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On the completeness of localic groups

B. Banaschewski , J.J.C. Vermeulen

Abstract. The main purpose of this paper is to show that any localic group is complete in
its two-sided uniformity, settling a problem open since work began in this area a decade
ago. In addition, a number of other results are established, providing in particular a
new functor from topological to localic groups and an alternative characterization of
LT -groups.

Keywords: localic group, Closed Subgroup Theorem for localic groups, the uniformities
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When the remarkable Closed Subgroup Theorem for localic groups, saying that
any localic subgroup of a localic group is closed, made its first appearance (Isbell
et al. [7]), it immediately raised the question whether a localic group must be
complete in one or the other of its uniformities. That this need not be the case
for the one-sided uniformities was established early on by Isbell [6] who observed
that the classical example of a topological group not complete in its left uniformity,
namely the automorphism group of the closed unit interval with the topology of
uniform convergence (Bourbaki [3, Chapter X, § 3, Exercise 16]), was actually a
localic group. This left the case of the two-sided uniformities, and the aim of this
paper is to settle this by proving that any localic group is two-sidedly complete.
Specifically, we first show that the multiplication of a localic group L lifts to

the completion of L relative to any of its group uniformities (Proposition 1) from
which we then derive, by means of the Closed Subgroup Theorem, that L is two-
sidedly complete (Proposition 2). In addition, we provide a criterion for L to be
one-sidedly complete which is the localic counterpart of a familiar result on the
one-sided completability of a topological group (Proposition 3). Finally, we use
the techniques involved in the proof of Proposition 1 to obtain a contravariant
functor from topological to localic groups which is then shown to give rise to the
two-sided completion of a topological group (Proposition 4), to provide a duality
between the category of two-sidedly complete topological groups and a category
of certain explicitly described localic groups (Proposition 5), and to lead to a
variant of the characterization of LT -groups by Kř́ıž [9] (Proposition 6).

1. Background on uniform frames

For general facts concerning frames we refer to Johnstone [8] or Vickers [10].
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Recall that a uniformity on a frame L is a set U of covers of L such that

(1) U is a filter relative to refinement of covers;
(2) for any C ∈ U there exist D ∈ U such that

{Ds | s ∈ D} for Ds =
∨

{t ∈ D | t ∧ s 6= 0}

is a refinement of C (notation: D ≤∗ C);
(3) for any a ∈ L, a =

∨

{x ∈ L | Cx ≤ a for some C ∈ U}.

A uniform frame is then a frame together with a specified uniformity on it. We
write L for a uniform frame, UL for its uniformity, x ⊳ a to mean that Cx ≤ a

for some C ∈ UL, and allow notational confusion between L and its underlying
frame. Further, a frame homomorphism h : M → L between uniform frames is
called uniform whenever h[C] ∈ UL for each C ∈ UM , and a surjection provided
it is onto for both, the underlying frames and the uniformities.
A uniform frame L is called complete if any dense surjection to L is an iso-

morphism, and a completion of L is a dense surjection h :M → L with complete
M . The basic result concerning these notions is that any uniform frame L has
a completion γL : CL → L, unique up to isomorphism, providing a coreflection
from uniform to complete uniform frames (Isbell [5]; for a recent account see
Banaschewski [1]).
The specific manner in which the completion γL : CL→ L may be obtained is

of no concern here but we need some of the familiar properties of the right adjoint
(γL)∗ of γL. To begin with, CL is generated by the image of (γL)∗, and (γL)∗
takes uniform covers to covers. Next, in order to describe the remaining property,
which will be of particular importance here, we need the following notions. For
a uniform frame L and an arbitrary frame T , a T -valued Cauchy filter on L is a
0∧e-homomorphism ϕ : L→ T (meaning ϕ preserves the zero 0, binary meet ∧,
and the unit e) which

(C) maps uniform covers of L to covers of T ;

it is called regular whenever it satisfies the additional condition

(R) ϕ(a) =
∨

{ϕ(x) | x ⊳ a} for all a ∈ L.

If T is left unspecified we refer to general (regular) Cauchy filters.

Regarding this terminology, we note that the 2-valued (regular) Cauchy filters
on L are exactly the characteristic functions of the usual (regular) Cauchy filters
of L.

Now we have (Banaschewski [1, Proposition 4]):

For any T -valued regular Cauchy filters ϕ : L→ T on a uniform frame

L, there exists a unique frame homomorphism ϕ̄ : CL → T such that

ϕ̄(γL)∗ = ϕ.
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One might add that (γL)∗ itself is a CL-valued regular Cauchy filter on L and
consequently this result identifies it as the universal general regular Cauchy filter
on L.

We now derive a result from this which will be the major tool used in Section 3.

A frame homomorphism h :M → L between uniform frames is called a Cauchy
homomorphism if there exists a frame homomorphism h̃ : CM → CL, necessarily
unique, such that hγM = γLh̃, and we refer to h̃ as the lift of h to the comple-
tions. Note that, by the basic properties of completions mentioned earlier, any
uniform homomorphism is a Cauchy homomorphism, but in our setting we are
specifically concerned with Cauchy homomorphisms which are not uniform; for
this, the following criterion will be useful.

Lemma 1. A frame homomorphism h : M → L between uniform frames is a

Cauchy homomorphism iff (γL)∗h maps uniform covers to covers.

Proof: For the non-trivial “if” part we use the fact that, for any T -valued
Cauchy filter ϕ : M → T on a uniform frame M , the map of ϕ0 : M → T such
that

ϕ0(a) =
∨

{ϕ(x) | x ⊳ a}

is a T -valued regular Cauchy filter on M (Banaschewski-Hong-Pultr [2]). Now,
the hypothesis on h implies that (γL)∗h is a CL-valued Cauchy filter: It is au-
tomatically a 0∧e-homomorphism because γL is dense. As a result, ((γL)∗h)

0

is a CL-valued regular Cauchy filter, as just stated, and by the properties of
completions we therefore have a frame homomorphism h̃ : CM → CL such that

h̃(γM )∗(a) =
∨

{(γL)∗h(x) | x ⊳ a}.

Consequently,

γLh̃((γM )∗(a)) =
∨

{h(x) | x ⊳ a} = h(a) = hγM ((γM )∗(a))

for all a ∈ L, and since the (γM )∗(a) generate CM this shows γLh̃ = hγM , as
desired. �

We note that this result is actually a simple extension of Remark 2 in Bana-
schewski-Hong-Pultr [2].

2. Background on localic groups

Here we recall some of the basic notions and results concerning localic groups.
We follow the style of Isbell et al. [7], considering localic groups as cogroups in
the category of frames, with Zermelo-Fraenkel set theory as foundation. We note
that there are sound reasons for treating this subject constructively, in the sense
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of topos theory, as well as localically but for the time being we are content to deal
with it in this less ambitious manner.
A localic group, then, is a frame L together with frame homomorphisms

µ : L→ L⊕ L, ι : L→ L, ε : L→ 2,

its multiplication, inversion, and unit, respectively, subject to the duals of the
familiar group laws by which the following diagrams commute:

L
µ

//

µ

��

L⊕ L

µ⊕ id
��

L
µ

//

id
��

L⊕ L

id ⊕(σε)
��

L
µ

//

σε

��

L⊕ L

id ⊕ι

��

L⊕ L
id ⊕µ

// L⊕ L⊕ L L
∇

// L⊕ L L
∇

// L⊕ L

(σ the initial 2 → L, ∇ : L ⊕ L → L the codiagonal) together with the left-
sided counterparts of the second and third diagram, with (σε) ⊕ id and ι ⊕ id,
respectively, as the maps on the right.
In the following L,M, . . . will stand for localic groups, and their operations

will be denoted µL, ιL, εL, µM , ιM , εM , . . . , the index to be suppressed whenever
convenient. Further, we permit notational confusion between a localic group and
its underlying frame.
A homomorphism h : M → L of localic groups is a homomorphism of the

underlying frames compatible with the operations of M and L, that is, such that

(h⊕ h)µM = µLh, hιM = ιLh, εM = εLh,

and LocG will be the resulting category.
One of the fundamental facts concerning homomorphisms h :M → L of localic

groups is that the usual dense-onto decomposition

M
ν
−→ ↑s

h̄
−→ L, ↑s = {a ∈M | a ≥ s}, s =

∨

h−1{0}

ν(a) = a ∨ s, h̄(a) = a

at the level of underlying frames is actually a decomposition in LocG, that is,
the operations of M induce operations on ↑s making it into a localic group such
that ν and h̄ are localic group homomorphisms. Further, the Closed Subgroup
Theorem for localic groups says that h̄ is an isomorphism whenever h is onto, or,
equivalently, h is an isomorphism whenever it is dense (s = 0) and onto.
We now turn to the uniformities of a localic group L. To provide a convenient

and suggestive description of these we use the following approach which differs
slightly from [7]. One first notes that, as a formal consequence of the group laws,
the multiplication µ : L → L ⊕ L is a twisted version of the first coproduct
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injection and hence open so that it has a left adjoint µ# which is then used to
define

ab = µ#(a⊕ b)

for any a, b ∈ L, saying that ab ≤ c iff a ⊕ b ≤ µ(c) for all a, b, c ∈ L. Con-
cerning this product and the operation a−1 = ι(a), the following rules are easy
consequences of the laws concerning µ and ι:

(ab)c = a(bc), (ab)−1 = b−1a−1, (a−1)−1 = a,

if a ≤ b then ac ≤ bc, ca ≤ cb, a−1 ≤ b−1

for any a, b, c ∈ L.
Further, for N = {s ∈ L | ε(s) = 1}, the neighbourhood filter of the unit of L,

one has:

For any s ∈ N there exist t ∈ N such that t2 ≤ s,

for any a ∈ L and s ∈ N , a ≤ as and a ≤ sa,

for any s ∈ N , s−1 ∈ N , and

for any a 6= 0 in L, aa−1 and a−1a belong to N .

Here, the first condition is proved in [7], the second is an easy consequence of
the laws concerning µ and ε, and the third results from the fact that ει = ε, a
formal consequence of the group laws. Finally, since a⊕ b ≤ µ(ab), we have

a = ∇(a⊕ a) = ∇(ι⊕ id)(a−1 ⊕ a) ≤ ∇(ι⊕ id)µ(a−1a) = σε(a−1a)

for any a ∈ L, showing that ε(a−1a) = 1 whenever a 6= 0, and the other identity
for ι implies that ε(aa−1) = 1.

Now, one proves that the sets

Cs = {a ∈ L | a
−1a ≤ s} (s ∈ N)

are covers of L such that Cs ⊆ Ct whenever s ≤ t, Ct ≤∗ Cs if t
2 ≤ s, and, for

any a ∈ L,

a =
∨

{x ∈ L | Csx ≤ a for some s ∈ N}.

It follows that the Cs, s ∈ N , form a basis of a uniformity on L, called the left
uniformity of L. Analogously, one shows that the sets

Ds = {a ∈ L | aa
−1 ≤ s} (s ∈ N)

and
Ts = {a ∈ L | (a

−1a) ∨ (aa−1) ≤ s}
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form bases of uniformities, called the right and the two-sided uniformity of L,
respectively.
Note that in the commutative case, where λµ = µ for the automorphism λ :

L ⊕ L → L ⊕ L interchanging the two coproduct maps L → L ⊕ L, the three
uniformities of L coincide because ab = ba. In general, ι[Cs] = Ds−1 and hence
ι is a uniform isomorphism from L with its left uniformity to L with its right
uniformity.
To put the above definitions in perspective, we note that, for a topological

group G, the familiar operations on the frame OG of open sets of G derived from
the group operations,

UV = {αβ | α ∈ U, β ∈ V }, U−1 = {α−1 | α ∈ U},

satisfy the same conditions as the above operations for a localic group L, and the
usual uniformities of G, given in terms of open covers of G, may be described in
exactly the same way as the above uniformities of L.

3. Completeness

We begin with a description of the right adjoint of the coproduct of two frame
homomorphisms. This may well be known but since we have no reference for it
we include its short proof.

Lemma 2. For any frame homomorphisms f : K →M and g : L→ N , the right

adjoint of f ⊕ g : K ⊕ L→M ⊕N is given by

(f ⊕ g)∗(c) =
∨

{f∗(a)⊕ g∗(b) | a⊕ b ≤ c}.

Proof: For any c ∈ M ⊕ N , x ∈ K, and y ∈ L, if x ⊕ y ≤ (f ⊕ g)∗(c) then
f(x)⊕ g(y) ≤ c, and since x⊕ y ≤ f∗f(x)⊕ g∗g(y) it follows that

(f ⊕ g)∗(c) ≤
∨

{f∗(a)⊕ g∗(b) | a⊕ b ≤ c}.

The reverse inequality is obvious: act f ⊕ g on the join on the right. �

The next result provides the crucial step in the entire development.

Lemma 3. For any localic group L, the multiplication µ : L→ L⊕L is a Cauchy
homomorphism for each of the group uniformities of L.

Proof: Let γL : CL → L be any of the completions involved. Then the com-
pletion of L ⊕ L is CL ⊕ CL, and hence it will be enough by Section 1 to show
that

ϕ = (γL ⊕ γL)∗µ : L→ CL⊕ CL
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takes uniform covers to covers for the corresponding uniformity. For this, note
that

ϕ(c) =
∨

{(γL)∗(a)⊕ (γL)∗(b) | ab ≤ c}

for any c ∈ L by Lemma 2 and the definition of ab.
We first deal with the left uniformity, showing that ϕ[Cs] is a cover for each

s ∈ N . For this, take u ∈ N such that u3 ≤ s and consider

(∗) {(γL)∗(a)⊕ (γL)∗(b) | a
−1a ≤ bub−1, b−1b ≤ u}

which is a cover of CL⊕ CL since bub−1 ≥ bb−1 belongs to N and

{(γL)∗(a) | a
−1a ≤ bub−1} (any fixed b) and {(γL)∗(b) | b

−1b ≤ u}

are covers of CL by the properties of completions. Further, for any a and b
involved here,

(ab)−1ab = b−1a−1ab ≤ b−1bub1−b ≤ u3 ≤ s

showing that ab ∈ Cs. Finally (γL)∗(a) ⊕ (γL)∗(b) ≤ ϕ(ab) trivially, hence the
cover (∗) is a refinement of ϕ[Cs], and consequently the latter is a cover.
Of course, the case of the right uniformity is perfectly analogous, with the

obvious left-right interchange. For the slightly more subtle two-sided case, we
proceed as follows. Consider the two sets

{(γL)∗(a)⊕ (γL)∗(b) | (a
−1a) ∨ (aa−1) ≤ bub−1, (b−1b) ∨ (bb−1) ≤ u}

and

{(γL)∗(a)⊕ (γL)∗(b) | (b
−1b) ∨ (bb−1) ≤ a−1ua, (a−1a) ∨ (aa−1) ≤ u}

where u ∈ N such that u3 ≤ s as before. Now, the same argument as above shows
that either of these is a cover of CL⊕CL, and for the a and b involved we have,
respectively,

(ab)−1ab = b−1a−1ab ≤ b−1bub−1b ≤ u3 ≤ s

and
ab(ab)−1 = abb−1a−1 ≤ aa−1uaa−1 ≤ u3 ≤ s.

Then, taking the elementwise meet of these two covers we obtain a cover by
elements (γL)∗(a) ⊕ (γL)∗(b) where ((ab)

−1ab) ∨ (ab(ab)−1) ≤ s showing that
ab ∈ Ts. On the other hand (γL)∗(a) ⊕ (γL)∗(b) ≤ ϕ(ab) as before, and hence
ϕ[Ts] is a cover. �
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Remark. Given that (γL)∗ : L→ CL is the universal regular Cauchy filter on L
for the uniformity in question (Section 1), the corresponding (γL⊕γL)∗ : L⊕L→
CL⊕CL describes the universal pair of general regular Cauchy filters on L, and
hence the composite (γL ⊕ γL)∗µ considered above represents the product of the
universal pair of general regular Cauchy filters on L. Hence the above proof that
this is a general Cauchy filter amounts to showing, at the appropriate level of
generality, that any product of regular Cauchy filters is a Cauchy filter . This
is what Raikov proved for the classical Cauchy filters of a topological group (see
Bourbaki [3, Chapter III, § 3.4]), and the arguments given above are really nothing
else but an adaptation of Raikov’s to the pointfree case. It should be added that
the appropriate localic proof of this lemma makes this point particularly evident
in that it is literally a direct translation of the classical proof.

Our first result now is

Proposition 1. For any of the uniform completions γL : CL → L of a localic

group L, CL is a localic monoid with multiplication µ̃ : CL→ CL⊕CL and unit
ε̃ = εγL such that γL is a monoid homomorphism.

Proof: The monoid identities for µ̃ and ε̃ follow immediately from the corre-
sponding identities for µ and ε and the fact that, in the relevant diagrams such
as

µ̃

| ↓

CL −→
γL

L −→
µ

L⊕ L ←−
γL⊕γL

CL⊕ CL

µ̃ ↓ µ ↓ ↓ µ⊕ id ↓ µ̃⊕ id ,

CL⊕CL
γL⊕γL
−→ L⊕ L

id⊕µ
−→ L⊕ L⊕ L

γL⊕γL⊕γL
←− CL⊕ CL⊕ CL

| ↑

id⊕ µ̃

all squares commute while γL ⊕ γL ⊕ γL is dense and hence monic because all
frames involved are regular. �

It might be worth adding that this result is considerably more obvious in the
commutative case because there µ : L → L ⊕ L is actually uniform and hence
trivially a Cauchy homomorphism: the uniformity of L ⊕ L is generated by the
covers

Ws = {a⊕ b | a
−1a, b−1b ≤ s}
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and by commutativity (ab)−1ab ≤ s2 whenever a−1a, b−1b ≤ s; consequently, Ws

is a refinement of µ[Ct] if s
2 ≤ t since a⊕ b ≤ µ(ab).

Next we have our principal result:

Proposition 2. Any localic group L is complete in its two-sided uniformity.

Proof: Obviously ι[Ts] = Ts−1 for the inversion of ι of L, showing it is uniform
and hence a Cauchy homomorphism in the present setting, so that we also have
its lift ι̃ : CL→ CL. Now, CL with the operations µ̃, ι̃, ε̃ is a localic group: it is
a localic monoid with the operations µ̃ and ε̃ by Proposition 1, and ι̃ satisfies the
corresponding inversion laws because in the diagram

µ̃

| ↓

CL −→
γL

L →
µ

L⊕ L ←−
γL⊕γL

CL⊕CL

σε̃ ↓ σε ↓ ↓ id⊕ ι ↓id⊕ ι̃

CL −→
γL

L −→
∇

L⊕ L ←−
γL⊕γL

CL⊕CL

| ↑

∇

and its left-sided counterpart all squares commute and γL⊕γL is dense and hence
monic. It follows that γL : CL → L is a dense onto homomorphism of localic
groups and therefore an isomorphism. �

Remark. The proofs of the above propositions could alternatively be based on
the general principle, for finitary algebras in an arbitrary category with products,
that an algebra B will satisfy all identities satisfied by an algebra A whenever
there exists a homomorphism A→ B inducing epimorphisms for all finite powers
of the corresponding underlying objects. However, in view of a later argument in
connection with Proposition 4, the ad hoc proofs given here are preferable.

Finally, we have the following characterization of one-sided completeness:

Proposition 3. The following are equivalent for a localic group L:

(1) L is complete in its left uniformity;
(2) for the left completion γL : CL→ L, (γL)∗ιL maps left uniform covers to
covers;

(3) for the left completion γL : CL→ L, (γL)∗ maps right uniform covers to
covers.
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Proof: Since ιL[Cs] = Ds−1 for any s ∈ N it is clear that (2) ⇔ (3), and (1) ⇒
(2) is trivial.

(2) ⇒ (1). Here ιL is a Cauchy homomorphism for the left uniformity and
the resulting lift ι̃L : CL → CL provides the inversion for the localic monoid
structure of CL given by Proposition 1, making it into a localic group and hence
γL an isomorphism by the Closed Subgroup Theorem. �

We note that Proposition 3 is the exact counterpart of the familiar result that a
topological group has a left completion iff its inversion takes left Cauchy filters to
left Cauchy filters (Bourbaki [3, III, § 3.4, Theorem 1]), or, equivalently, every left
Cauchy filter is a right Cauchy filter. Again, we observe that the localic version
of the above proof amounts to a direct translation of the classical argument for
topological groups.

4. The functor from topological to localic groups

There is an obvious contravariant functor Σ from localic to topological groups, the
enriched version of the usual spectrum functor from frames to spaces, for which
ΣL is the topological group with underlying space the frame spectrum of L and
with multiplication Σµ, inversion Σι, and unit ε. We now use some of the ideas
of the last section to obtain a functor in the opposite direction.
For any topological group G (always assumed to be Hausdorff ) we consider

OG as a uniform frame with the two-sided uniformity, that it, with basic uniform
covers

TS = {U ∈ OG | U
−1U ∪ UU−1 ⊆ S}, S ∈ N ,

whereN is the filter of open neighbourhoods of the unit ofG, and let τG : COG→
OG be the corresponding completion. Then, the composite δG : COG⊕COG→
O(G×G) of τG⊕τG : COG⊕COG→ OG⊕OG with the standard homomorphism
πG : OG⊕OG→ O(G×G) taking U ⊕ V to U × V is clearly a dense surjection
for the coproduct uniformity on COG ⊕ COG and the uniformity of O(G × G)
given by taking G×G as product of uniform spaces, making it the completion of
O(G ×G).

Now we have, for the multiplication map m : G×G→ G:

Lemma 4. The frame homomorphism Om : OG → O(G × G) taking U to
m−1[U ] is a Cauchy homomorphism.

Proof: We show that ϕ = (δG)∗Om is a general Cauchy filter. Now, for any
U ∈ OG,

ϕ(U) = (τG ⊕ τG)∗(πG)∗(m
−1[U ])

=
∨

{(τG)∗(V )⊕ (τG)∗(W ) | V ⊕W ⊆ (πG)∗(m
−1[U ])}

=
∨

{(τG)∗(V )⊕ (τG)∗(W ) | V ×W ⊆ m
−1[U ]}

=
∨

{(τG)(V )⊕ (τG)(W ) | VW ⊆ U}
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and hence in particular (τG)∗(V ) ⊕ (τG)∗(W ) ≤ ϕ(V W ) for any V,W ∈ OG. It
follows from this that we can use formally the same argument as in the proof
of Lemma 3 to obtain, for any S ∈ N , a cover of COG ⊕ COG consisting of
elements (τG)∗(V )⊕ (τG)∗(W ) where (VW )

−1VW ∪ VW (VW )−1 ⊆ S, showing
that VW ∈ FS and hence that ϕ[TS ] is a cover. �

It follows that COG can be equipped with localic operations such that µ is the
lift of Om by Lemma 4, ι that of Oi for the uniformly continuous inversion i of
G, and ε(a) = 1 iff τG(a) ∈ N . Furthermore, acting O on the group identities
of G one obtains corresponding commuting diagrams for Om, Oi, and the map
OG→ 2 given by the unit of G, and from these, in turn, one derives that µ, ι, and
ε are localic group operations by the same kind of argument used in the proofs of
Propositions 1 and 2.
Next, for any homomorphism ϕ : G→ H of topological groups, the commuting

diagrams expressing the compatibility of ϕ with the operations of G and H yield
diagrams, again by acting O, from which one readily derives that the lift ϕ̃ :
COH → COG of Oϕ, given by the fact that Oϕ is uniform, is a localic group
homomorphism. Finally, the correspondence ϕ 7→ ϕ̃ clearly preserves composition
and units. In all, this has shown the first part of

Proposition 4. Completion of the frame OG of open sets of a topological group
G with respect to the two-sided uniformity determines a faithful contravariant

functor CO from TopG to LocG such that ΣCO is the reflection to the category
2CTopG of two-sidedly complete topological groups, with reflection maps ρG :
G→ ΣCOG taking α ∈ G to α̂τG where α̂(U) = 1 iff α ∈ U .

Proof: By basic facts concerning uniform spaces and the completion of their
uniform frames of open sets, ρG is the embedding of G into its completion for the
two-sided uniformity on G and the uniformity on ΣCOG which is induced by the
uniformity of COG as the completion of OG. Further, ρG is natural in G and
hence CO is faithful: if COϕ = COψ for any ϕ, ψ : G→ H then also ρHϕ = ρHψ

and consequently ϕ = ψ.
On the other hand, the way the operations of COG are related to those of G

makes it immediately obvious that ρG is also a group homomorphism and hence
a dense embedding of topological groups. Furthermore, ΣCOG is two-sidedly
complete. To see this we first show that, for any S ∈ N ,

(∗)
{

ρ−1G [Σa] | Σ
−1
a Σa ∪ ΣaΣ

−1
a ⊆ Σ(τG)∗(S)

}

⊆ TS ,

where Σa is the open subset of ΣCOG consisting of all ξ such that ξ(a) = 1. For

any a ∈ COG as in (∗); if α, β ∈ ρ−1
G
[Σa] then

ρG(α
−1β) = ρG(α)

−1ρG(β) ∈ Σ
−1
a Σa ⊆ Σ(τG)∗(S)

so that α−1β ∈ ρ−1G [Σ(τG)∗(S)], and the same for αβ
−1. Furthermore,

ρ−1G [Σ(τG)∗(S)] = {γ ∈ G | γ̂τG(τG)∗(S) = 1} = {γ ∈ G | γ̂(S) = 1} = S
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and therefore ρ−1G [Σa] ∈ TS , as claimed. Next, (∗) implies that the cover

{

Σa | Σ
−1
a Σa ∪ ΣaΣ

−1
a ⊆ Σ(τG)∗(S)

}

itself is a refinement of {U# | U ∈ FS} where U
# is the largest openW ⊆ ΣCOG

such that ρ−1G [W ] = U . Now, the latter covers generate the uniformity of the two-
sided completion of G, and hence ΣCOG is also complete in its finer two-sided
uniformity.
In all, this shows that the functor ΣCO takes topological groups to two-sidedly

complete topological groups such that the dense embedding ρG : G → ΣCOG,
natural in G, is an isomorphism iff G is two-sidedly complete. �

Remark. In the commutative case, the crucial Lemma 4 is trivial because then
the multiplication is uniformly continuous and Om obviously lifts to the comple-
tions. This case was already considered in [7].

Proposition 5. CO is a full dual embedding of 2CTopG into LocG, providing
a dual equivalence with the category of localic groups L for which the spatial

reflection ηL : L → OΣL is the completion relative to the two-sided uniformity
of OΣL.

Proof: We first show that CO is full. Given any localic group homomorphism
h : COG→ COH for two-sidedly complete topological groups G and H , we have
to find a homomorphism ϕ : H → G such that COϕ = h. Now, since ρG is an
isomorphism by hypothesis, an obvious candidate is ϕ = ρ−1G ΣhρH . In order to
see this is indeed the right choice, we first establish a couple of auxiliary results.

(i) For any topological group G, τG = (OρG)ηCOG: for any U ∈ OG,

(OρG)ηCOG((τG)∗(U)) = OρG(Σ(τG)∗(U)) = ρ
−1
G [Σ(τG)∗(U)] = U

= τG((τG)∗(U)),

the third step by the proof of Proposition 4, and since the (τG)∗(U) generate
COG this proves the claim.

(ii) For any two-sidedly complete topological group G, ηCOGCOρG = τΣCOG:
by (i) and the definition of τ ,

(OρG)ηCOG COρG = τG COρG = (OρG)τΣCOG,

and OρG can be cancelled since it is an isomorphism.
Now, by the definition of η and τ and by (ii),

ηCOH hCOρG = OΣh ηCOG COρG = OΣh τΣCOG

= τΣCOH COΣh = ηCOH COρH COΣh,
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and ηCOH can be cancelled since it is dense by (i). Finally, for the ϕ : H → G

suggested above,
COϕ = COρHCOΣhCOρ

−1
G = h,

as desired.
Regarding the image of CO, it is clear that L ≃ COΣL for any L of the type

described, and the converse follows from (i). �

It should be pointed out that there is an open question concerning the above
characterization of the image of the functor CO. We do not know whether the
weaker assumption that ηL : L→ OΣL is merely dense is sufficient to ensure its
equivalence with the two-sided completion τΣL : COΣL→ OΣL of OΣL: if dense
ηL is trivially the completion relative to the uniformity it induces on OΣL from
the two-sided uniformity of L, but how that relates to the two-sided uniformity
of OΣL itself is another question. The latter is determined by the covers

(1) {Σa | Σ
−1
a Σa ∪ ΣaΣ

−1
a ⊆ Σs} (s ∈ N)

whereas the covers generating the former are

(2) {Σa | a
−1a ∨ aa−1 ≤ s} (s ∈ N).

It is easy to see that (2) is contained in, and hence a refinement of, (1) for each
s ∈ N , and consequently there exists a homomorphism h : COΣL → L such
that ηLh = τΣL, but it is by no means clear why this should be an isomorphism.
We note that in [7] it is argued, in the commutative case considered there, that
this is indeed so, based on the implicit claim that the two uniformities of OΣL
in question are the same, but no explanation is given, and we have so far been
unable to verify this. On the other hand, equality of these uniformities is not
really required here: for h to be an isomorphism it is sufficient that (τΣL)∗ηL is
a general Cauchy filter — but that seems just as elusive.
Another open question in connection with Propositions 4 and 5 concerns the

precise relation between the functors Σ and CO. Given that, for frames, Σ and
O are adjoint on the right to each other, one might wonder whether this carries
over to the present situation for Σ and CO, but the following considerations show
this is not the case — at least not if one expects the ρG : G→ ΣCOG to provide
one of the adjunctions. Suppose this to be so and let λL : L → COΣL be the
other adjunction maps. Then we have the identity COρG λCOG = idCOG, and
as CO is full by Proposition 5 there exists a topological group homomorphism
h : ΣCOG → G such that λCOG = COh. It follows from this that CO(hρG) =
idCOG, implying that hρG = idG because CO is faithful, and this makes ρG an
isomorphism since it is dense, contradicting the existence of topological groups
which are not two-sidedly complete.

In conclusion, we show how the present setting furnishes a short proof of a
variant of a result of Kř́ıž [9]. For this, recall that a topological group G is
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called an LT -group whenever Om : OG → O(G × G) factors through πG :
OG⊕OG→ O(G×G), thereby making OG into a localic group with the resulting
map µ0 : OG→ OG⊕OG as multiplication and the obvious inversion and unit.
Then we have the following characterization.

Proposition 6. A topological group G is an LT -group iff the frame OG is com-
plete in its two-sided uniformity.

Proof: (⇒) Since the outer square and the right hand triangle commute in the
diagram

COG
τG

//

µ

��

OG

µ0

��

Om

''N

N

N

N

N

N

N

N

N

N

N

COG⊕ COG
τG⊕τG

// OG⊕OG πG

// O(G×G)

and πG is dense, τG is a homomorphism of localic groups and hence an isomor-
phism by the Closed Subgroup Theorem.

(⇐) Trivially, πG (τG ⊕ τG)µτ
−1
G = Om. �

We note that, in general, for any uniform space X , the corresponding uniform
frame OX is complete iff X is supercomplete in the terminology of Isbell [4],
and consequently a topological group is an LT -group iff it is supercomplete in its
two-sided uniformity.

It should be added that the corresponding result of Kř́ıž [9, Theorem 4.3.3], is
formally weaker but a closer analysis of the relation between our COG and the
object considered there shows it is actually equivalent to the above proposition.
We omit the details.
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