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Condensations of Cartesian products

Oleg Pavlov

Abstract. We consider when one-to-one continuous mappings can improve normality-
type and compactness-type properties of topological spaces. In particular, for any Ty-
chonoff non-pseudocompact space X there is a µ such that Xµ can be condensed onto
a normal (σ-compact) space if and only if there is no measurable cardinal. For any
Tychonoff space X and any cardinal ν there is a Tychonoff space M which preserves
many properties of X and such that any one-to-one continuous image of Mµ, µ ≤ ν,
contains a closed copy of Xµ. For any infinite compact space K there is a normal space
X such that X × K cannot be mapped one-to-one onto a normal space.

Keywords: condensation, one-to-one, compact, measurable

Classification: 54C10, 54A10

0. Introduction

We consider only Tychonoff topological spaces and continuous mappings. A con-
densation is a one-to-one mapping onto. Throughout the paper κ denotes the
first Ulam-measurable cardinal, if such a cardinal exists.

It is well-known that many key topological properties are not multiplicative. How-
ever, for many examples of a given property P and a space (X, τ) which has P , but
X2 does not, there is a weaker topology τ ′ on X such that the square of (X, τ ′)
does have P . In fact, many examples are produced starting with the space (X, τ ′).
This observation motivated A.V. Arhangel’skii to raise the following questions. Is
it true that for any Lindelöf space X there is a condensation f : X → Z such that
Z2 is Lindelöf (see [1])? Is it true that the second power of any normal (hered-
itarily normal, paracompact, Lindelöf, pseudocompact, countably compact, etc.)
space can be condensed onto a space with the same property? Can any power of
a Lindelöf space be condensed onto a Lindelöf space ([1])? Is it true that Qµ can
be condensed onto a Lindelöf (compact) space for any infinite µ? These questions
are in line with the most general problem concerning condensations: when can a
space from class A be condensed onto a space from B?, for some A and B, B is
“better” than A in some sense.

R. Buzyakova answered several of these questions negatively. She constructed a
normal countably compact space in [3] and a Lindelöf space in [4], whose squares
cannot be condensed onto a normal space (A.N. Yakivchik constructed earlier
in [10] a Hausdorff non-regular finally compact space whose square cannot be
condensed onto a Hausdorff finally compact space). We generalize these results
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in Corollary 1: for any space X and a cardinal ν there is a larger space M which
preserves many properties of X and contains many clopen copies of X in such a
way, that for any µ ≤ ν and for each condensation f : Mµ → Z, Z contains a
closed copy of Xµ. Thus, condensations cannot improve most non-multiplicative
properties of arbitrary large (but a priori fixed) powers. If also all powers of X are
τ -compact for some τ , then there is an M such that for any µ, f(Mµ) contains a
closed copy of Xµ.

E.G. Pytkeev proved in [9] that any separable metrizable non σ-compact Borel
space can be condensed onto Iω. Since Qω is Borel (as a one-to-one continuous
image of Nω, see [8]) and not σ-compact (Nω is closed in Qω), Qω can be
condensed onto Iω. Therefore Qµ can be condensed onto Iµ for any infinite
µ. This solves one of the mentioned questions. It turns out that a somewhat
similar result holds for most Lindelöf spaces. We show in Theorem 1 that for any
non pseudocompact X with |X | < κ, Xµ can be condensed onto a σ-compact
space for many µ < κ. On the contrary, if κ does exist, then no power of some
non-pseudocompact spaces (of cardinality ≥ κ) can be condensed onto a normal
space (Corollary 3).

1. Condensation onto a σ-compact space

Theorem 1. Let X be a non-pseudocompact Tychonoff space and let |X | be
non Ulam-measurable. Let |X | ≤ µ0 < κ and for every k ∈ ω, µk+1 = exp(µk)
and µ = sup{µk : k ∈ ω}. Then Xµ can be condensed onto a regular σ-compact
space.

Proof: Let α0 = |βX | and for any k ∈ ω, αk+1 = exp(αk). Then for α =
sup{αn : n ∈ ω}, α = µ. Let f ∈ C(X, [0,∞)) be such that for each i ∈ ω there

is bi ∈ f−1(i+ 0.5). Let K = βX , K̃ = {x ∈ K : f can be extended on X ∪ {x}}

and let f̃ be an extension of f on K̃. We denote K = K̃ ×
∏
{Kγ : 1 ≤ γ < α}

and X =
∏
{Xγ : γ < α}, where Kγ and Xγ are copies of K and X respectively.

Then K is a T1 regular σ-compact space.

For any i ∈ ω, let Ai = {aij ∈ ω : ai0 = i} be an increasing sequence such that for

i 6= j, A+i ∩A+j = ∅ where A+i = Ai \ {ai0}. By induction, a mapping φ : ω → ω

can be defined such that

(1) if i /∈ ∪{A+i : i ∈ ω}, then φ(i) = 0, and

(2) if j ≥ 1, then φ(aij) = φ(i) + j + 1.

Let C0 = f̃−1([0; 1))
K̃
and for i ∈ ω, Ci+1 = f̃−1([i+ 12 ; i+ 2))

K̃
\ Ci; Ci =

Ci ×
∏
{Kγ : 1 ≤ γ < α}.
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For i, j ∈ ω, j ≥ 1, let Fij,0 = baij ×
∏
{Kγ : 1 ≤ γ ≤ αφ(aij)}, and for 1 ≤ ∆ < α,

Fij,∆ =
∏
{Kγ : αφ(aij ) · ∆ < γ ≤ αφ(aij ) · (∆ + 1)} (here we use a product of

ordinals, see [7]), then baij ×
∏
{Kγ : 1 ≤ γ < α} =

∏
{Fij,∆ : ∆ < α}.

For any i, j ∈ ω, j ≥ 1 and ∆ ≥ 1 we denote Mij,0 = baij ×
∏
{Xγ : 1 ≤

γ ≤ αφ(aij)} and Mij,∆ =
∏
{Xγ : αφ(aij ) · ∆ < γ ≤ αφ(aij ) · (∆ + 1)}. Then

Mij,0 ⊂ Fij,0 and Mij,∆ ⊂ Fij,∆. Each Mij,∆, ∆ ≥ 0, contains a closed discrete
subset Hij,∆ of cardinality αφ(aij)−1 which is also C

∗-embedded in Fij,∆. Indeed,

Mij,0 ≈ Mij,0 ×Mij,0. The first factor contains a closed discrete subset of car-
dinality αφ(aij )−1 by a theorem from [6] (since Mij,0 is a αφ(aij )-power of a non

countably compact space X). The second factor contains a C∗-embedded subset
of the same cardinality. The diagonal product of these subsets is a required set

Hij,∆. Let us denote H̃ij,∆ = Hij,∆
Fij,∆ . For each τ , Ci|≤τ denotes projection of

C onto ordinals not greater than τ .

If i ∈ ω, k ≥ 1 and φ(i) = 0, let

Ci0 = Ci|≤α0 \
∏

{Xγ : γ ≤ α0},

and

Cik = {x ∈ (Ci|≤αk
\

∏
{Xγ : γ ≤ αk}) : x|≤αk−1

∈
∏

{Xγ : γ ≤ αk−1}}.

If n, k ≥ 1 and i = ajn, let

Ci0 = Ci|≤αφ(i)
\ (

∏
{Xγ : γ ≤ αφ(i)} ∪ H̃jn,0),

and

Cik = {x ∈ (Ci|≤αφ(i)+k
\ (

∏
{H̃jn,∆ : ∆ < α})|≤αφ(i)+k

) :

x /∈
∏

{Xγ : γ ≤ αφ(i)+k}, and xφ(i)+k−1 ∈
∏

{Xγ : γ ≤ αφ(i)+k−1}.

Then for every i, j ∈ ω, |Cij | = exp(αφ(i)+j) = αφ(i)+j+1. Let also Cik =

Cik ×
∏
{Kγ : αφ(i)+k < γ < α}. Therefore, if φ(i) = 0, then {Cik : k ∈ ω} is a

partition of Ci \ X . If φ(i) 6= 0 and i = ajn, then {Cik : k ∈ ω} is a partition of

Ci \ (X ∪
∏
{H̃jn,∆ : ∆ < α}).

For i, j ∈ ω, j ≥ 1, let ψij,0 be a one-to-one mapping of Hij,0 onto Ci(j−1).

Such a mapping exists since |Hij,0| = αφ(aij)−1 = α(φ(i)+j+1)−1 = αφ(i)+j =

|Ci(j−1)|. This mapping can be extended to a continuous mapping ψ̃ij,0 : H̃ij,0 →

Ci(j−1)
K|≤αφ(i)+j−1 = Ci ×

∏
{Kγ : 1 ≤ γ ≤ αφ(i)+j−1}. In the same way for

i, j ∈ ω, j ≥ 1 and 1 ≤ ∆ < α there is a one-to-one continuous mapping ψij,∆
of Hij,∆ onto Fi(j−1),∆. This mapping can be extended to a continuous mapping

ψ̃ij,∆ : H̃ij,∆ → Fi(j−1),∆. For any i, j ∈ ω, j ≥ 1, let ψ̃ij =
∏
{ψ̃ij,∆ : ∆ < α} :

∏
{H̃ij,∆ : ∆ < α} → Ci and ψij = ψ̃ij|X . It then follows that ψ̃ij is a mapping

“onto” and that ψij is a condensation of
∏
{Hij,∆ : ∆ < α} onto Ci(j−1).
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For i, j ∈ ω, j ≥ 1, letDij = Dom(ψ̃ij), then ψ̃ij induces an upper semicontinuous
decomposition Eij of Dij since Dij is compact. We define a decomposition E of
K as follows:

(1) if x /∈ ∪{Dij : i, j ∈ ω, j ≥ 1}, then xEy ↔ x = y;
(2) if j0 ≥ 1 and x ∈ Di0j0 , then xEy if and only if y ∈ Di0j0 and xEi0j0y.

This decomposition is well defined and it is upper semicontinuous since {Dij ⊂
K : i, j ∈ ω, j ≥ 1} is a locally finite family of disjoint closed subsets of K. Then
the quotient mapping q : K → K′ = K/E is closed, therefore K

′ is a T1 regular σ-

compact space. For i ∈ ω, let Di0 = Ci, Di = ∪{Dij : j ∈ ω}, Ki = ∪{Dj : j ≤ i}

and Gi = ∪{Cj : j ≤ i}. By a theorem from [2] the space K is an inductive limit
of its closed subsets Ki and also of the compacta Gi. The same is true for the
space K′ and sets K′

i = q(Ki) and G
′
i = q(Gi) since q is a quotient mapping. Let

D′
i = q(Di), D

′
ij = q(Dij) and X ′ = q(X ).

We claim that q|X is a condensation. To see this, note that from the definition

of the decomposition E it is sufficient to prove that q|Dij∩X is a condensation.

But this is obvious since Eij is generated by a mapping ψ̃ij whose restriction
ψij is a condensation. In general, X

′ is not a σ-compact space. The desired

condensation of X ′ onto a σ-compact space will be a restriction g|X ′ of a quotient

map g : K′ → g(K′) which we define at the end of the proof. g will be the limit
of maps gi, i ∈ ω, which are defined below, in the sense of Lemma 1. It will
be constructed in such a way that g(X ′) = g(K′) which ensures that g(X ′) is
σ-compact. In the next paragraph we introduce an auxiliary notation which will
be used in the definition of maps gi.

Let H be a closed subset of some topological space M , and let h be a quotient
mapping of H . Then h induces a decomposition EH of H and an associate
decomposition EM of M by the rules: if x /∈ H , then xEM y ⇔ x = y; if x ∈ H ,
then xEMy ⇔ y ∈ H and xEHy. The decomposition EM defines a quotient
mapping of M , which we will denote by hH,M . It is clear that if h is closed
then so is hH,M , that hH,M |M\H is a homeomorphism, and that hH,M (M \H)∩

hH,M (H) = ∅.

Let us define quotient mappings g−1, g−1,0 and gi, gi,i+1 as follows:
(1) g−1 ≡ idK′ ;
(2) if gi−1 is already defined, then gi−1,i = gi−1,igi−1(D′

i),gi−1(K′) and gi = gi−1,i◦
gi−1;

(3) let gi−1,i|gi−1(D′) be a quotient mapping corresponding to decomposition E
′
i

of the space gi−1(D
′
i), where for y ∈ Ci, E

′
i(gi−1q(y)) = {gi−1(q(y))} ∪

{gi−1(q(X)) : there is j ≥ 1, x ∈ Di,j and ψ̃i,j(x) = y}.
The following are the properties of the mappings gi−1, gi−1,i for i ∈ ω:
(a) gi−1(K) is a T1 normal space;
(b) every compact gi−1(D

′
in) (n ∈ ω) has a neighborhood Ui,n in gi−1(K

′) such
that {Ui,n : n ∈ ω} is a discrete family in gi−1(K);
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(c) gi−1(D
′) is closed in gi−1(K

′);
(d) for any i, j ∈ ω, gi−1|D′

j,n
is a homeomorphism;

(e) gi−1|D′
i
is a homeomorphism in a closed subset of gi−1(K

′);

(f) Bi−1 = gi−1(K
′) is compact for i > 0;

(g) gi−1,i|Bi−1
is a homeomorphism for i > 0.

First, let us check properties (a)–(g) for i = 0. (a) holds trivially. The family

{U0n ⊂ K′ : n ∈ ω}, where U00 = q(f̃
−1[0; 43 )) and U0i = q(f̃

−1(ba0j−
1
3 ; ba0j+

1
3 ))

for i ≥ 1 satisfies (b). (c) follows from (b) and the fact that D′
0 =

⊕
{D′
0,n : n ∈

ω} and each D′
0,n is compact. (d) holds trivially, (e) follows directly from (b)–(d).

Now let mappings gk, gk−1,k be constructed for all k ≤ i−1 and satisfy properties
(a)–(e).

Lemma 1. Let a T1 normal space M be an inductive limit of an increasing
sequence of its closed subsets Mn, where n ∈ ω. Let {hn,n+1 : n ∈ ω} be a family
of quotient mappings such thatDom(h0,1) =M , Dom(hn+1,n+2) = Ran(hn,n+1)
and hn+1 = hn,n+1◦ ... ◦h0,1. . LetM be an equivalence relation onM such that
xMy ⇔ hk(x) = hk(y) for some n ∈ ω. Let also for n ∈ ω sets Bn = hn(Mn) be
normal and closed subsets of hn(M) and hn,n+1|Bn

be a homeomorphism onto a

closed subset of Bn+1. Then the image H/M of a natural quotient mapping h of

M is a T1 normal space.

Proof of Lemma 1: For any x ∈M , h−1(h(x)) = ∪{h−1n (hn(x)) : n ∈ ω}. For

each i ∈ ω, h−1n+i(hn+i(x))∩Mn = h
−1
n (hn(x))∩Mn, therefore h

−1(h(x))∩Mn =

h−1n (hn(x))∩Mn. The latter set is closed in Mn, hence h
−1(h(x)) is closed in M

and M/M is a T1 space.

Let F , G be disjoint closed subsets ofM such that h−1(h(F )) = F , h−1(h(G)) =
G. Let O0 and U0 be functionally disjoint in B0 neighborhoods of h0(F0) and

h0(G0) respectively. The sets V0 = h
−1
0 (O0)∩M0 andW0 = h

−1(U0)∩M0 satisfy
the following conditions for n = 0:

(1) h−1n (hn(Vn)) ∩Mn = Vn, h
−1
n (hn(Wn)) ∩Mn =Wn;

(2) Fn ⊂ Vn and Gn ⊂Wn where Fn = F ∩Mn and Gn = G ∩Mn;

(3) hn(Vn)
Bn

∩ hn(Wn)
Bn
= ∅;

(4) Vn ⊃ Vn−1 and Wn ⊃Wn−1 for all n ≥ 1.

Let Vn, Wn be constructed for all n < k, k ≥ 1, and satisfy (1)–(4). By (3)

hk−1,k(hk−1(Vk−1)
Bk−1) ∩ hk−1,k(hk−1(Wk−1)

Bk−1) = ∅. From the definition

of F and G and by (1), (2) hk−1,k(hk−1(Vk−1)
Bk−1) ∩ hk(G) = ∅ and hk(F ) ∩

hk−1,k(hk−1(Wk−1)
Bk−1) = ∅, then hk(Vk−1 ∪ Fk)

Bk ∩ hk(Wk−1 ∪Gk)
Bk = ∅,

and these sets have functionally disjoint in Bk neighborhoods Ok and Uk respec-

tively. Let Vk = h
−1
k (Ok) ∩Mk, Wk = h

−1
k (Uk) ∩Mk. Vk and Wk satisfy (1)–(4)

for n = k, therefore the construction of Vn, Wn can be carried out for all n ∈ ω.
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Now let V = ∪{Vk : k ∈ ω} and W = ∪{Wk : k ∈ ω}. V and W are open in M
sinceM is an inductive limit ofMn. By (1) h

−1(h(V )) = V and h−1(h(W )) =W ;
by (2) F ⊂ V and G ⊂W . Lemma 1 is proved. �

Let M = gi−1(K
′) and Mn = gi−1(Gn). Let hn be a natural quotient mapping

for the decomposition Mn of the space gi−1(K
′), where for x ∈ Mn, xMny ⇔

xE′
iy and for x /∈ Mn, xMny ⇒ x = y. Since any element of Mn is a subset

of some element of Mn+1, the composition mapping hn−1,n = hn ◦ h−1n−1 also

is a quotient mapping. M = gi−1(K
′) is an inductive limit of compacta Mn

since K′ is an inductive limit of compacta G′
n and gi−1 is a quotient mapping.

Since Mn|Mn
≡ Mn+1|Mn

, hn,n+1|hn(Mn) is a homeomorphism for any n ∈ ω.

All conditions of the lemma are satisfied, therefore h maps M onto a normal
space M/Mn

≡ E′
i/Mn

, n ∈ ω. ∪{Mn : n ∈ ω} = M = gi−1(K
′) and M =

Dom(M), gi−1(K
′) = Dom(E′

i), thus M ≡ E′
i and the quotient mappings H

and gi (which are generated by M and E′
i) coincide. Therefore gi(K

′) is a T1
normal space. Let us prove properties (b)–(e). For Ui0 = gi(q(f̃

−1[0; i+ 43 ))) and

Uij = gi(q(f̃
−1(baij − 1

3 ; baij +
1
3 ))) for j ≥ 1, the family {Uin : n ∈ ω} satisfies

(b). Equality Di+1 = ∪{D′
i+1,n : n ∈ ω} and (c) follow from (b) and the fact that

each subset D′
i+1,n is compact, and therefore gi(D

′
i+1,n) is closed in gi(K

′). Each

D′
j,n is compact and E

′
i|D′

j,n
is a trivial decomposition into singletons, therefore

(d) is true. (e) follows from (b)–(d).

Therefore, gi−1,i and gi can be constructed for all i ∈ ω and satisfy (a)–(e). Let
us prove (f) and (g) for i ≥ 1. Bi = gi(K) = gi(G

′
i), hence Bi is compact. Map

gi,i+1 is defined by the decomposition E
′
i+1, E

′
i+1|Bi

, which is a decomposition

into singletons, therefore gi,i+1|Bi
is a homeomorphism.

Now let M = K′, hn = gn, hn,n+1 = gn,n+1 and Mn = Dn for n ∈ ω. Conditions
of the lemma follows from (f), (g). The resulting mapping g is defined by the
decomposition E′ of K: xE′y ⇔ gi(x) = gi(y) for some i ∈ ω, and g maps K′

onto a T1 regular σ-compact space.

The conclusion of Theorem 1 follows from the following properties:
(h) Bi ⊂ gi(X

′);
(k) gi|X ′ is a condensation.

Assume the contrary to (h). Then there is the minimal i0 ∈ ω such that for some

x ∈ Ci0 \ X , gi0(q(x)) 6= gi(x
′). If i0 = ai0k0 and x ∈ H̃j0,k0 , then ψ̃i0k0(x) ∈ Ci0 ,

j0 < i0 and by the assumption gi0(q(x)) ∈ gi0(q(Cj0 \ X )) ⊂ gi0(x
′). That

contradicts the minimality of i0. If x /∈ ∪{H̃jk : j < j0, k ∈ ω}, then x ∈ Ci0j0
for some j0 ∈ ω. Since ψi0 j0+1 maps Hi0j0 onto Ci0j0 and from the definition of

E′
i0
, gi0(q(x)) ⊂ gi0(q(Hi0 j0+1)) ⊂ gi0(x

′) and (h) is proved.

Suppose it is proved that gi|X ′ is a condensation for all i < k, k ∈ ω. Since
gk = gk−1,k ◦ gk−1, it is sufficient to prove that gk−1,k|gk−1(X ′) is a condensation.
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By (d) gk|D′
kj
is a homeomorphism for any i ∈ ω. It is sufficient to prove that for

any j0, j1 ∈ ω, 0 < j0 < j1, and x0 ∈ Dk,j0 ∩X , x1 ∈ Dk,j1 ∩X and y ∈ Dk0 ∩X
the following inequalities hold: gk(q(x0)) 6= gk(q(x1)) 6= gk(q(y)) 6= gk(q(x0)).
ψk,j0(x0) ∈ Ck,j0−1, ψk,j1(x1) ∈ Ck,j1−1, therefore gk(q(x0)) 6= gk(q(x1)) since

Ck,j0−1∩Ck,j1−1 = ∅. From the definition of ψij , ψ̃kj0 maps D
′
kj0

∩X in Ck,j0−1 ∈

D′
k0

\ X and ψ̃kj1 maps D
′
kj1

∩ X in Ck,j1−1 ∈ D′
k1

\ X . Hence other inequalities

also hold. �

A cardinal µ is called τ -measurable, if there is a τ -centered ultrafilter on µ, so
the Ulam-measurable cardinals are exactly those which are ω-centered. The same
method allows us to prove the following

Theorem 2. Let µ0 be a non τ -measurable cardinal and for every k ∈ ω, µk+1 =
exp(µk) and µ = sup{µk : k ∈ ω}. Let X0 be a Tychonoff non-pseudocompact
space and {Xα : 1 ≤ α ≤ µ} be a family of spaces such that ext(Xα) ≥ τ for
1 ≤ α < τ and |Xα| < µ for 0 ≤ α < µ. Then

∏
{Xα : α < µ} can be condensed

onto a regular σ-compact space.

2. A case of τ-compact spaces

For any cardinal τ , let τ̃ be the set of all isolated ordinals less then τ . A spaceX is
called τ -compact if each of its subsets of cardinality τ has a complete accumulation
point in X . For any space X , a compactification cX , and cardinals τ1, τ2 let
M(X, cX, τ1, τ2) = ((τ1+1)×(τ2+1)×cX)\(τ̃1×τ̃2×(cX\X)). This construction
is related to the space ((τ +1)× βX) \ (τ × (βX \X)) for certain X and τ which
was described by R. Buzyakova in [4].

We have shown in Section 1 that for many spaces X there are certain powers µ,
which depend on X , such that Xµ can be condensed onto a σ-compact space. The
original space can be as bad as we wish and fail all the properties of σ-compact
spaces. Thus, in that situation condensations can improve topological properties
of powers. In this section we prove somewhat reverse result by producing examples
of good spaces M whose (small) powers are so bad that they cannot even be
improved by condensations. Let µ be an ordinal, and let τi, i = 1, 2, 3, 4, be
cardinals which depend on τ and on the size of X as it is stated in Theorem 3.
We denote M =M(X, cX, τ1, τ2)

⊕
M(X, cX, τ3, τ4) and Mν ≈M for ν < µ. M

consists of a compact “skeleton” K = {[((τ1 + 1)× (τ2 + 1)) \ (τ̃1 × τ̃2)]
⊕
[((τ3 +

1)× (τ4 + 1)) \ (τ̃3 × τ̃4)]} × cX and of many clopen copies of X . If f :Mµ → Z
is a condensation, then f|Kµ is a homeomorphism since Kµ is compact. Kµ is

only a part of Mµ, but the copies of X are inserted in M in such a way that
this restriction influences the whole map F and we can ultimately find clopen
copies Xν of X in Mν for all ν < µ such that f restricted to

∏
{Xν : ν < µ} is a

homeomorphism onto a closed subset of Z. Now suppose that Xµ is not normal
(paracompact, etc.). Then Z is not normal (paracompact, etc.) either. This
means that Mµ cannot be condensed onto a normal (paracompact, etc.) space.
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The fact that M is good itself when X is so follows from Lemma 2. Hence M is
the desired example.

Lemma 2. Let X be a Tychonoff space and let cX be a compactification of X .
Let M =M(X, cX, τ1, τ2)

⊕
M(X, cX, τ3, τ4) for some cardinals τi, i = 1, 2, 3, 4.

Then M is normal (τ -paracompact, realcompact) iff X is so and Mµ is pseudo-
compact iff Xµ is so.
Let a property P be invariant of continuous mappings, of inverse perfect map-

pings and suppose P is inherited by clopen subsets. Then Mµ satisfies P iff so
does Xµ. In particular, l(Mµ) = τ (Mµ is τ -initially compact, σ-compact, τ is
regular and Mµ is τ -compact, respectively) iff the same is true for Xµ.

Proof: K = {[((τ1+1)×(τ2+1))\(τ̃1×τ̃2)]
⊕
[((τ3+1)×(τ4+1))\(τ̃3×τ̃4)]}×cX

is compact and any neighborhood ofK inM contains a neighborhood U such that
M \ U is a union of finitely many clopen copies of X . This proves the first part
of the lemma.

K1 = ((τ1 +1)× (τ2+1))
⊕
((τ3 +1)× (τ4 +1)) is compact and K1×X is dense

in M . Therefore (K1)
µ ×Xµ is dense in Mµ. Some clopen subset of Mµ can be

projected onto X . By these reasons Mµ is pseudocompact iff so is Xµ.

The spaceM/(K×cX) is obtained fromM by identifying a closed subset K×cX
to a single point (see [5]). K × cX is compact, so the corresponding quotient
map q : M → M/(K × cX) is perfect. Let p be a restriction of q to K1 × X ,
then p(K1 × X) = q(M). Let pα, qα be the α-th “copies” of p, q, α < µ and
p = ∆{pα : α < µ}, q = ∆{qα : α < µ}, then Mµ = q−1(p((K1 ×X)µ)). �

Theorem 3. LetXµ be τ -compact and let τ , τi be regular cardinals, i = 1, 2, 3, 4,
such that τ1 > τ2 > τ3 > τ4 > max{|cX |, τ}. Then for M = M(X, cX, τ1, τ2)⊕

M(X, cX, τ3, τ4), Y = Mµ and any condensation f : Y → Z there is a closed
subset F of Y homeomorphic to Xµ such that f|F is a homeomorphism onto a

closed subset of Z. Also, any continuous function on f(F ) that can be extended
to a function on (cX)µ (when f(F ) is naturally embedded in (cX)µ) can be
extended on Z. In particular, if Xµ is pseudocompact and cX = βX , then f(F )
is C-embedded in Z.

Proof: Assume that cf(µ) 6= τ1, τ2. Let Y =
∏
{Yα : α < µ}, where each Yα is

homeomorphic to M . We denote Ỹ = βY , Z̃ = βZ; f̃ is a continuous extension
of f from Ỹ to Z̃. For any α < µ, let πα : Y → Yα be a projection and let π̃α

be its extension from Ỹ onto Ỹα = βYα. For y ∈ Ỹα and i = 1, 2, 3, φi(y) is a

projection onto (τ1 + 1), (τ2 + 1) or cX respectively if y ∈M(X, cX, τ1, τ2)
Ỹα
or

onto (τ3 + 1), (τ4 + 1) or cX respectively if y ∈ M(X, cX, τ3, τ4)
Ỹα
. For α < µ

and i = 1, 2, 3, we denote ψα,i = φi ◦ π̃α and ψ3 = ∆{ψα,3 : α < µ}. For any
combination i, j of indexes 1, 2, 3, let φij = φi∆φj and ψα,ij = φij ◦ π̃α. For

(α, β) ∈ τ1 × τ2, let Yαβ = {y ∈ Ỹ : if ψγ,3(y) ∈ cX \ X for some γ < µ, then

ψγ,12(y) = (α, β)}. If γ < µ then let Y γ
αβ = {y ∈ Yαβ : ψγ,3(y) ∈ cX \X}.
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Now let γ < µ be fixed. For any β′ ∈ τ̃2, let Aβ′ = {y ∈ Y γ
αβ′ : α ∈ τ̃1

and there is y′ ∈ Y
γ
αβ′ ∪ Y such that ψγ,3(y) 6= ψγ,3(y

′) and f̃(y) = f̃(y′)}.

Let τ ′ = max{τ, |cX |}+, we claim that |{ψγ,1(Aβ′ )}| < τ ′. For, assume the

contrary. Then there is a monotonically increasing mapping φ from τ ′ in τ̃1,
a point c ∈ cX \ X , sets A = {yδ : δ < τ ′} and A′ = {y′δ : δ < τ ′} and a

neighborhood U of c in τ2 × cX such that for any δ < τ ′, yδ ∈ Y
γ
φ(δ)β′ , y

′
δ ∈

Y γ
φ(δ)β′ ∪ Y , ψγ,23(yδ) = c, ψγ,23(y

′
δ) /∈ U , and f̃(yδ) = f̃(y′δ) (it’s all possible

because ψγ,23(Aβ′) ⊂ {β′}× cX and {β′}× cX is open in τ2× cX , so ψγ,23(Aβ′)

has a base of cardinality ≤ cX < τ ′ in τ2 × cX). For any yδ ∈ A, let ỹδ be such
a point from Y that for any ν < µ, πν(ỹδ) = π̃ν(yδ) if π̃ν(yδ) ∈ Yν , otherwise let

ψν,23(ỹδ) = ψν,23(yδ) and ψν,1(ỹδ) = ψν,1(yδ) + ω. Let Ã = {ỹδ : δ < τ ′}. In the

same way the set Ã′ = {ỹ′δ : δ < τ ′} is defined. The set {(ỹδ, ỹ
′
δ) ∈ Y ×Y : δ < τ ′}

has a complete accumulation point (a, a′) in Y × Y (Y × Y ≈ Y is τ -compact).

From the constructions of Ã and Ã′ from A and A′, (a, a′) is also a complete

accumulation point of {(yδ, y
′
δ) ∈ Ỹ × Ỹ : δ < τ ′}, so from the continuity of f

f(a) = f(a′). But ψγ,23(a) /∈ U , so a 6= a′ — contradiction to the fact that f is
a condensation. So |ψγ,1(Aβ′)| ≤ τ × |cX | < τ1 and, since τ2 < τ1, there is an

ordinal νγ < τ1 such that ψγ,1(Aβ′) ⊂ νγ for any β
′ ∈ τ̃2.

In the same way, for any γ < µ and α′ < τ1 there is an ordinal β
γ
α′ < τ2 such that

ψγ,2(Aα′) ⊂ βγ
α′ where Aα′ = {y ∈ Y γ

α′β : β ∈ τ̃2 and there is y
′ ∈ Y γ

α′β ∪ Y such

that ψγ,3(y) 6= ψγ,3(y
′) and f̃(y) = f(y′)}.

Since cf(µ) 6= τ1, there is α̃ < τ1 and Γ1 ⊂ µ such that |Γ1| = µ and for any

γ ∈ Γ1, νγ ≤ α̃. Since also cf(µ) 6= τ2, there is β̃ < τ2 and Γ2 ⊂ Γ1 such that

|Γ2| = µ and for any γ ∈ Γ2, β
γ
α̃+1 ≤ β̃. Now let y ∈ Y ; for any γ ∈ Γ2 we

define Fγ = (α̃ + 1) × (β̃ + 1) ×X and for any γ ∈ µ \ Γ2, Fγ = πγ(y). The set
F =

∏
{Fγ : γ ∈ µ} is homeomorphic to Xµ and f|F is a homeomorphism onto a

closed subset f(F ) of Z. Let g be a continuous function on (cX)µ and let h be

a map from F
Ỹ
onto (cX)µ such that h(y) = {ψγ,3(y) : γ ∈ Γ2}, y ∈ f

Ỹ
. Then

h ◦ f−1|f(F ) is a natural embedding of f(F ) in X
µ ⊂ (cX)µ by the properties of

f|F . Since f̃(h
−1(x1))∩ f̃ (h

−1(x2)) = ∅ for x1 6= x2, x1, x2 ∈ (cX)
µ by the choice

of F , h ◦ f−1 is a continuous function from f(F )
Z̃
onto (cX)µ. Therefore g can

be lifted to a continuous function on f(F )
Z̃
and extended to a function on Z̃.

If cf(µ) = τ1 or cf(µ) = τ2, all the preceding arguments remain valid if τ1 and
τ2 are replaced everywhere with τ3 and τ4 respectively. �

Corollary 1. a. For any Tychonoff space X and any cardinal ν there is a
larger space M which preserves many properties of X listed in Lemma 2 and
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such that for any µ ≤ ν and a condensation f : Mµ → Z, Z contains a closed
subset homeomorphic to Xµ; if Xµ is pseudocompact, then this subset is also C-
embedded in Z. In particular,Mµ cannot be condensed onto a normal (Lindelöf,
σ-compact, etc.) space if Xµ is not normal (Lindelöf, σ-compact, etc.).

b. If X is countably compact in all powers or if there is a |X |-measurable cardinal,
then M satisfies the above properties for all ν.

Proof: a. Let τ = |βXν |+ and τ1 = τ+, τi+1 = τ+i , i = 1, 2, 3. Clearly, X
µ

is τ -compact for any µ ≤ ν, so M = M(X,βX, τ1, τ2)
⊕
M(X,βX, τ3, τ4) is a

required space.

b. If X is countably compact in all powers, let τ = |βX |+, τ1 = τ+, and for

i = 1, 2, 3, τi+1 = τ+i . Then M = M(X,βX, τ1, τ2)
⊕

M(X,βX, τ3, τ4) is as
desired. If τ is the first |X |-measurable cardinal, then all powers of X are τ -
compact, hence for τ1 = τ+, τi+1 = τ+i , i = 1, 2, 3, M = M(X,βX, τ1, τ2)

⊕

M(X,βX, τ3, τ4) is as required. �

Corollary 2. For any infinite compactum K there is a normal space X such that
X ×K cannot be condensed onto a normal space.

Proof: Let Y be a Dowker space and τ =max{|βY |, |K|}+, τ1 = τ
+, τi+1 = τ

+
i ,

i = 1, 2, 3. The space X = M(Y, βY, τ1, τ2)
⊕

M(Y, βY, τ3, τ4) is normal by
Lemma 2. X ×K cannot be condensed onto a normal space by Theorem 3 since
X ×K =M(Y ×K,βY ×K, τ1, τ2)

⊕
M(Y ×K,βY ×K, τ3, τ4). �

From Theorem 1 and Corollary 1 we derive the following

Corollary 3. The following are equivalent:

(1) for any Tychonoff non-pseudocompact space X there is µ such that Xµ can
be condensed onto a normal space;

(2) for any Tychonoff non-pseudocompact space X there is µ such that Xµ can
be condensed onto a regular σ-compact space;

(3) there is no measurable cardinal.
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