ < ‖z∗∗‖, (y∗0 , x) > β}. As in the proof of Theorem 2 [(3)
⇒ (7)], we may construct a sequence {yn} in E such that

(3) yn(x
∗)→ z∗∗(x∗) as n→ ∞ for all x∗ ∈ F ∪ {y∗0}.

Note that {yn} as a subset of E is bounded. Now define a sequence of bounded
functions hn on dom f∗ by

hn(x
∗) = (yn, x

∗)− f∗(x∗).

We note that hn(x
∗) ≤ f(yn) for all x

∗ ∈ dom f∗ and for all n ∈ N. Since f is
bounded on bounded sets and {yn : n ∈ N} is norm bounded, the sequence {hn}
is uniformly bounded on dom f∗.
Let ε = 1

2‖z∗∗‖
and let Bε denote the set conv(F + εBX∗). We claim that

Bε ∩ ∂f(x) 6= ∅ for each x ∈ X . Assume on the contrary that there is some
x0 ∈ X such that the two convex sets Bε and ∂f(x0) are disjoint. As Bε has a
non-empty interior, we apply the separation theorem to find an x∗∗ ∈ SX∗∗ such
that

sup
b∈Bε

x∗∗(b) ≤ inf
x∗∈∂f(x0)

x∗∗(x∗).

Hence for each k ∈ N, we have

x∗∗(x∗k) + ε ≤ inf
x∗∈∂f(x0)

x∗∗(x∗).

Consequently,

(4) x∗∗(x∗ − x∗k) ≥ ε for each x∗ ∈ ∂f(x0) and each k ∈ N.

Now we use the fact that f is quite smooth at x0 to obtain a δ > 0 such
that ∂f(y) ⊂ ∂f(x0) + W whenever ‖y − x0‖ < δ, where W = {x∗ ∈ X∗ :
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|x∗∗(x∗)| < ε}. According to (4), ∂f(xk) * ∂f(x0) +W for all k ∈ N. Therefore
||xk −x0|| > δ for each k ∈ N, contradicting the density of {xk : k ∈ N} and hence
our claim holds.
Suppose {λk} is a sequence of positive real numbers such that

∑∞
k=1 λk = 1,

let y =
∑∞

k=1 λkyk ∈ X , and y∗ ∈ Bε ∩ ∂f(y). It is clear that
∞
∑

k=1

λkhk(y
∗) = (y, y∗)− f∗(y∗)

= f(y)

= sup
x∗∈dom f∗

{(y, x∗)− f∗(x∗)}

= sup
x∗∈dom f∗

∞
∑

k=1

λkhk(x
∗).

Therefore Bε is a boundary of dom f∗ in the sense of [Go]. From (3), we have

lim sup(yn, x
∗) ≤ α, for each x∗ ∈ F . Therefore lim sup(yn, x

∗) ≤ α+ 12 for each
x∗ ∈ F + εBX . Hence,

lim suphn(x
∗) ≤ α+

1

2
− f∗(x∗) ≤ α+

1

2
− γ

for each x∗ ∈ Bε (here we use the convexity of the function lim suphn(·)). Now
by Simons’ inequality (cf., [Go], [S]), we get a function g ∈ conv{hn} such that

sup
x∗∈dom f∗

g(x∗) ≤ α+
3

4
− γ.

But on the other hand, we have hn(y
∗
0) = (yn, y

∗
0) − f∗(y∗0) > β − f∗(y∗0)

for each n ∈ N, which means that g(y∗0) > β − f∗(y∗0). As a result, we get

β − f∗(y∗0) < α+ 34 − γ, a contradiction.

In conclusion, we have dom f∗ ⊂ conv‖·‖F , which means that Cn = dom f∗ is
separable. �

Using the fact that the restriction of a quite smooth convex function to a
subspace is also quite smooth, and Proposition 15, we have the following theorem.

Theorem 16. Let f be a convex function defined on a Banach space X such
that f is bounded on bounded sets of X . Suppose all continuous convex functions
bounded above by f is quite smooth, then f is Asplund.

Proof: Let Y be a separable subspace of X . The restriction of f on Y is also
a quite smooth convex function. According to Proposition 15, f↾Y is an Asplund

function and thus dom
(

f↾Y
)∗
is separable. According to Theorem 2, f is an

Asplund function. �
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