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A short proof on lifting of projection

properties in Riesz spaces

Marek Wójtowicz

Abstract. Let L be an Archimedean Riesz space with a weak order unit u. A sufficient
condition under which Dedekind [σ-]completeness of the principal ideal Au can be lifted
to L is given (Lemma). This yields a concise proof of two theorems of Luxemburg and
Zaanen concerning projection properties of C(X)-spaces. Similar results are obtained
for the Riesz spaces Bn(T ), n = 1, 2, . . . , of all functions of the nth Baire class on a
metric space T .
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Classification: 46A40, 26A99, 46B30

The purpose of this note is to give a short and concise proof of the following
result established by Luxemburg and Zaanen ([3, Theorems 43.2 and 43.3]).

Theorem. Let C(X) and Cb(X), respectively, denote the Riesz spaces of all real
continuous and continuous and bounded, respectively, functions on a topological

space X . Then the following conditions are equivalent.

(i) C(X) has the [principal] projection property.
(ii) C(X) is Dedekind [σ-]complete.
(iii) Cb(X) has the [principal] projection property.
(iv) Cb(X) is Dedekind [σ-]complete.

As remarked in ([3, p. 283]), the only nontrivial implication is (iv) ⇒ (ii). Our
proof replaces a large part of the direct argument in [3] by an appeal to a lemma
(see below), inspired by the classical proof of the Tietze extension theorem ([1,
p. 158], the unbounded case).
Let S be a nonempty set. In the rest of the paper L denotes a Riesz subspace of

the Riesz space R
S (pointwise ordering) containing the constant-one on S function

e, and Be denotes the set {f ∈ L : |f(s)| < 1, s ∈ S}. It is obvious that Be is a
(nonlinear) sublattice of Ae. The symbol ◦ denotes composition of functions.

Lemma. If there exists a strictly increasing and continuous function φ from R

onto (−1, 1) such that both
(a) φ ◦ f ∈ Be for every f ∈ L, and

(b) φ−1 ◦ g ∈ L for every g ∈ Be,
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then L and Be are order isomorphic as partially ordered sets. In particular,

Dedekind [σ-]completeness of Ae implies Dedekind [σ-]completeness of L.

Examples. 1. If L = C(X) then every strictly increasing, continuous and onto
function φ : R → (−1, 1) fulfills both (a) and (b), and the same holds for the
Riesz spaces Bn(T ), n = 1, 2, . . . , of all functions T → R of the nth class on a
metric space T .

2. If L consists of all continuous and piecewise functions on [0, 1], then φ must be
piecewise linear to fulfil the condition (a).

Proof of Lemma: By (a) and (b), L and Be are order isomorphic as partially
ordered sets (in the sense of the definition given in [3, p. 186]) via the map-

ping φ̂(f) = φ ◦ f , f ∈ L. Since, by ([3, Definitions 1.1 and 23.1]), Dedekind
[σ-]completeness both is invariant under such isomorphisms and is heredited from
Ae by Be, the result follows. �

Proof of Theorem (the nontrivial implication (iv)⇒ (ii)): It follows by Lemma
and Example 1. �

Remark. Since bounded functions of the nth Baire class Bb
n(T ), n = 1, 2, . . . ,

endowed with the sup-norm form AM-spaces with units ([2, Theorem 12.3.7]),
the notions of the [principal] projection property and Dedekind [σ-]completeness

coincide (by Theorem). Moreover, Lemma and Example 1 prove that Bb
n(T ) and

Bn(T ) are Dedekind [σ-]complete simultaneously. These observations yield the
result similar to that of Theorem when C(X) is replaced by Bn(T ) and Cb(X)

by Bb
n(T ).
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