
Commentationes Mathematicae Universitatis Carolinae

Jiří Tůma
Representing lattices by homotopy groups of graphs

Commentationes Mathematicae Universitatis Carolinae, Vol. 40 (1999), No. 2, 215--221

Persistent URL: http://dml.cz/dmlcz/119077

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1999

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/119077
http://project.dml.cz


Comment.Math.Univ.Carolin. 40,2 (1999)215–221 215

Representing lattices by homotopy groups of graphs

Jiř́ı Tůma

Abstract. In this paper we represent every lattice by subgroups of free groups using the
concept of the homotopy group of a graph.
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Classification: 06B15, 20E05, 20E15

In this paper we present a method how to represent a given lattice L as a
sublattice of the subgroup lattice of a free group. The method is based on the
idea of the homotopy group of a graph. Our construction is such that if the lattice
L is finite then the free group and all its subgroups representing the elements of L
are finitely generated. The first part of the proof is formulated in a more general
way to enable further possible modifications of the proof replacing the free group
by a finite group G.
The first proof that every lattice can be embedded into the subgroup lattice of

a group was given in [Wh]. The proof was later simplified by the author of the
present note in [Tů2] using the solution of the word problem for HNN-extensions.
Let Ω be a set. By a twist on Ω we mean a bijection t : A → B between two

subsets A, B of Ω. The set A is called the domain of t and denoted by Dom(t),
while B is called the range of t and denoted by Rng(t). If t : A → B is a twist
on Ω, then the inverse mapping t−1 : B → A is also a twist on Ω and called the
inverse of t. The value of a twist t at a point a ∈ Dom(t) will be written as at.
By a twisting structure on Ω we mean a set T = {ti : i ∈ I} of twists on Ω

such that with every t ∈ T the inverse t−1 of t is also contained in T .
The Cayley graph G(T ) of a twisting structure T is defined as follows. The

vertex set of G(T ) is Ω. The edge set of G(T ) is the set E = {(a, t) : a ∈
Dom(t), t ∈ T }. If e = (a, t) ∈ E, then a is the initial vertex α(e) of e and at is
the terminal vertex ω(e) of e. Since T contains with every twist t also the inverse
t−1 of t, with every edge e = (a, t) ∈ E there is also the edge (at, t−1) ∈ E. The
edge (at, t−1) is called the inverse of e and denoted by e−1. It is obvious that
α(e−1) = ω(e) and ω(e−1) = α(e), thus the graph G(T ) is a symmetric graph
possibly with loops and parallel edges. We further define the value ν(e) of an
edge e = (a, t) as the twist t. Thus the Cayley graph G(T ) = (Ω, E, α, ω, ν) of a
twisting structure T is a symmetric graph with edges valued by elements of T . It
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is the union of the graphs of all partial bijections t ∈ T . Note also that for every
t ∈ T and a ∈ Ω there is at most one edge of G(T ) with initial vertex a and value
ν(e) = t.
By a congruence of a twisting structure T on Ω we mean an equivalence relation

π on Ω satisfying the following condition:

(∗) whenever (a, b) ∈ π, t ∈ T and a, b ∈ Dom(t), then also (at, bt) ∈ π.

Thus a congruence of T is a congruence of the partial algebra (Ω, T ), where
each t ∈ T is considered to be a partial unary operation on Ω. Obviously the set
C(T ) of all congruences of the twisting structure T on Ω is closed under arbi-
trary intersections and contains the least and the greatest equivalence relations
on Ω. Thus C(T ) when ordered by inclusion is a complete lattice. It is called
the congruence lattice of T . The meet π ∧ ρ of two congruences π, ρ of T is
their set-theoretical intersection π ∩ ρ, while their join π ∨ ρ in C(T ) is the least
equivalence relation on Ω containing the set-theoretical union π∪ρ and satisfying
the condition (∗).
The following simple representation result was proved in [Tů1].

Theorem 1. Every lattice L can be represented as a sublattice of C(T ) for some
twisting structure T . �

For the sake of completeness we present the construction. Given a lattice L,
we may assume that it has a least element 0. For any two non-zero elements a < b
of L we define a twist ta,b on L with Dom(tab) = Rng(tab) = {0, a, b} and such
that

btab = b, atab = 0, 0tab = a.

Moreover, if a, b ∈ L are two non-comparable and non-zero elements, then we
define a twist tab on L such that Dom(tab) = Rng(tab) = {a, b, a ∨ b} and

atab = a, btab = a ∨ b, (a ∨ b)tab = b.

Let the twisting structure T on L consist of all twists of the form tab, where
0 6= a, b ∈ L. Then the mapping assigning to every x ∈ L the partition of L with
one block the interval [0, x] and the other blocks singletons is an embedding of L
into C(T ).
The main purpose of this note is to investigate a canonical mapping Φ from

C(T ) into the subgroup lattice of the free group F(T ). Here F(T ) denotes the
free group generated by the set T of free generators. Under sufficiently general
conditions on T we can prove that the canonical mapping Φ is an embedding
of any member from a large class of sublattices of C(T ). To this end we recall
some basic ideas from combinatorial group theory related to homotopy groups
of graphs. By a graph we mean a quadruple (V, E, α, ω), where V, E are non-
empty sets and α, ω : E → V are two incidence functions, α(e) is called the initial
vertex of an edge e ∈ E and ω(e) is the terminal vertex of e. By a path in the
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graph (V, E, α, ω) we mean a sequence p = e1e2 · · · ek of edges of E such that
ω(ei) = α(ei+1) for every i = 1, 2, . . . , k − 1. A path p = e1e2 · · · ek is called a
loop if ω(ek) = α(e1), and a loop p = e1e2 · · · ek is called a loop at a vertex v ∈ V
if α(e1) = v.
We will generalize these concepts to the Cayley graph of a twisting struc-

ture T . Let π be a congruence of T . A sequence p = e1e2 · · · ek of edges of
the Cayley graph C(T ) of T is called a π-path if (ω(ei), α(ei+1)) ∈ π for every
i = 1, 2, . . . k − 1. A path p = e1e2 · · · ek is called a π-loop if (α(e1), ω(ek)) ∈ π
and it is called a π-loop at a vertex v ∈ Ω if moreover (v, α(e1)) ∈ π. If
(ω(ei), α(ei+1)) ∈ τ for some relation τ on Ω, then we say that (ω(ei), α(ei+1)) is
a τ -jump.
Suppose moreover that T ⊂ G, where G is a group. Then we can assign to

every π-path p = e1e2 · · · ek its G-value

ν(p) = ν(e1)ν(e2) · · · ν(ek) ∈ G.

The set of G-values of all π-loops at a vertex v ∈ Ω in the Cayley graph C(T )
of a twisting structure T is obviously a subgroup ofG. Indeed, 1 ∈ G is the value
of the empty π-path, if g = ν(p) for a π-loop p = e1e2 · · · ek at v, then g−1 is

the value of the inverse path p−1 = e−1
k

· · · e−11 . And if g = ν(p), h = ν(q), then
gh = ν(pq). Thus we can define a mapping

ΦG : C(T )→ Sub(G)

from the congruence lattice of T into the subgroup lattice of G by

ΦG(π) = {ν(p) : p is a π-loop at v}.

If π ⊆ ρ are two congruences of T , then obviously any π-loop at v is also a
ρ-loop at v, thus we get the following simple lemma.

Lemma 2. The mapping ΦG is order-preserving. �

We say that a twisting structure T is connected if its Cayley graph G(T ) is
connected. For connected twisting structures we have the following result.

Theorem 3. If T is a connected twisting structure, then the mapping ΦG is
join-preserving.

Proof: First of all we describe the join π ∨ ρ of two congruences π, ρ ∈ C(T ).
Set σ0 = π ∪ ρ. If σ2i is already defined for a natural number i, we define

σ2i+1 = σ2i ∪ {(at, bt) : t ∈ T , a, b ∈ Dom(t), (a, b) ∈ σ2i},

and
σ2i+2 is the transitive closure of σ2i+1.
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Obviously, any congruence σ of T containing both π and ρ must contain also σn

for any natural number n. On the other hand,

σ =
⋃

n

σn

is an equivalence relation satisfying the condition (∗), hence a congruence of T .
Thus σ = π ∨ ρ in C(T ).
Since ΦG is order-preserving, we get that

ΦG(π) ∨ ΦG(ρ) ⊆ ΦG(π ∨ ρ)

for any two congruences π, ρ of T . To prove the opposite inclusion we have to
show that the value ν(p) of any (π ∨ ρ)-path p at v is contained in the subgroup
of G generated by ΦG(π) ∪ΦG(ρ).
So let p = e1e2 · · · ek be an arbitrary (π∨ρ)-loop at v. Thus (ω(ei), α(ei+1)) ∈

π ∨ ρ for any i = 1, 2, . . . , k − 1 as well as (v, α(e1)), (ω(ek), v) ∈ π ∨ ρ. Since
π ∨ ρ =

⋃
σn, there exists a natural number m such that

(v, α(e1)), (ω(ek), v) ∈ σm, (ω(ei), α(ei+1)) ∈ σm

for every i = 1, 2, . . . , k − 1. Let us call such a (π ∨ ρ)-loop p = e1e2 · · · ek at v a
σm-loop. We are going to prove that the value ν(p) of any σm-loop at v, m ≥ 1,
belongs to the subgroup of G generated by the values of σm−1-loops at v.
If m is odd, let i ≤ k be such that (ω(ei), α(ei+1)) ∈ σm \ σm−1. Thus there

exist a twist t ∈ T and a, b ∈ σm−1 such that at = ω(ei) and bt = α(ei+1). Con-
sider the loop p′ = e1e2 · · · ei(at, t−1)(b, t)ei+1 · · · ek. Since ω(ei) = α(at, t−1),

(ω(at, t−1), α(b, t)) = (a, b) ∈ σm−1 and ω(b, t) = bt = α(ei+1), p′ is also a σm-
loop at v and the number of σm \ σm−1-jumps in p′ is one less than the number
of σm \ σm−1-jumps in p. Similarly, if (v, α(e1)) ∈ σm \ σm−1, then again there
are a twist t ∈ T and (a, b) ∈ σm \ σm−1 such that at = v and bt = α(e1). Again
the loop p′ = (at, t−1)(b, t)p is a σm-loop at v (since (v, t−1) = (at, t−1)) and the
number of σm \σm−1-jumps in p′ is one less than the number of σm \σm−1-jumps
in p. The case (ω(ek), v) ∈ σm \ σm−1 is treated in exactly the same way. In all
cases, ν(p′) = ν(p) and the number of (σm \ σm−1)-jumps in the path p′ is one
less than the number of (σm \ σm−1)-jumps in p. By a simple induction on the
number of (σm \ σm−1)-jumps in p we prove that for every σm-loop p at v there
exists a σm−1-loop p′′ at v such that ν(p′′) = ν(p). Thus if m is odd, then the
value ν(p) of any σm-loop p at v is equal to the value of a σm−1-loop at v.
Ifm > 0 is even and p = e1e2 · · · ek a σm-loop at v that is not a σm−1-loop, then

either there exists some i = 1, 2, . . . , k− 1 such that (ω(ei), α(ei+1)) ∈ σm \σm−1

or (v, α(e1)) ∈ σm \ σm−1 or (ω(ek), v) ∈ σm \ σm−1. Let the first of the three
possibilities occur. Since σm is the transitive closure of σm−1, there are elements
ω(ei) = a1, a2, . . . , al = α(ei+1) such that (aj , aj+1) ∈ σm−1. Since the Cayley
graphG(T ) of T is connected, there are paths qi inG(T ) of T from v to ai. Then
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p′ = e1e2 · · · eiq
−1
1 q1q

−1
2 · · · ql−1q

−1
l

qlei+1 · · · ek is again a σm-loop at v in which
the number of σm \σm−1-jumps is one less than the number of σm \σm−1-jumps
in p. Moreover, ν(p′) = ν(p). The other two cases are treated in exactly the same
way. Thus also in this case the value of any σm-loop at v coincides with the value
of a σm−1-loop at v.
Hence the value ν(p) of any (π∨ρ)-loop at v equals the value ν(p′) of a σ0-loop

p′ at v. Recall that σ0 = π ∪ ρ. Let p′ = f1f2 · · · fl. For every i = 1, 2, . . . , l let
qi be a path in G(T ) from v to ω(fi). Then

p′′ = f1q
−1
1 q1f2q

−1
2 q2f3 · · · q

−1
l−1ql−1fl

is also a σ0-loop at v. Obviously, ν(p′′) = ν(p). Finally, observe that each

qi−1fiq
−1
i , i = 2, . . . , l − 1 is either a π-loop or a ρ-loop, since (ω(fi−1), α(fi)) ∈

σ0 = π ∪ ρ. Thus ν(qi−1fiq
−1
i ) ∈ ΦG(π) ∪ ΦG(ρ).

Similarly, we prove that also ν(f1)q
−1
1 ∈ ΦG(π) ∪ ΦG(ρ) and ν(ql−1fl) ∈

ΦG(π) ∪ΦG(ρ). Thus ν(p′′) ∈ ΦG(π) ∨ ΦG(ρ). �

In the rest of the paper we restrict ourselves to the case that G is the free
group F freely generated by T . Let L be any non-empty collection of partitions
on the set Ω closed under finite meets. We say that a twisting structure T on Ω
is balanced with respect to L if for every twist t ∈ T , an element a ∈ Ω and any
two x, y ∈ Dom(t), whenever (a, x) ∈ π ∈ L and (a, y) ∈ ρ ∈ L, then there exists
some z ∈ Dom(t) such that (a, z) ∈ π ∧ ρ ∈ L. The following lemma from [Tů1]
gives us a way to construct balanced sets.

Lemma 4. Let X be a set and Ω = SX , the group of all permutations of X of
a finite type (i.e. generated by transpositions). For a set Y ⊂ X let SY be the

subgroup of SX consisting of all permutations p such that p(x) = x for every
x ∈ X \ Y . Let L be the set of partitions of Ω into left cosets of subgroups SY ,

Y ⊆ X . Then every left coset of every SY , Y ⊆ X , is balanced with respect to L.
�

By modifying Example 2.5. and Proposition 2.8. of [Tů1] we get the following
lemma.

Lemma 5. For every lattice L there exist a set Ω, a twisting structure T on Ω
with finite domains and a lattice embedding φ : L→ C(T ) such that the twisting
structure T is balanced with respect to the lattice L = Im(φ). �

No we are ready to prove the following counterpart to Theorem 3.

Theorem 6. Let T be a twisting structure on a set Ω and L ⊂ C(T ) a sublattice
of C(T ). Suppose moreover that the domains of the elements of T are finite and
that T is balanced with respect to L. Then the restriction of the canonical
mapping ΦF to the lattice L is meet-preserving.

Proof: Let π ∈ C(T ). First of all we prove that for any π-loop p = e1e2 · · · ek

in G(T ) at v such that ν(e1)ν(e2) · · · ν(ek) is not a reduced word in F there
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exists a subpath p′ = ei1 · · · eil of p that is also a π-loop at v and the word
ν(ei1) · · · ν(eil) is reduced. Indeed, if ν(e1)ν(e2) · · · ν(ek) is not reduced, then

there is some i = 1, 2, . . . , k − 1 such that ν(ei) = t = ν(ei+1)
−1. Thus there are

some a, b ∈ Dom(t) such that ei = (a, t) and ei+1 = (bt, t
−1). Moreover, since p

is a π-path, we have (ω(ei), α(ei+1)) = (at, bt) ∈ π. Since π ∈ C(T ), we have also
(att−1, btt−1) = (a, b) ∈ π. But we have also (ω(ei−1), α(ei)) = (ω(ei−1), a) ∈ π
and (ω(ei+1), α(ei+2)) = (b, α(ei+2)) ∈ π, we get (ω(ei−1), α(ei+2)) ∈ π. Thus
we can delete from p the edges ei, ei+1 and the remaining path p′ is still a π-loop
at v. In this way we can subsequently delete from p pairs of subsequent edges
with mutually inverse values to get a π-loop p′ with required properties. Let us
call such a π-path a reduced π-path.
Take now arbitrary congruences π, ρ ∈ L. Since ΦF is order-preserving, we

have
ΦF(π) ∩ ΦF(ρ) ⊇ ΦF(π ∩ ρ).

To prove the opposite inclusion take any reduced word w = t1 · · · tk ∈ ΦF(π) ∩
ΦF(ρ). Then by the previous paragraph there is a reduced π-loop p = e1e2 · · · ek

at v such that ν(p) = w. Hence ν(ei) = ti for every i = 1, 2, . . . , k. Similarly, there
is a reduced ρ-loop q = f1f2 · · · fl at v such that ν(fi) = ti for every i = 1, 2, . . . , k.
Thus in particular, (v, α(e1)) ∈ π and (v, α(f1)) ∈ ρ. Let us denote α(e1) = a
and α(f1) = b. Thus a, b ∈ Dom(t1). Since Dom(t1) is balanced with respect to
L, there exists some c ∈ Dom(t1) such that (v, c) ∈ π ∩ ρ. Hence also (a, c) ∈ π
and (b, c) ∈ ρ. Since both π and ρ are congruences of T , we get also (at1, ct1) ∈ π
and (bt1, ct1) ∈ ρ. Moreover, (at1, α(e2)) = (ω(e1), α(e2)) ∈ π and (bt1, α(f2)) =
(ω(f1), α(f2)) ∈ ρ, we get (ct1, α(e2)) ∈ π and (ct, α(f2)) ∈ ρ. Denote by g1 the
edge (c, ct1). Thus g1e2 · · · ek is another π-loop at v and g1f2 · · · fk is another
ρ-loop at v. Moreover, (v, α(g1)) = (v, c) ∈ π ∩ ρ, and ν(g1) = t1.
By repeating the same procedure with ct1, e2 and f2 in place of v, e1 and

f1, we get another edge g2 that can replace e2 in p and f2 in q and satisfies
ν(g2) = ν(e2) = ν(f2) and (ω(g1), α(g2)) ∈ π ∩ ρ. After k steps we construct a
(π ∩ ρ)-loop r = g1g2 · · · gk at v with ν(r) = w. Hence w ∈ ΦF(π ∩ ρ). �

Finally, connectedness of T also implies injectivity of ΦF. Since the method
of the proof will be also used in the proof of Theorem 8, we introduce some
definitions here. If π is a congruence of T , we define the quotient T /π of T as
follows. The twisting structure T /π will be defined on the set Ω/π of blocks of
π. For any twist t ∈ T we define another twist tπ on Ω/π. The domain Dom(tπ)
consists of all blocks of π intersecting the domain Dom(t). If a ∈ Dom(t), then we
define [a]tπ = [at], where [x] denotes the block of π containing x. The definition
of tπ is correct since π is a congruence of T . Hence tπ is also a bijection between
two subsets of Ω/π and {tπ : t ∈ T } is a twisting structure on Ω/π. Thus T /π is
simply the quotient of the partial unary algebra (Ω, T ) by the congruence π.
It is also useful to mention that the graph of T /π is naturally isomorphic to a

quotient of the graph of T . The vertices of G(Tπ) are blocks of the partition π
on Ω. Whenever a, b ∈ Dom(t) are such that (a, b) ∈ π, then the two edges (a, t)
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and (b, t) of G(T ) are identified into a single edge ([a], [a]tπ) of G(T /π). If we
assign to each edge ([a], [a]tπ) of G(T /π) the value t ∈ F, then we see that the
values of π-loops at v in the graph G(T ) are in one-to-one correspondence with
the values of ordinary loops at [v] in the graph of G(T /π).

Lemma 7. If T is a connected twisting structure on Ω and π < ρ two congru-
ences of T , then ΦF(π) 6= ΦF(ρ).

Proof: Let (a, b) ∈ ρ \ π. Since T is connected, there exist a reduced path
p = e1e2 · · · ek in G(T ) from v to a and a reduced path q = f1f2 · · · fl in G(T )
from v to b. Then pq−1 is a ρ-loop in G(T ) at v but it is not a π-loop at v.
If pq−1 is not reduced, then there exists a twist t ∈ T such that ek = (at−1, t)
and fl = (bt

−1, t). Then also (at−1, bt−1) ∈ ρ \ π. So we can replace p by
p′ = e1e2 · · · ek−1 and q by q′ = f1f2 · · · fl−1 to get a shorter ρ-loop p′q′−1 at v

that is not a π-loop at v. Hence we may assume that the ρ-loop r = pq−1 at v is
already reduced and it is not a π-loop. But then ν(r) ∈ ΦF(ρ) \ ΦF(π). �

Putting together previous results we get the following theorem.

Theorem 8. Every lattice L can be embedded into the subgroup lattice of a free
group F. If the lattice L is finite, then the group F and all the subgroups of F
representing elements of L can be taken finitely generated.

Proof: It remains to prove the second assertion. However, if the lattice L is
finite, then the twisting structure T of Lemma 4 can be taken finite by [Tů1].
But then the group ΦF(π) is isomorphic to the homotopy group of the graph
G(T /π), by the remarks preceding Lemma 7. Since the graph G(T /π) is finite,
its homotopy group is a finitely free group. �
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Sokolovská 83, 186 75 Praha 8, Czech Republic

E-mail : tuma@karlin.mff.cuni.cz

(Received January 23, 1998, revised January 3, 1999)


		webmaster@dml.cz
	2012-04-30T18:34:11+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




