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Remarks on fixed points of rotative Lipschitzian mappings

JAROSEAW GORNICKI

Abstract. Let C be a nonempty closed convex subset of a Banach space E and
T : C — C a k-Lipschitzian rotative mapping, i.e. such that | Tz —Ty|| < k- ||z —y|| and
|T"x — z|| < a- ||z — Tz| for some real k, a and an integer n > a. The paper concerns
the existence of a fixed point of T" in p-uniformly convex Banach spaces, depending on
k, a and n = 2, 3.

Keywords: rotative mappings, fixed points

Classification: 47H09, 47TH10

1. Introduction

Many authors discussed the problem concerning the existence of fixed points
for different class of mappings defined on nonempty closed convex subsets C of
infinite dimensional Banach space FE and satisfying some metric conditions. The
main problem was connected with establishing some conditions of geometrical
nature implying the fixed point property for nonexpansive mappings 7' : C — C
(i.e. mappings satisfying ||Tx — Ty|| < || — y| for all z,y in C). The usual
assumptions are those of uniform convexity and normal structure.

In 1981, Goebel and Koter [6] defined the conditions of rotativeness (see below)
and proved the following

Theorem 1. If C' is a nonempty closed convex subset of a Banach space E, then
any nonexpansive rotative mapping T : C' — C has a fixed point. d

Note that this result does not require weak compactness or even boundedness
of C, or any special geometric structure on C'.

Further on, the authors studied the existence of fixed points for some class of
k-Lipschitzian (k > 1) and rotative mappings in Banach spaces ([7], [13]).

In this note we extend Goebel and Koter’s results for a real p-uniformly convex
Banach space and give an estimate for the function 73 in a Hilbert space.

2. Preliminaries

Let C be a nonempty closed convex subset of a Banach space E. A mapping
T :C — C is called (n,a)-rotative if there exists an integer n > 2 and a real
number 0 < a < n such that for any = € C, ||z — T"z|| < a- ||z — Tz|.
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The simplest examples of rotative mappings are contractions and rotation of
the Euclidean space R™ or any periodic nonexpansive mappings (i.e. T" = I for
some n € N, where I means identity mapping) in any Banach space.

Definition 1. Denote by ®(n,a, k,C) the class of all mappings T : C — C' which
are (n, a)-rotative and satisty the following condition

Ve,ye C ||Tax—Ty| <k-|lz—yl.

A mapping T € ®(n,a,k,C) is said to be k-Lipschitzian (n, a)-rotative on C.

We shall now consider mappings of the family ®(n,a, k,C) with k¥ > 1. For
fixed n € N put

k > 1: there exists a set C (closed convex) and
Yn(a) = inf a mapping T such that T € ®(n,a, k, C)
and F(T)=10

(F(T) denotes the set of all fixed points of T').

The definition of v, (a) implies that for an arbitrary set C, if T € ®(n, a, k, C)
and k < ~yp(a), then T has at least one fixed point. It was proved in [7] that
for an arbitrary Banach space E and for any n € N, we have y,(a) > 1 for all
a < n. It is a qualitative result which raises a number of technical yet attractive
questions concerning the precise values of v,(a). Even the exact value of y,,(0)
is of interest since it characterizes the fixed point behavior of mappings of period
n (see [11], [16] and [4], [8], [9], [10] for involutions, i.e. mappings T for which
T2 =1).

3. About the function 72(a)

Now, we restrict our attention to the case n = 2. It was proved in [5] that for
an arbitrary Banach space E

72(0‘) > ’YB(a)7 a € [0’2)7

where

'yB(a)maX{ [2a+ (2a)2+a2],

= N =

[a2+4+\/(a2+4)264.(a1)”.
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Surprisingly, it is possible to show that the first term provides a better estimate
if a < 2(v/2 — 1) ~ 0.828, while the second is better for a € [2(v/2 — 1),2).

No upper bound for v2(a) with a € [0,1] is known until now, while if a € (1, 2)
we have vy2(a) < %, where kg is the minimal Lipschitz constant of the
retraction of the unit ball onto the unit sphere in E (see Example 1 in [13]). In
general, the value of kp is unknown, so that the bound given above shows only
that v2(a) < 400 for a € (1,2). It is however essential that this fact is true in
an arbitrary Banach space. In C[0,1] or L[0, 1], we have y2(a) < a%l, a € (1,2)
(see Examples 1, 2 in [7] and Example 17.2 in [5]).

These results are illustrated in Figure 1.

LA
3__

Figure 1

Denote

Dy ={(a,k) €0,2) x [0,4+0) : k < v2(a)};

Dy = {(a,k) € (1,2) x (1,+00) : k > *rlatl)y,
Dy = {(a,k) € (1,2) x (1,400) : k > 77}

D4 = [072) X [07+OO)\<D1 UD3)'

If T is k-Lipschitzian and (2, a)-rotative, where (a, k) € D1, then T has at least
one fixed point. In other words: the graph of the function 7o for an arbitrary
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space E lies above the region D;. On the other hand, it lies always below the
curve which is the lower bound of the region Dy (in some spaces even below the
lower bound of D3). The existence of fixed points for mappings T € ®(2,q, k, C),
where (a, k) € Dy, remains an open problem.

However, in some spaces one can sightly raise the lower bound of the region Dy.
Koter [13] proved the following theorem (in spaces with known modulus of con-
vexity, see [5]).

Theorem 2. Let C' be a nonempty closed convex subset of a Banach space E
with the modulus of convexity ég. If T € ®(2,a,k,C) and
2—a
k )
then T has at least one fixed point. O
Since in the space L (or ¢P), p € (2,400), we have dp(e) = 1—(1— (e/2)P)V/P,
routine calculations and the previous estimates (1) yield

1—6p(2/k) <

Corollary 1. Let C be a nonempty closed convex subset of the space LP (or ¢P),
2<p<+oo. If T € ®(2,a,k,C) and

k < max {me), (2 —a)P + 1]1/p} . aco,2),

then T has at least one fixed point. O
Hence, in the space LP (or ¢P), 2 < p < 400, we have

12(0) = max {y5(a), [(2 = @)’ + 117}, a€[0,2).

Komorowski [12] shows that for a real Hilbert space H we have a better bound

for 2, namely

5

Y2(a) > a2+ 1 =vx(a), a€]0,2)

(see Figure 2).

4. The function 77 in p-uniformly convex spaces

In this section we give some estimates of the function 2 by means of inequalities
in Banach spaces.
Let p > 1 and denote by A a number in [0,1] and by Wj(\) the function
A-(T=XP+ M- (1-N).
The functional || - ||? is said to be uniformly convez ([22]) on the Banach space
if
(%) there exists a positive constant ¢, such that for all A € [0,1] and z,y € E
the following inequality holds:
A=z + (=2 - yllP < A-flzfP + (1= A) - [yl = cp - Wp(A) - [l — [P
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Xu [12] proved that the functional ||-||P is uniformly convex on the whole Banach
space F if and only if E is p-uniformly convez, i.e. there exists constant ¢ > 0 such
that the modulus of convexity (see [5]) dg(e) > c- P for all 0 < e < 2. We note

that a Hilbert space H is 2-uniformly convex (indeed dy(c) = 1 — /1 — (¢/2)2 >
(1/8) -€2) and LP (or £P) (1 < p < +00) is max(2, p)-uniformly convex.

Theorem 3. Let E be a Banach space with the norm satisfying () for some
p > 1, let C' be a nonempty closed convex subset of E. If T € ®(2,a,k,C) and

14 9P py
k < max{l, {m] if Cp = 17

or

7

cp, + 2P 1/p
k< max{l, {21;2 - (21: AT ap)}
{\/[21’—1 A+ aP)P+8-(1—cp)- (2P +cp) — 2071 (14 ap)} 1/p}
2-(1—c¢p)

if 0<cp <1 and ac€|0,2),

then T has at least one fixed point.
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ProoOF: If £ < 1, then the Banach Contraction Principle implies that 7" has a
fixed point. Thus we assume that k£ > 1. Let x be an arbitrary point in the set
C and e an arbitrary real positive number. Suppose that

HTQx—Tpr (1-¢) foTpr
and put z = (1/2)(Tz + T?z). Then we have
|z = T=|]P =||(1/2)- (T + T2z) — Tz|]P
=||(1/2) - (Tz — Tz) + (1/2) - (T%x — Tz)||
< (1/2)- [Tz - T=|F + (1/2) - | T2z — T=||"
—cp - (1/2)P - ||T%2 — T
< (1/2) - kP||(1/2) - (@ — Ta) + (1/2) - (x — T%)|”
+(1/2) kP ||(1/2) - Tz — T%2)||P — ¢p - (1/2)P - ||T%2 — Ta||
<{(@/4)- kP + (1/4) - kP - P} - || — T
+(1/2PT kP (1= cp) - | T2 — Tl —¢p - (1/2)P - || T%2 — Ta||P.
If ¢, = 1, then by last inequality we have
|2 = T2l < {(1/4) - K+ (1/4) - k7 P} - [lo — Ta|?
— (/2P || 7?2 — T
< {(1/4) KP4 (1/4) kP -aP — (1/2)P - (1 75)} o = TP
= f(e) -]z = T||".
Now, assume 0 < ¢p < 1.
Case I. By the estimate
|7% — | < (||7% — o + |}z — Ta]|)”
<ot (|72 = af” + |Jo - 72| ?)
<2k~ (@ +1)||z — T,

we have
|z — T2 < {(1/4). kP + (1/4) - kP - aP

+ (12PN (1= ¢p) - 2P (aP + 1)

—(1/2)7 - (1~ e)} - [l — Ta”

9(©) ||z — T[]
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Case II. By the estimate
|72 — Tz|P < kP - || T2 — ||
we have
|z — 72| < {(1/4) KP4+ (1/4) KPP + (1/2)PF k2P (1 — ¢p)
— (/2 p (L=e)} - |l — Tal|P
— h(e) - || — Tz |]”

If the assumptions of the theorem are satisfied, then there exists € > 0 such that
max{ f(€),g(e),h(e)} < 1, and we may consider the following sequence

r] =,

Tpt1 = Txy if HTan — Tanp <(1-¢)- HTxn — sr:n’ P

or
Tt = (1/2)(Ton + T?xp) if ||T%2n — Tan||P > (1 —¢) - | Tzn — 20|

forn=1,2,....
Now, we show the convergence of the sequence {z,}. Indeed,

|‘Tl’n+1 - xn+1||p <A HTxn - anp, for n € N,
where A = max{f(e),g(¢),h(¢),1 —e} < 1. Thus
|Tzns1 — $n+1Hp <A™ ||Tay — 931Hp — 0,

as n — 400, which shows that {zy} is a Cauchy sequence. Let y = lim,— o0 .
Since ||Txp+1 — Tnt1]|P — 0 as n — +oo, we have Ty —y =0, and Ty =y. O

5. Applications
Note that in a Hilbert space H we have the identity

V-2 (= A) -yl = A 22+ (=2 -yl = A (L= A) -z — gl

forall z,y in C and 0 < A < 1. In this case p = 2 and co = 1. Thus by Theorem 3,
we have the following corollary.
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Corollary 2 ([12]). Let H be a Hilbert space and let C' be a nonempty closed
convex subset of H. If T € ®(2,a,k,C) and

5

k<
a?+1’

a €[0,2),

then T has at least one fixed point. O
If 1 < p < 2, then we have for all z,y in LP (or ¢P) and X € [0, 1],

-2+ (=2 g2 <A 2l + Q=2 -yl = (p=1)-A- (1= X) - e -y,

(see [20], [14]). Thus by Theorem 3 we have the following estimate for k in LP
(or ¢P) spaces (1 < p < 2):

bemaxd 1, | 32 \/x/4<1+a2>2+8<2p><3+p>2<1+a2>

(1+a*)3-p) 22-p)
= fpla), a €0,2).

If p — 24, then fp(a) — f2(a) = yx(a). Moreover, f,(0) > 2 for 2 > p > 9/5.
The case p = 3/2 is illustrated by means of computer graphic in Figure 3.

0 2(v32 — 1)1 1.554 2 a

Figure 3
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Thus in LP (or ¢P), 1 < p < 2, we have the following

Corollary 3. Let C be a nonempty closed convex subset of LP (or ¢P), 1 < p < 2.
If T € ®(2,a,k,C) and

2 4(14-a2)? 92— —9(14-a2
b < max d 5(a), | g e [ VAOEaD)? + Q) Brp) 21 +a?)
(14a2)(3—p) 2(2—p)
for a € ]0,2), then T has at least one fixed point. m

For all 2,y in LP (or £P) spaces, 2 < p < +00, and all A € [0, 1], we have
Az + (@ =A) - yllP <A flzfP + @ =) - lyllP = cp - Wp(A) - [l — y”,
where ¢, = (p — 1) - (1 — ,)?7P, and t,, is the unique zero of the function j(z) =
—2P71 4 (p—1) -z + (p— 2) on the interval (1, +oc), see for example [18], [14].

By numerical approximation we obtain cg 1 /=~ 0.948917 and the case p = 2.1 is
illustrated in Figure 4.

2.21
2.08

Y

0 1 1.89 2 a

Figure 4
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Thus by Corollary 1 and Theorem 3 we have

Corollary 4. Let C be a nonempty closed convex subset of LP (or (P), 2 < p <
+oo. If T € ®(2,a,k,C) and

+ 2P 1/p
k 2 —a)? +1]'/7 =
< max  7p(a), [(2 - a)” + 17, 2072 (2 = ¢p)(1 + aP) 7
1
VT O Fa 18 0 —c) @ Ty -2 1. (1+ar)]"?
2-(1=¢p)
for a € [0,2), then T has at least one fixed point. O

Using the result of Prus, Smarzewski ([17], [19]) we obtain from Theorem 3 a
fixed point theorem, for example, for Hardy and Sobolev spaces.

Let HP, 1 < p < 400, denote the Hardy space ([3]) of all functions z analytic
in the unit disc |z| < 1 of the complex plane and such that

1 [? ’ 1/p

|z|| = lim (—/ ’x(rez®)|pd@) < +o0.
r—1_ \2m 0

Now, let 2 be an open subset of R”. Denote by W"P(Q), » > 0, 1 < p < 400,

the Sobolev space ([1, p.149]) of distributions x such that D% € LP(Q) for all

la] = a1 +ag + -+ + ap < k equipped with the norm

M:(Z /Q]D%(w)]f’dw)l/p.

|| <k
Let (Qa, Za, o) @ € A, be a sequence of positive measure spaces, where A is
finite or countable. Given a sequence of linear subspaces X in LP(Qq, Xq, fia),
we denote by Lgp, 1 < p < +00, ¢ = max(2,p) ([15]), the linear space of all
sequences
x:{xana:aeA}

equipped with the norm
1/q
lall = | 3= (llzall,)?] ™
acl

where || - ||p,o denotes the norm in LP(Qq, Xq, fta).

Finally, let LP = LP(S1,%1, p1) and L9 = L9(Sy, Xa, u2), where 1 < p < +o0,
g = max(2,p) and (S;, X;, u;) are positive measure spaces. Denote by L4(Ly) the
Banach space ([2, I11.2.10]) of all measurable LP-valued functions = on Se with

the norm g
ol = ( [ (o)) )"
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These spaces are g-uniform convex with ¢ = max(2, p) ([17], [19]) and the norm
in these spaces satisfies

et =2l 0ol (=) = W) e
with a constant

-1 1
d:dpsz for 1<p<2 and d=dy=—— for 2<p<+o.
.

Hence it follows from Theorem 3 the following

Corollary 5. Let C be a nonempty closed convex subset of the space X, where
X =HP or X = W"P(Q) or X = Lqp or X = L¢(Lp) and 1 < p < 400,
q=max(2,p),r>0. If T € ®(2,a,k,C) and

dp + 24 1/a
k /4
< max 4 75(a), [2(1—2 (2—dp)(1+at)]
1
VBT A+ a) 78 (1=dy) - @+ dy) — 291 (14 at)] "
2-(1- dp)
for a € ]0,2), then T has at least one fixed point. O

6. 73 in a Hilbert space

We mentioned that the function v, may have different form in different spaces.
Now we want to establish an evaluation of the function ~3 in a Hilbert space.

Theorem 4. Let H be a Hilbert space and let C' be a nonempty closed convex
subset of H. If T € ®(3,a,k,C) and

k<max{\/ 1/2) - [V 9a* + 242 + 41— 3 - a? + 1],

\/(1/2). { (1+a2)2+40—(1+a2)]}, a€10,3),

then T has at least one fixed point.
(Note that it is possible to show that the second term provides a better estimate
if V2 < a<1/(1/2)(v29 +7) ~ 2.48849.)

PROOF: Let z be an arbitrary point in the set C' and € an arbitrary real positive
number. Suppose that

Tz — T32| + || T2 — T32||> > (1 — &) - |& — Ta|?

505
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and put
2= (1/3)(Tx 4 T2z + T3z) = (1/3) - Tz + (2/3) - [(1/2)(T%x + T3z)).
Then we have
|2 = T2||* = ||(1/3) - Tz + (2/3) - [(1/2)(T 22 + T32)] — Tz|”
=|(1/3) - (T — Tz) + (2/3) - [(1/2)(T?x + T3z) — TZ]H2
= (1/3) - | Tz — T2|]* +(2/3) - || (1/2)(T%x + T3x) — Tz||?
—(2/9) - | Tz — (1/2)(T%x + T32)||”
< (1/3)- K% |Jo — 2|[* + (2/3) - || (1/2) - (T2 — T=2) + (1/2) - (T%x — T2) |
—(2/9) - ||(1/2) - T:ch%)+(1/2)¢(T:ch3x)|\2
< (1/3)- k2 - |Jz — (1/3) - T — (2/3) - [(1/2)(T?z + T32)] ||
+(2 /3){(1/2 ) k2| T — 2| + (1/2) - B2 - | T2 — 2|
1/4) || - T *}
2/9)-{(1/2)- | Tz = T%||* + (1/2) - ||Tw - T
~ (1/4)- | 7% - T3}

‘ 2

= (1/3) - k2 {1/3 o — Ta||* + (2/3) - & — (1/2)(T2%x — T32)

2/9) - || Tz — (1/2)(T%x — T3%) H}

2/3 {1/2 2| 2/3) [T — (1/2)(T% + T32)) ||

/9)-
+(2/3) -
+(1/2) - k2 ||(1/3) (T2 — Tx) + (2/3)[T2x — (1/2)(T%x + T2))||?
— (1/4) | 7% - T}
= 2/9)-{(1/2) - |[Te = T%|* + (1/2) - | T2 - T32*
— (1/4) - | 722 — T32|? }
= (1/9) - K- |z = Tal* + 2/9) - k* - { (1/2) - || = T2

+(1/2) - |Jo — T32||* = (1/4) - HT2 - 1% )*

—(2/27) - K2 - | Tz — (1/2)(T?%x — T32)||?

(4/27 K2 || T2 — (1/2)(T x7T3 )|)?

+(1/3)- K2 {(1/3) || T% = Tal > + (2/3) - [ T% - (1/2)(T% + T*)
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~(2/9)- |[Te = (1/2)(T% = T%0)[*} - (1/6) - || 7% — T3] |”
—2/9)-{(1/2)- || T2 - T%H +(1/2) - ||Tz - T3?

~ (1/4) - |72 - T}

< (reductlon)
<[(1/9) -k (1/9 e —Ta|® + (1/9) - k2 - a® - o — Ta|?
+1(1/9) - k2 = (1/9)] foT%H

—(1/9)- {HTx T|* + |72 - T3}

Case I. By the estimate

o = 7%|* < 2 (|l — T3 |* +||75 — 72%)
<2-(a®+ k%) - ||z - T=|,
we have
|z = 72| < [(1/9) - k* + (1/9) - 2] - ||z — Tx|* + (1/9) - ¥* - @® - ||« — T||”
+(1/9)- k2 = (1/9)] -2+ (@ + k) - || — Ta|?
— (1/9) - {|[Te — T%|* + || 7% T%HQ}
S{(1/9>~ +1(3/9) - a® = (1/9)] - k* — (2/9) - ®
fum»ufe}wwaﬂ
=G(e ||x—TxH

Case II. By the estimate

o — T2 < 2- (Hx — Ta|? + || T — TQxHQ)
<2-(1+k%)- foTxHQ,
we have
|z = 72| < [(1/9) - k* + (1/9) - k2] - ||z — Te|* + (1/9) - ¥* - @® - ||« — T||”

F[(1/9) - K2 = (1/9)] -2 (1 +K2) - ||o — T
—(1/9) - {HTxfTB'xH o
{ 1/9) - k4 + (1/9)(1 + a?) - k2 —(1/9)-(1—5)}~Hx—TxH2
=H(e Hx—TxH
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If the assumptions of the theorem are satisfied, then there exists € > 0 such
that max{G(e), H(¢)} < 1, and we may consider the following sequence

r] =,
=T2%z, if
Tn+1 = In 1

HTxn — Tsan2 + HT2xn — T?’nan2 <(1-¢)- Hxn — Txn‘ 2,

or

Tni1 = (1/3)(Tan + T2xn + T32y) if
Ty — T32n||” + | T20n — T3z - ||> > (1 =€) - ||2n — Tan%,
n=12....
It is easy to see that this sequence is convergent. Indeed,
|Tns1 — 2nst|® < A ||Ton — o for neN,
where A = max{G(e), H(¢),1 — e} < 1. Thus
T2~ [P < 4% |71 2| 0

as n — +o00, which proves that {z,} is a Cauchy sequence. Let y = limy— o0 .
Since || Txn41 — 2ne1|? — 0 as n — 400, we have | Ty —y|| =0and Ty =y. O

Kirk [11] showed that a mapping T : C — C (C is a nonempty closed convex
bounded subset of a reflexive Banach space with the normal structure) for which
T" = I (n > 1) has a fixed point if [|[T%z — T"y| < k- ||z — y||, =,y € C,
1=1,2,...,n— 1, where k satisfies

(n—1)(n—2)-k>+2(n—1) k< n?
Thus a k-Lipschitzian mapping satisfying 7" = I (n > 1) has fixed point if
(n—1)(n—2)- k2D L 2(n—1) "1 < n2
For n = 3, we have the estimate k¥ < (1/2) - v/v/88 —4 ~ 1.1598. Linhart [16]
showed (in an arbitrary Banach space) that this mapping has a fixed point if

2n—3

1 )
— Z k' < 1.

i=n—1

Hence, for n = 3 we have the estimate for k < kg ~ 1.174.
By Theorem 4 a k-Lipschitzian involution 7" of order n = 3 in a Hilbert space

(i.e. T € ®(3,0,k,C)) has fixed points if k < 1/(1/2)(v41 + 1) ~ 1.92394.



Remarks on fixed points of rotative Lipschitzian mappings

Theorem 5. Let C' be a nonempty closed convex bounded subset of a Hilbert
space H. If T : C — C' is k-Lipschitzian with k < \/(1/2)(v41 + 1) and || T3z —
T3y|| < || — y|| for z,y in C, then there exists a fixed point of T.

PROOF: According to Browder-Gohde-Kirk’s fixed point theorem [5] the set C* =
{z € C : 2 = T3z} is nonempty. The strict convexity of H implies that C* is
convex. Obviously, we have T'(C*) = C* and T® = I on C*. Hence, by Theorem 4,
we obtain our result. g

7. Open problems

The main problem of rather technical nature is whether ,, is continuous. Other
questions concern the evaluation of v, (a). The evaluation given in Theorem 3
seem, in my opinion, to be not exact (for example, k-Lipschitzian involutions
defined on a nonempty closed convex subset of a Hilbert space have a fixed point
if k < (1/2)(m + V72 —4) ~ 2.78215, see [13]). We do not even know whether
there exist a € [0, 1] such that y9(a) < 400 (in any Banach space), i.e. whether
there exist T € ®(2,a,k,C), 0 < a < 1, without fixed points. The same question
can be stated for the whole interval [0, 2) in the case of a Hilbert space. Analogous
questions can be formulated for the function 3.
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