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Condensations of Cartesian products

OLEG PavLov

Abstract. We consider when one-to-one continuous mappings can improve normality-
type and compactness-type properties of topological spaces. In particular, for any Ty-
chonoff non-pseudocompact space X there is a p such that X# can be condensed onto
a normal (o-compact) space if and only if there is no measurable cardinal. For any
Tychonoff space X and any cardinal v there is a Tychonoff space M which preserves
many properties of X and such that any one-to-one continuous image of M*, u < v,
contains a closed copy of X#. For any infinite compact space K there is a normal space
X such that X x K cannot be mapped one-to-one onto a normal space.

Keywords: condensation, one-to-one, compact, measurable
Classification: 54C10, 54A10

0. Introduction

We consider only Tychonoff topological spaces and continuous mappings. A con-
densation is a one-to-one mapping onto. Throughout the paper « denotes the
first Ulam-measurable cardinal, if such a cardinal exists.

It is well-known that many key topological properties are not multiplicative. How-
ever, for many examples of a given property P and a space (X, 7) which has P, but
X2 does not, there is a weaker topology 7/ on X such that the square of (X, 7’)
does have P. In fact, many examples are produced starting with the space (X, 7).
This observation motivated A.V. Arhangel’skii to raise the following questions. Is
it true that for any Lindeldf space X there is a condensation f : X — Z such that
Z? is Lindelof (see [1))? Is it true that the second power of any normal (hered-
itarily normal, paracompact, Lindeldf, pseudocompact, countably compact, etc.)
space can be condensed onto a space with the same property? Can any power of
a Lindelof space be condensed onto a Lindelof space ([1])? Is it true that QH can
be condensed onto a Lindelof (compact) space for any infinite u? These questions
are in line with the most general problem concerning condensations: when can a
space from class A be condensed onto a space from B2, for some A and B, B is
“better” than A in some sense.

R. Buzyakova answered several of these questions negatively. She constructed a
normal countably compact space in [3] and a Lindeldf space in [4], whose squares
cannot be condensed onto a normal space (A.N. Yakivchik constructed earlier
in [10] a Hausdorff non-regular finally compact space whose square cannot be
condensed onto a Hausdorff finally compact space). We generalize these results
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in Corollary 1: for any space X and a cardinal v there is a larger space M which
preserves many properties of X and contains many clopen copies of X in such a
way, that for any u < v and for each condensation f : M* — Z, Z contains a
closed copy of X*. Thus, condensations cannot improve most non-multiplicative
properties of arbitrary large (but a priori fixed) powers. If also all powers of X are
T-compact for some 7, then there is an M such that for any p, f(M*) contains a
closed copy of X*.

E.G. Pytkeev proved in [9] that any separable metrizable non o-compact Borel
space can be condensed onto I. Since Q“ is Borel (as a one-to-one continuous
image of N“, see [8]) and not o-compact (N“ is closed in Q“), Q¥ can be
condensed onto I¥. Therefore Q* can be condensed onto I for any infinite
1. This solves one of the mentioned questions. It turns out that a somewhat
similar result holds for most Lindel6f spaces. We show in Theorem 1 that for any
non pseudocompact X with |X| < xk, X* can be condensed onto a o-compact
space for many pu < k. On the contrary, if x does exist, then no power of some
non-pseudocompact spaces (of cardinality > k) can be condensed onto a normal
space (Corollary 3).

1. Condensation onto a o-compact space

Theorem 1. Let X be a non-pseudocompact Tychonoff space and let |X| be
non Ulam-measurable. Let |X| < po < x and for every k € w, pg11 = exp(ug)
and p = sup{py : k € w}. Then X* can be condensed onto a regular o-compact
space.

PrROOF: Let ap = |6X]| and for any k € w, ap1 = exp(ag). Then for a =
sup{an : n € w}, a = u. Let f € C(X,[0,00)) be such that for each i € w there
is b € f1(i+0.5). Let K = X, K = {x € K : f can be extended on X U {z}}
and let f be an extension of f on K. We denote K = K x [[{K,:1< v < a}
and X = [[{Xy : v < o}, where K and X, are copies of K and X respectively.
Then K is a T3 regular o-compact space.

For any i € w, let A; = {aij € w: a;, = i} be an increasing sequence such that for
17, AZ'-" N A;’ = () where AZ'-" = A; \ {ai, }. By induction, a mapping ¢ : w — w
can be defined such that

(1) ifi ¢ U{AZ'-" 1 € w}, then ¢(i) =0, and
(2) if j > 1, then ¢(a;;) = ¢(i) +j + 1.
——K - K
Let Co = f~1([0;1)) and for i € w, Cipq = f~H[i+3;i+2) \Ci; G =
Cix[[{Ky:1<vy<a}.
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Fori,j € w,j > 1,let Fjjo = ba,; x[[{Ky: 1<y < 0‘¢(aij)}7 and for 1 < A < q,
Fijan =K : Uga;) " D <7 < Agay) - (A+ 1)} (here we use a product of
ordinals, see [7]), then bg,; X [[{Ky:1 <y <a} =[[{Fija:A<a}.

For any 4,j € w, j > 1 and A > 1 we denote M;jo = ba,; x [[{Xy : 1 <
v < aga b and Mija = TH{Xy ¢+ aga,) - A <7 < dga;,) - (A+ 1)} Then
M;j0 C Fmo and M;; A C F;; . Each M;; A, A > 0, contains a closed discrete
subset H;; A of cardinality Xg(az;)—1 which is also C*-embedded in F;; . Indeed,
M;jo0 ~ M;jo x M;jo. The first factor contains a closed discrete subset of car-
dinality v (q,;)—1 by a theorem from [6] (since M;j0 is a g (q, ;)-power of a non

countably compact space X). The second factor contains a C* embedded subset
of the same cardinality. The diagonal product of these subsets is a required set

H;; a. Let us denote H;j o = HiijFij’A. For each 7, C;|<, denotes projection of
C onto ordinals not greater than 7.
Ificw, k>1and ¢(i) =0, let

Cio = Cij<ao \ [ [{X~ : ¥ < a0},
and
Cit = {7 € (Cij<op \ [[{Xy 17 S d) s 220y, € [[{X 7 < 1)
Ifn,k>1and i=aj,, let

Cio = Cij<aye \ (TT{Xy +7 < agy} U Hjnp),

and

2@ [[{Xy 07 < agiyret, and zpgyno1 € [J{Xy 07 < aggiyru—1}-
Then for every i,j € w, |Cjj| = exp(a¢(i)+j) = Qg(i)4j1- Let also Cj, =
Cik x [I{EKy : ag()4r <7 < a}. Therefore, if ¢(i) = 0, then {Cjy : k € w}is a
partition of C; \ X'. If ¢(i) # 0 and i = aj,, then {C;;, : k € w} is a partition of
Ci\(XYUI[{Hjna: A <a}).

For 4,5 € w, j > 1, let 950 be a one-to-one mapping of H;jo onto C(J 1)
Such a mapping exists since |H;; | = Aplais)—1 = Uo()+i+1)~1 = Vo(i)+j

|C | This mapping can be extended to a continuous mapping 1/12] 0: HZ] 0—
7@,(},_1) Kiagyei-1 = Ci x [I{Ky : 1 <7 < ag(iy4j—1}- In the same way for
i,j €Ew, j>1and 1 < A < « there is a one-to-one continuous mapping 7,/1” A
of H;;j A onto F; i(j—1),A- This mapping can be extended to a continuous mapping
7/}7,]A HUA—>F(] 1),A- For any i,j € w, j > 1, let 7/}7,] _H{wmA A<a}:

H{HZ] A:A<a} —C; and Yij = 1/)2]\?( It then follows that 1/’13‘ is a mapping
“onto” and that v;; is a condensation of [[{H;; A : A < a} onto C;;_1).
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Fori,j €w,j > 1,let D;; = Dom(1/~),~j), then 1/~Jz'j induces an upper semicontinuous
decomposition E;; of D;; since D;; is compact. We define a decomposition £ of
IC as follows:

(1) if 2 ¢ U{Dyj :4,j € w,j > 1}, then By < x = y;

(2) if jo > 1 and @ € Djj,, then xEy if and only if y € D; ;, and xE; ;,y.
This decomposition is well defined and it is upper semicontinuous since {D;; C
K:i,j €w,j > 1} is alocally finite family of disjoint closed subsets of K. Then
the quotient mapping ¢ : K — K' = K /E s closed, therefore X' is a Ty regular o-
compact space. For i € w, let D;g = C;, D; = U{D;j:jew}, K =U{Dj:j <i}
and G; = U{C; : j <i}. By a theorem from [2] the space K is an inductive limit
of its closed subsets IC; and also of the compacta G;. The same is true for the
space K" and sets K, = ¢(K;) and G} = ¢(G;) since ¢ is a quotient mapping. Let
Dj = q(D;), D;; = q(D;j) and X" = q(X).

We claim that qx is a condensation. To see this, note that from the definition
of the decomposition E it is sufficient to prove that ¢p,nx is a condensation.

But this is obvious since E;; is generated by a mapping 1;; whose restriction
%i;j is a condensation. In general, &’ " is not a o-compact space. The desired
condensation of X’ onto a o-compact space will be a restriction 9)x+ of a quotient
map g : K' — g(K') which we define at the end of the proof. g will be the limit
of maps g;, i € w, which are defined below, in the sense of Lemma 1. It will
be constructed in such a way that g(X’) = g(K’) which ensures that g(X’) is
o-compact. In the next paragraph we introduce an auxiliary notation which will
be used in the definition of maps g;.

Let H be a closed subset of some topological space M, and let h be a quotient

mapping of H. Then A induces a decomposition Fr of H and an associate

decomposition Ej; of M by the rules: if x ¢ H, then xFEyy <z =y; if x € H,

then zEyy < y € H and xFgy. The decomposition Fj; defines a quotient

mapping of M, which we will denote by hg ps. It is clear that if h is closed

then so is huyr nr, that hyp pgipp\ g is @ homeomorphism, and that hg ar (M \ H) N

hy v (H) = 0.

Let us define quotient mappings g—1, g—1,0 and g;, g; i+1 as follows:

(1) g—1 =idks;

(2) if g;—1 is already defined, then g; 1 ; = i-Lig, \(D!).gir(K") and g; = ¢;—1,0
9i—1;

(3) let 9i—1,ilgi_1(D") be a quotient mapping corresponding to decomposition E;
of the space g;—1(Dj), where for y € C;, Ej(9i-19(y)) = {9i—1(a(y))} U
{9i—1(q(X)) : there is j > 1,z € D; ; and ¢; j(z) = y}.

The following are the properties of the mappings ¢;_1, g;—1,; for i € w:

(a) g;—1(K) is a T1 normal space;

(b) every compact g;—1(D},) (n € w) has a neighborhood Uj ,, in g;—1(K’) such
that {U; ,, : n € w} is a discrete family in g;_1(K);
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) gi—1(D") is closed in g;_1(K');

d) for any i,j € w, g;_ 1D, is a homeomorphism'
)

) B

1= gl 1(K") is compact for i > 0;
g) gz—l,i\Bi,l is a homeomorphism for i > 0.
First, let us check properties (a)—(g) for ¢« = 0. (a) holds trivially. The family
{Ugn € K' : n € w}, where Upg = q(f1[0; %)) and Uy; = q(f_l(baoj —%; baoj—i—%))
for i > 1 satisfies (b). (c) follows from (b) and the fact that Dy = P{Dp , : n €
w} and each D67n is compact. (d) holds trivially, (e) follows directly from (b)—(d).
Now let mappings gy, gr—1, be constructed for all k¥ < i—1 and satisfy properties

(a)—(e).
Lemma 1. Let a 17 normal space M be an inductive limit of an increasing
sequence of its closed subsets My, where n € w. Let {hy, n41: 1 € w} be a family
of quotient mappings such that Dom(ho 1) = M, Dom(hy41,n+2) = Ran(hpnt1)
and hy41 = hypy10 ... ohg1.. Let M be an equivalence relation on M such that
My < hi(x) = hi(y) for some n € w. Let also for n € w sets By, = hyp(My,) be
normal and closed subsets of hn(M) and h,, ;, 1|, be a homeomorphism onto a
closed subset of By 1. Then the image H/M of a natural quotient mapping h of
M is a T normal space.
PROOF OF LEMMA 1: For any z € M, h=Y(h(x)) = U{h; Y (hn(z)) : n € w}. For
each i € w, hn+2(hn+,~(x)) N My, = hiY(hn(2)) N My, therefore h=1(h(2)) N M, =
hoY(hn(x)) N M,,. The latter set is closed in M, hence h ™1 (h(x)) is closed in M
and M/M is a T7 space.
Let F, G be disjoint closed subsets of M such that h~1(h(F)) = F, h~1(h(G)) =
G. Let Og and Uy be functionally disjoint in By neighborhoods of hg(Fp) and
ho(Go) respectively. The sets Vy = hgl(Oo)ﬂMO and Wy = h~ 1 (Ug) N M satisfy
the following conditions for n = 0:
(1) byt (hn (Vi) N My = Vi, byt (hn (W) 0 My, = W
(2) F, C Vy, and Gy, C Wy, where F,, = F N My, and Gy, = G N Mpy;
Bn Bn

(3) hn(Va) ™" Nhn (W) ™" =0
(4) Vi, D Vy—1 and Wy, D Wy, for all n > 1.
Let Vi, Wy, be constructed for all n < k, k > 1, and satisfy (1)—(4). By (3)
hk—l,k(hk—1(Vk—1)Bk71) N hk—l,k(hk—ﬂWk—l)Bk*l) = (. From the definition
of F and G and by (1), (2) hp—16(he—1(Ve1) **) N hi(G) = 0 and hy(F) N

—————Bi_ By, B
hi—1 g (h—1(W—1) " * ") = 0, then hyy(Ve_y U Fg) " N hypy(Wy—1 UGy) " =0,
and these sets have functionally disjoint in By neighborhoods O, and U}, respec-
tively. Let Vi = hy *(Oy) N My, Wy, = h; }(Uy) N M. Vj and Wy, satisfy (1)—(4)
for n = k, therefore the construction of V,, W, can be carried out for all n € w.
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Nowlet V=U{V} :k € w}and W = U{W} : k € w}. V and W are open in M
since M is an inductive limit of M,. By (1) h=Y(h(V)) = V and h= 1 (h(W)) = W;
by (2) F C V and G C W. Lemma 1 is proved. O

Let M = g;_1(K') and M,, = g;_1(Gy). Let h, be a natural quotient mapping
for the decomposition M, of the space g;_1(K’), where for x € M, 2Mpy <
zEly and for x ¢ My, M,y = x = y. Since any element of M,, is a subset
of some element of M, 1, the composition mapping hy_1,, = hp o h;il also
is a quotient mapping. M = g;_1(K’) is an inductive limit of compacta My,
since K’ is an inductive limit of compacta G}, and g;_1 is a quotient mapping.
Since My, a1, = My 1|My> Pnn1|hn(M,) 18 @ homeomorphism for any n € w.
All conditions of the lemma are satisfied, therefore h maps M onto a normal
space M, = Ez{/Mn’ new UM, :ne€w=M=g_1(K)and M =
Dom(M), gi—1(K') = Dom(E}), thus M = E! and the quotient mappings H
and g; (which are generated by M and E]) coincide. Therefore g;(K') is a T}
normal space. Let us prove properties (b)—(e). For Ujg = g;(q¢(f~[0;7 + %))) and
Uij = gi(q(f_l(baij — %;baij + %))) for j > 1, the family {U;,, : n € w} satisfies
(b). Equality D;y1 = U{Dg+1,n :n € w} and (c) follow from (b) and the fact that
each subset Dé—i—l,n

D} ,, is compact and Elfl py Is a trivial decomposition into singletons, therefore
b y n

(d) is true. (e) follows from (b)—(d).

Therefore, g;_1; and g; can be constructed for all i € w and satisfy (a)—(e). Let
us prove (f) and (g) for i > 1. B; = ¢;(K) = ¢;(G}), hence B; is compact. Map
gii+1 is defined by the decomposition E; 110 E; +1|By which is a decomposition
into singletons, therefore g; ;,1|p, is a homeomorphism.

is compact, and therefore g;(Dj | ,) is closed in g;(K'). Each

Now let M = K/, hp, = gn, hnn+1 = gnnt1 and My, = Dy, for n € w. Conditions
of the lemma follows from (f), (g). The resulting mapping g is defined by the
decomposition E’ of K: zE'y < g;(x) = g;(y) for some i € w, and g maps K’
onto a T7 regular o-compact space.

The conclusion of Theorem 1 follows from the following properties:

(h) B; C gi(X");

(k) gjar is a condensation.

Assume the contrary to (h). Then there is the minimal iy € w such that for some
VS Cio \Xv Gig (Q(x)) 7& gi(x,)' If ig = Qigko and x € Hjo,km then wioko (‘T) € Ci07
jo < io and by the assumption g (q(x)) € gio(a(Cj, \ X)) C giy(2'). That
contradicts the minimality of ig. If z ¢ U{fljk 1 J < jo,k € w}, then x € Cjyj,
for some jo € w. Since 1);, jo4+1 maps Hj;yj;, onto C;yj, and from the definition of
Ez{oa glo(Q(x)) C g’lo(q(Hlo j0+1)) - gio(xl) and (h) is pI‘OVGd.

Suppose it is proved that gijx+ is a condensation for all i < k, k € w. Since
9k = 9k—1,k © gk—1, it is sufficient to prove that Ik—1,k|gp_(X7) 1S @ condensation.
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By (d) gy DL is a homeomorphism for any ¢ € w. It is sufficient to prove that for
J
any jo,Jj1 € w, 0 < jo < j1,and z9 € Dy j, N X, 21 € Dy j; N X and y € D, N X
the following inequalities hold: gi(q(z0)) # grk(q(z1)) # gk(a(v)) # gr(a(20))-
Uk,jo(x0) € Chjo—1, Vk,jy (1) € Cpjy—1, therefore gy (q(z0)) # gr(q(z1)) since
Ch,jo—1 mck,hjl = (). From the definition of v;;, 1}, ;, maps D;C].O NX in C jo—1 €
D;fo \ & and ¢y,;, maps D;le N&X in Cy 4,1 € D \ X. Hence other inequalities
also hold. O

A cardinal p is called T7-measurable, if there is a 7-centered ultrafilter on u, so
the Ulam-measurable cardinals are exactly those which are w-centered. The same
method allows us to prove the following

Theorem 2. Let ug be a non T-measurable cardinal and for every k € w, pig41 =
exp(pg) and p = sup{py : k € w}. Let Xg be a Tychonoff non-pseudocompact
space and {Xy : 1 < o < p} be a family of spaces such that ext(X,) > 7 for
1<a<7and|Xq| < pfor0<a<pu. Then [[{Xq:a < u} can be condensed
onto a regular o-compact space.

2. A case of T-compact spaces

For any cardinal 7, let 7 be the set of all isolated ordinals less then 7. A space X is
called 7-compact if each of its subsets of cardinality 7 has a complete accumulation
point in X. For any space X, a compactification cX, and cardinals 71, 1o let
M(X,cX,11,72) = ((114+1) X (72+1) x cX)\ (71 X T2 X (¢X \ X)). This construction
is related to the space ((7+1) x 8X)\ (7 x (8X \ X)) for certain X and 7 which
was described by R. Buzyakova in [4].

We have shown in Section 1 that for many spaces X there are certain powers p,
which depend on X, such that X* can be condensed onto a o-compact space. The
original space can be as bad as we wish and fail all the properties of o-compact
spaces. Thus, in that situation condensations can improve topological properties
of powers. In this section we prove somewhat reverse result by producing examples
of good spaces M whose (small) powers are so bad that they cannot even be
improved by condensations. Let p be an ordinal, and let 7;, ¢ = 1,2,3,4, be
cardinals which depend on 7 and on the size of X as it is stated in Theorem 3.
We denote M = M (X,cX,11,72) @ M(X,cX,13,74) and M, ~ M for v < u. M
consists of a compact “skeleton” K = {[((11 +1) x (12 + 1))\ (71 x 72)] B[((13 +
1) x (t4 + 1)) \ (T3 X 74)]} X ¢X and of many clopen copies of X. If f: M¥ — Z
is a condensation, then f‘ ke is a homeomorphism since K* is compact. K* is
only a part of M, but the copies of X are inserted in M in such a way that
this restriction influences the whole map F' and we can ultimately find clopen
copies X, of X in M, for all v < u such that f restricted to [[{X, :v < pu}isa
homeomorphism onto a closed subset of Z. Now suppose that X* is not normal
(paracompact, etc.). Then Z is not normal (paracompact, etc.) either. This
means that M* cannot be condensed onto a normal (paracompact, etc.) space.
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The fact that M is good itself when X is so follows from Lemma 2. Hence M is
the desired example.

Lemma 2. Let X be a Tychonoff space and let cX be a compactification of X.
Let M = M(X,cX,11,72) @ M(X,cX,13,74) for some cardinals 7;, i = 1,2, 3,4.
Then M is normal (T-paracompact, realcompact) iff X is so and M* is pseudo-
compact iff X* is so.

Let a property P be invariant of continuous mappings, of inverse perfect map-
pings and suppose P is inherited by clopen subsets. Then M* satisfies P iff so
does X*. In particular, (M*) = 7 (M* is T-initially compact, o-compact, T is
regular and M* is T-compact, respectively) iff the same is true for X*.

PrOOF: K = {[((11+1)x (r2+ 1))\ (71 x72)] B[((13+1) x (14+1))\ (73 X T4)]} x X
is compact and any neighborhood of K in M contains a neighborhood U such that
M\ U is a union of finitely many clopen copies of X. This proves the first part
of the lemma.

Ki=({(m1+1)x(ma+1)P((13+1) x (14 + 1)) is compact and K7 x X is dense
in M. Therefore (K1)* x X* is dense in M*. Some clopen subset of M* can be
projected onto X. By these reasons M* is pseudocompact iff so is X¥.

The space M /(K x ¢X) is obtained from M by identifying a closed subset K x ¢X
to a single point (see [5]). K x ¢X is compact, so the corresponding quotient
map ¢ : M — M/(K x ¢X) is perfect. Let p be a restriction of ¢ to K1 x X,
then p(K7 x X) = q(M). Let pa, go be the a-th “copies” of p, ¢, « < p and
P=A{pa:a<pu}, = A{ga s a < p}, then M = q ! (p((K1 x X)H)). 0

Theorem 3. Let X* be 7-compact and let T, 1; be regular cardinals, i = 1,2, 3,4,
such that 11 > 10 > 13 > 74 > max{|cX|,7}. Then for M = M(X,cX,11,72)
P M(X,cX,73,74), Y = M* and any condensation f : Y — Z there is a closed
subset ' of Y homeomorphic to X* such that f| F is a homeomorphism onto a
closed subset of Z. Also, any continuous function on f(F') that can be extended
to a function on (¢X)* (when f(F) is naturally embedded in (¢X)*) can be
extended on Z. In particular, if X* is pseudocompact and ¢cX = X, then f(F)
is C-embedded in Z.

PROOF: Assume that cf(u) # 71,72. Let Y = [[{Ya : @ < pu}, where each Yy, is
homeomorphic to M. We denote Y = Y, Z = Z; f is a continuous extension
of f from Y to Z. For any o < p, let o : Y — Y, be a projection and let g

be its extension from Y onto Y, = Y4. For y € Y, and i = 1,2, 3, oi(y) is a

projection onto (11 + 1), (72 + 1) or ¢X respectively if y € M (X, cX, 11, Tg)Ya or
- ¥

onto (173 + 1), (74 + 1) or ¢X respectively if y € M(X,cX,73,74) . For a < p

and 7 = 1,2,3, we denote ¥, ; = ¢; 0 T and Y3 = A{t)q 3 : a < p}. For any

combination 4, j of indexes 1,2,3, let ¢;; = ¢;A¢; and Y ;j = ¢ij 0 Ta. For

(a,B) € 1 x T2, let Y3 = {y € Y :if by 3(y) € eX \ X for some v < y, then

Uya2(y) = (e, B)}. If v < p then let Yy = {y € Yop: ¥9,3(y) € cX \ X}
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Now let v < u be fixed. For any 3’ € 7o, let Ag = {y € Ygﬁ, T €T

and there is ' € Ygﬁ, UY such that ¢, 3(y) # ¥,3(y’) and fy) = f()}.
Let 7/ = maz{r, |cX|}T, we claim that |[{¢y1(Ag)}| < 7. For, assume the
contrary. Then there is a monotonically increasing mapping ¢ from 7/ in 71,
apoint ¢c € cX \ X, sets A = {ys : 6 <7/} and A = {yj : 6 < 7'} and a
neighborhood U of ¢ in 79 x ¢X such that for any § < 7/, ys € Yq?(&)ﬁ” yg €

Y(;/((;)ﬁ/ UY, ¥y23(y5) = ¢ ¥qy,23(y5) ¢ U, and f(ys) = f(yjs) (it’s all possible
because 1,23(Ag) C {4’} x X and {8’} x ¢X is open in 73 X ¢X, 50 ¢y 23(Ag")
has a base of cardinality < ¢X < 7/ in 79 x ¢X). For any ys € 4, let §5 be such
a point from Y that for any v < u, 7, (95) = 7v(ys) if Tu(ys) € Yy, otherwise let
Pu,23(J5) = Vu,23(ys) and ¥u,1(J5) = Pu,1(ys) +w. Let A= {gs: 3 < 7'}. In the
same way the set A’ = {75 : 6 < 7'} is defined. The set {(75,75) € Y xY : 6 <7}
has a complete accumulation point (a,a’) in Y x Y (Y x Y ~ Y is 7-compact).
From the constructions of A and A’ from A and A, (a,a’) is also a complete
accumulation point of {(ys,v5) € Y xY : 6 < 7'}, so from the continuity of f
f(a) = f(a’). But 1 23(a) ¢ U, so a # a’ — contradiction to the fact that f is
a condensation. So [1,1(Ag )| < 7 x [cX]| < 71 and, since T2 < 71, there is an
ordinal v, < 71 such that 1 1(Ag) C vy for any B er.

In the same way, for any v < u and o/ < 71 there is an ordinal ﬂg, < 79 such that
Yy 2(Ay) C ﬂg, where A, = {y € Y;,ﬁ : B € 7 and there is ' € Y, , UY such

- o'f
that 1 3(y) # ¥,3(y) and f(y) = f(y')}.

Since cf(u) # 71, there is & < 71 and I'y C p such that |I';| = p and for any
v €Ty, vy < &. Since also cf (1) # T2, there is B < 79 and I's C I'; such that
IT2| = u and for any v € Tg, ﬁg_H < 3. Now let y € Y; for any v € I'y we
define Fy = (& + 1) x (6+1) x X and for any v € p\ T2, Fy = 7 (y). The set
F'=[[{Fy : v € pu} is homeomorphic to X* and f| is a homeomorphism onto a
closed subset f(F) of Z. Let g be a continuous function on (¢X)* and let h be

a map from T onto (X ) such that h(y) = {1,,3(y) : v €2}, y € TY. Then
ho f_l‘f(F) is a natural embedding of f(F) in X* C (¢X)* by the properties of
fip- Since F(h=Y@)Nf(h~Y(ws)) = 0 for x1 # 29, 21,72 € (cX)* by the choice

of F, ho f~1is a continuous function from f(F)Z onto (¢X)*. Therefore g can

7 ~
be lifted to a continuous function on f(F)~ and extended to a function on Z.
If ¢f(u) = 71 or ¢f (1) = 72, all the preceding arguments remain valid if 71 and
To are replaced everywhere with 73 and 74 respectively. (|

Corollary 1. a. For any Tychonoff space X and any cardinal v there is a
larger space M which preserves many properties of X listed in Lemma 2 and
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such that for any pu < v and a condensation f : M* — Z Z contains a closed
subset homeomorphic to X*; if X* is pseudocompact, then this subset is also C-
embedded in Z. In particular, M* cannot be condensed onto a normal (Lindeldf,
o-compact, etc.) space if X* is not normal (Lindeléf, o-compact, etc.).

b. If X is countably compact in all powers or if there is a | X |-measurable cardinal,
then M satisfies the above properties for all v.

PROOF: a. Let 7 = |BXY|T and 71 = 7, 7,101 = 7'

b
is 7-compact for any u < v, so M = M(X, X, 7'1,7'2)
required space.

1 =1,2,3. Clearly, X*
(X,8X,13,74) is a

b. If X is countably compact in all powers, let 7 = |3X|*, 71 = 77, and for
i =1,2,3 741 =7,. Then M = M(X,8X,71,72) @ M(X,3X,73,74) is as
desired. If 7 is the first |X|-measurable cardinal, then all powers of X are 7-
compact, hence for 11 = 77, 7,11 = T;_, i=1,23, M = M(X,8X,11,72) P
M(X, X, 73,74) is as required. O

Corollary 2. For any infinite compactum K there is a normal space X such that
X x K cannot be condensed onto a normal space.

PROOF: Let Y be a Dowker space and 7 = max{|3Y|, |K|}*, 71 =77, 711 = Ti+,
i = 1,2,3. The space X = M(Y,5Y,1,72) @ M(Y,BY,73,74) is normal by
Lemma 2. X x K cannot be condensed onto a normal space by Theorem 3 since
XxK=MY xK,BY x K,71,7) @MY x K,BY x K,73,74). O

From Theorem 1 and Corollary 1 we derive the following

Corollary 3. The following are equivalent:

(1) for any Tychonoff non-pseudocompact space X there is p such that X* can
be condensed onto a normal space;

(2) for any Tychonoff non-pseudocompact space X there is p such that X* can
be condensed onto a regular o-compact space;

(3) there is no measurable cardinal.
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