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On a problem of Nogura about the

product of Fréchet-Urysohn 〈α4〉-spaces

Camillo Costantini

Abstract. Assuming Martin’s Axiom, we provide an example of two Fréchet-Urysohn
〈α4〉-spaces, whose product is a non-Fréchet-Urysohn 〈α4〉-space. This gives a consistent
negative answer to a question raised by T. Nogura.
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tions, double iterated power
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0. Introduction

The classes of 〈αi〉-spaces, with 1 ≤ i ≤ 4, were introduced by Arhangel’skii in
[Ar1], to study the product of Fréchet-Urysohn spaces (Arhangel’skii also in-
troduced the class of 〈α5〉-spaces, which turned out to coincide with that of
〈α2〉-spaces: see [No, Theorem 2.1]). Each 〈αi〉-space is also an 〈αi+1〉-space
for 1 ≤ i ≤ 3, and each first countable space is an 〈α1〉-space.
The above mentioned paper gave rise, in the following twenty years, to a wide

literature, where several problems concerning this kind of spaces are investigated
(see, for example, [Do] and related bibliography); often, in these articles, the
Fréchet-Urysohn 〈αi〉-spaces are briefly called 〈αi-FU〉-spaces. For i = 1, 2, 3,
Nogura [No] proved that the product of two 〈αi〉-spaces is still an 〈αi〉-space. Also,
the product of an 〈α3-FU〉-space and of a countably compact, regular Fréchet
space (which is always an 〈α4〉-space, see [Ol]) is a Fréchet space [Ar2]; this is one
of the best results about preservation of the Fréchet property under products.
Recall that, without additional assumptions, even the product of two compact
(T2) Fréchet spaces may fail to be Fréchet; the first, celebrated example in ZFC
of this fact is due to Simon [Si1].
As for 〈α4〉-spaces and 〈α4-FU〉-spaces (which coincide with the strongly Fré-

chet spaces — see [Ar2] and the remarks after Theorem 1.4 of [No]), their product
is not very well behaved. The product of two 〈α4-FU〉-spaces may fail both to be
Fréchet and to be an 〈α4〉-space (cf. [No, Example 1.2 and Theorem 3.10]). Thus,
Nogura put the following questions [No, Problem 3.15 and 3.18]:
(a) Let X and Y be 〈α4-FU〉-spaces. If X × Y is Fréchet, then is it an 〈α4〉-
space?

(b) Let X and Y be 〈α4-FU〉-spaces. If X × Y is an 〈α4〉-space, then is it
Fréchet?
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Very recently, the first question was solved in the negative by Simon, under
the Continuum Hypothesis ([Si2]). In this paper, we give under Martin’s Axiom
(MA) a negative answer to the second question — actually, our X and Y will
turn out to be countable (paracompact) T2 spaces, where each point, except one,
is isolated. We point out that, after this paper had been written, a ZFC example
for the same problem was found by Simon and the author (see [CS]).

1. Notations and basic facts

Throughout the paper, the left exponentiation AB among sets will denote the
set of all functions f :A→ B, while the right exponentiation ξκ among cardinals
will denote the cardinal number: |κξ|. The ordered pairs, triples, and so on are
denoted, respectively, by 〈a, b〉, 〈a, b, c〉, etc. For every function f , we denote by
dom f its domain and by Im f its image {f(x) |x ∈ dom f}.
We say that a topological spaceX has the property 〈α4〉 at a point x̄ if for every

family {ψm |m ∈ ω} of functions from ω to X such that limn→+∞ ψm(n) = x̄,
there exists a ψ ∈ ωX such that limm→+∞ ψ(m) = x̄ and |{m ∈ ω | Im ψ ∩
Im ψm 6= ∅}| = ω. We say that X is an 〈α4〉-space if it has the property 〈α4〉 at
each of its points.
Φ̃ is the set of all one-to-one functions from ω to ω (throughout the paper,

one-to-one does not ever involve onto, unless explicitly stated). To every Φ ⊆ Φ̃
a topological space XΦ is associated, where XΦ = ω∪{∞Φ}, ∞Φ /∈ ω, the points
of ω are isolated and the point∞Φ has a local base given by

{

Wζ

∣

∣ ζ ∈ Φω
}

, with

Wζ = {∞Φ} ∪
{

ϕ(n)
∣

∣ϕ ∈ Φ ∧ n ≥ ζ(ϕ)
}

for every ζ ∈ Φω. In particular, it is clear that for every ϕ ∈ Φ (and for every
subsequence of it) we have that limn→+∞ ϕ(n) =∞Φ.
Observe that for every Φ ⊆ Φ̃, XΦ is a T2 paracompact Fréchet space. To

prove the latter property, let A be any subset of ω such that ∞Φ ∈ A. Then
for at least one ϕ̃ ∈ Φ we have that | Im ϕ̃ ∩ A| = ω (if, by contradiction, ∀ϕ ∈
Φ: ∃ ζ(ϕ) ∈ ω: ∀n ≥ ζ(ϕ):ϕ(n) /∈ A, then Wζ would be a nbhd of ∞Φ in XΦ
which does not meet A). Then there is a subsequence ϕ∗ of ϕ whose image is
entirely contained in A, and we have limn→+∞ ϕ∗(n) =∞Φ.

Remark 1. It is easy to prove, using an analogous argument, that whenever
ϕ′ ∈ ωω is such that limn→+∞ ϕ′(n) = ∞Φ in XΦ, there exists ϕ ∈ Φ̃ such that
| Im ϕ′ ∩ Im ϕ| = ω. We will often use this fact in the sequel.

We say that two elements ϕ′, ϕ′′ of Φ̃ are almost disjoint (briefly, ϕ′ a.d.ϕ′′) if
Im ϕ′ and Im ϕ′′ are almost disjoint (i.e., if | Im ϕ′ ∩ Im ϕ′′| < ω). We say that a

subcollection Φ of Φ̃ is almost disjoint if ϕ a.d.ϕ′ for distinct ϕ,ϕ′ ∈ Φ. Clearly,
ϕ′ a.d.ϕ′′ if and only if ∃n ∈ ω:

{

ϕ′(n′) |n′ ≥ n
}

∩ Im ϕ′′ = ∅.

We denote by Θ the set ωΦ̃. For ϑ, θ ∈ Θ we will often abuse notation and
write ϑ ◦ θ to denote the element of Θ defined by

(ϑ ◦ θ) (m) =
(

ϑ(m)
)

◦
(

θ(m)
)
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for every m ∈ ω. Of course, |Θ| = 2ω; in all the paper, we suppose to have fixed
a one-to-one indexing

{

θβ |β ∈ 2ω
}

of Θ, and a one-to-one indexing

(♠) {̂α |α ∈ 2ω \ ω}

of ωω.

2. Auxiliary results

Lemma 2 (MA). Let Φ∗ ⊆ Φ̃ be an almost disjoint collection, with |Φ∗| = κ <
2ω. Suppose to have ϑ0, ϑ1 ∈ Θ such that it is possible to associate to every
〈ι,m〉 ∈ 2× ω a ϕι

m ∈ Φ∗ in such a way that 〈ι,m〉 7→ ϕι
m is one-to-one and

∀ ι ∈ 2: ∀m ∈ ω: Im
(

ϑι(m)
)

⊆ Im ϕι
m.

Then there exists j ∈ ωω such that, defining ϕι ∈ ωω for ι ∈ 2 by

(1) ϕι(m) =
(

ϑι(m)
)(

j(m)
)

,

we have:

(a) ϕι ∈ Φ̃ for ι = 0, 1, and Im ϕ0 ∩ Im ϕ1 = ∅;
(b) ϕι a.d.ϕ for every ι ∈ 2 and ϕ ∈ Φ∗.

Proof: Since ϕι′

m′ a.d.ϕι′′

m′′ for
〈

ι′,m′
〉

6=
〈

ι′′,m′′
〉

, for every m ∈ ω there ex-

ists j⋆(m) such that {ϕι
m(n) |n ≥ j⋆(m)} ∩ Im ϕι′

m′ = ∅ for every m′ ≤ m and
〈

ι′,m′
〉

6= 〈ι,m〉. For every m ∈ ω, since ∀ ι ∈ 2:
(

ϑι(m) ∈ Φ̃ ∧ Im
(

ϑι(m)
)

⊆
Im ϕι

m

)

, there exists j∗(m) ∈ ω such that ∀ ι ∈ 2: ∀n ≥ j∗(m):
(

ϑι(m)
)

(n) ∈
{

ϕι
m(n

′) |n′ ≥ j⋆(m)
}

. Putting j♯ = sup {j⋆, j∗}, for every
〈

ι′,m′
〉

,
〈

ι′′,m′′
〉

∈

2× ω with
〈

ι′,m′
〉

6=
〈

ι′′,m′′
〉

we will have at the same time:

(2)
{

(

ϑι′(m′)
)

(n)
∣

∣

∣
n ≥ j♯(m′)

}

∩
{

(

ϑι′′(m′′)
)

(n)
∣

∣

∣
n ≥ j♯(m′′)

}

= ∅

and

(3)
{

(

ϑι′(m′)
)

(n)
∣

∣

∣
n ≥ j♯(m′)

}

∩
{

ϕι′′

m′′(n)
∣

∣

∣
n ≥ j♯(m′′)

}

= ∅.

We proceed now to a routine application of MA. Put Φ♯ = Φ∗ \ {ϕι
m | 〈ι,m〉 ∈

2× ω} and define a poset 〈P,≤〉 in the following way:

P =

{

〈g,A〉
∣

∣

∣
A ∈

[

Φ♯
]<ω

∧ g ∈ <ωω ∧ ∀m ∈ dom g: g(m) ≥ j♯(m)

}

;
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for
〈

g′,A′
〉

,
〈

g′′,A′′
〉

∈ P, let
〈

g′,A′
〉

≥
〈

g′′,A′′
〉

if g′ ⊆ g′′, A′ ⊆ A′′ and

∀ ι ∈ 2: ∀m ∈ dom g′′ \ dom g′: ∀ϕ ∈ A′:
(

ϑι(m)
)(

g′′(m)
)

/∈ Im ϕ.

Observe that for every g ∈ <ωω and A′,A′′ ∈
[

Φ♯
]<ω
,
〈

g,A′ ∪A′′
〉

is clearly

a common extension of
〈

g,A′
〉

and
〈

g,A′′
〉

: thus, if
〈

g′,A′
〉

and
〈

g′′,A′′
〉

are
incompatible, then g′ 6= g′′; since |<ωω| = ω, we have that 〈P,≤〉 is c.c.c.
For every ϕ ∈ Φ♯ andm ∈ ω, the setDϕ,m = {〈g,A〉 ∈ P |ϕ ∈ A ∧m ∈ dom g}

is dense in P. Indeed, let 〈g,A〉 be any element of P: if m ∈ dom g, then
〈g,A ∪ {ϕ}〉 is an extension of 〈g,A〉 which belongs to Dϕ,m. If m /∈ dom g,
then consider that since ϑι(m) a.d.ϕ′ for every ι ∈ 2 and ϕ′ ∈ A, there exist
n0, n1 ∈ ω such that ∀ ι ∈ 2: ∀ϕ′ ∈ A:

{(

ϑι(m)
)

(n)
∣

∣n ≥ nι
}

∩ Im ϕ′ = ∅; define

an extension g̃ of g with dom g̃ = dom g ∪ {m} and g̃(m) = max
{

j♯(m), n0, n1
}

:
then 〈g̃,A ∪ {ϕ}〉 ∈ Dϕ,m and 〈g,A〉 ≥ 〈g̃,A∪ {ϕ}〉.

Since
∣

∣

{

Dϕ,m

∣

∣ϕ ∈ Φ♯ ∧ m ∈ ω
}∣

∣ ≤ κ · ω = κ, there exists a filter G on P

such that ∀ϕ ∈ Φ♯: ∀m ∈ ω:G∩Dϕ,m 6= ∅. Let j =
⋃

{

g ∈ <ωω
∣

∣∃A ∈
[

Φ♯
]<ω
:

〈g,A〉 ∈ G
}

: it is easy to see that j is a function and that j:ω → ω (of course,

we may always suppose that Φ♯ 6= ∅). We must prove that the functions ϕι for
ι = 0, 1, defined by (1), satisfy (a) and (b).

First of all, observe that j ≥ j♯. Indeed, let m ∈ ω: then 〈m, j(m)〉 ∈ j, i.e.,
there exists 〈g,A〉 ∈ G such that 〈m, j(m)〉 ∈ g; thus g(m) = j(m), and by

the definition of P we have that j(m) = g(m) ≥ j♯(m). Now, if m′,m′′ ∈ ω

with m′ 6= m′′, then ϕι(m′) =
(

ϑι(m′)
)(

j(m′)
)

∈
{(

ϑι(m′)
)

(n)
∣

∣n ≥ j♯(m′)
}

and ϕι(m′′) =
(

ϑι(m′′)
)(

j(m′′)
)

∈
{(

ϑι(m′′)
)

(n)
∣

∣n ≥ j♯(m′′)
}

for ι ∈ 2, so that

ϕι(m′) 6= ϕι(m′′) by (2), and hence ϕ0, ϕ1 are one-to-one. Moreover, for every
m′,m′′ ∈ ω (even, possibly, m′ = m′′), we have that ϕ0(m′) ∈

{(

ϑ0(m′)
)

(n)
∣

∣n ≥

j♯(m′)
}

and ϕ1(m′′) ∈
{(

ϑ1(m′′)
)

(n)
∣

∣n ≥ j♯(m′′)
}

, so that ϕ0(m′) 6= ϕ1(m′′)

again by (2), and hence Im ϕ0 ∩ Im ϕ1 = ∅.
To prove (b), let ϕ∗ be any element of Φ∗, and consider first the case where

ϕ∗ ∈ Φ♯. Given ι ∈ 2, suppose by contradiction that Im ϕ∗ ∩ Im ϕι is infinite.
Fix any m̄ ∈ ω and take 〈g,A〉 ∈ G∩Dϕ∗,m̄, so that ϕ

∗ ∈ A. Since Im ϕ∗∩ Im ϕι

is infinite, the set M = (ϕι)−1 (Im ϕ∗ ∩ Im ϕι) = (ϕι)−1 (Im ϕ∗) is infinite, too:

then fix m̂ ∈ M \ dom g. Now take
〈

ĝ, Â
〉

∈ G such that m̂ ∈ dom ĝ, and let
〈

g♯,A♯
〉

∈ G be a common extension of 〈g,A〉 and
〈

ĝ, Â
〉

, so that, in particular,

m̂ ∈ dom ĝ ⊆ dom g♯ and
(

ϑι (m̂)
)(

g♯ (m̂)
)

=
(

ϑι (m̂)
)(

j (m̂)
)

= ϕι (m̂) ∈
Im ϕ∗ (by the definition of M). This is a contradiction, because m̂ /∈ dom g,
ϕ∗ ∈ A and 〈g,A〉 ≥

〈

g♯,A♯
〉

.

Consider now the case where ϕ∗ = ϕι∗

m∗ for some 〈ι∗,m∗〉 ∈ 2× ω. Given any

ι ∈ 2, from j ≥ j♯ we have that ϕι(m) =
(

ϑι(m)
)(

j(m)
)

∈
{(

ϑι(m)
)

(n)
∣

∣n ≥

j♯(m)
}

, which implies by (3) that ∀m 6= m∗:ϕι(m) /∈
{

ϕι∗

m∗(n)
∣

∣n ≥ j♯ (m∗)
}

(m 6= m∗ entails in any case 〈ι,m〉 6= 〈ι∗,m∗〉); therefore, Im ϕι ∩ Im ϕι∗

m∗ ⊆

{ϕι (m∗)} ∪
{

ϕι∗

m∗(n)
∣

∣n < j♯ (m∗)
}

, which is a finite set. �
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The following lemma is, in some sense, a “one-dimension” formulation of the
previous one; they will both be useful in the sequel.

Lemma 3 (MA). Let Φ̂ ⊆ Φ̃ be an almost disjoint collection, with |Φ̂| = κ < 2ω.
Suppose that there exists a ϑ ∈ Θ such that for everym ∈ ω there exists an fm ∈ Φ̂
with Im

(

ϑ(m)
)

⊆ Im fm; also, suppose that m 7→ fm is one-to-one. Then there

exists ρ ∈ Φ̃ such that ρ a.d.ϕ for every ϕ ∈ Φ̂ and Im ρ ∩ Im
(

ϑ(m)
)

6= ∅ for
every m ∈ ω.

The proof may be obtained following the outlines of the previous one; or, alter-
natively, applying Lemma 2 (after extending Φ̂ to a collection Φ∗ by adding specu-
lar elements, which is possible by [Ku, Corollary 2.16]) and then taking as ρ a suit-
able ϕι; or, alternatively, applying [Ku, Theorem 2.15] to C=

{

Im
(

ϑ(m)
)

|m ∈ ω
}

and A =
{

Im ϕ
∣

∣ϕ ∈ Φ̂
}

\
{

Im fm
∣

∣m ∈ ω
}

, and then shrinking and indexing the
set d.

Now we introduce a set-theoretic operator which will play a crucial role for
our further constructions. Let ξ be any infinite cardinal number, and define by
transfinite induction the sets Mγ , for γ ∈ ξ+, in the following way. M0 = ξ; if
Mγ′ is defined for every γ′ < γ, where γ ∈ ξ+ \ {0}, then

Mγ =
{

〈µ0, µ1, β0, β1〉
∣

∣

∣

∀ ι ∈ 2:
(

βι ∈ 2ξ and µι is a one-to-one function from ξ to
⋃

γ′<γ

Mγ′

)}

.

The set
⋃

γ∈ξ+Mγ will be called the double iterated power of ξ, and denoted

by DIP (ξ). For every x ∈ DIP (ξ), we also define a subset supp (x) of DIP (ξ), the
support of x, putting supp (x) = ∅ if x ∈M0 = ξ, and supp (x) = Im µ0 ∪ Im µ1

if x ∈
⋃

γ∈ξ+\{0}Mγ and x =
〈

µ0, µ1, β0, β1
〉

.

It is immediate to prove by transfinite induction that |Mγ | = 2ξ for every

γ ∈ ξ+\{0}; therefore, |DIP (ξ) | = 2ξ . We will say that an indexing
{

xα

∣

∣α ∈ 2ξ
}

of DIP (ξ) is well founded if it is one-to-one, xα = α for every α ∈ ξ, and ∀α ∈
2ω: supp (xα) ⊆

{

xα′ |α′ < α
}

.

Lemma 4. For every infinite cardinal ξ there exists a well founded indexing
of DIP (ξ).

Proof: First, fix any one-to-one indexing
{

yσ
∣

∣σ ∈ 2ξ
}

of DIP (ξ). Then define

j: 2ξ → 2ξ in the following way:

— j (α) = α, for α ∈ ξ;
— j (α) = min

{

σ ∈ 2ξ \
{

j
(

α′
) ∣

∣α′ < α
} ∣

∣ supp (yσ) ⊆
{

yj(α′)

∣

∣α′ < α
}}

,
for α ≥ ξ.

Observe that the above set cannot be empty. Indeed, for every β ∈ 2ξ, we
have

〈

idξ , idξ , β, 0
〉

∈ M1 ⊆ DIP (ξ), hence there exists σβ ∈ 2ξ such that
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〈

idξ, idξ , β, 0
〉

= yσβ
. Since β 7→ σβ is one-to-one, there must exist β̂ ∈ 2ξ

such that σ
β̂
/∈

{

j
(

α′
)

|α′ < α
}

, and for such a σ
β̂
we have that supp

(

yσ
β̂

)

=

supp
(〈

idξ , idξ , β, 0
〉)

= ξ ⊆
{

j
(

α′
)

|α′ < α
}

.

Now put, for every α ∈ 2ξ, xα = yj(α): by the definition of j, α 7→ xα is

one-to-one and supp (xα) = supp
(

yj(α)
)

⊆
{

yj(α′)

∣

∣α′ < α
}

=
{

xα′

∣

∣α′ < α
}

for

every α ∈ 2ξ \ ξ. Thus, we only need to prove the onto character of α 7→ xα over

DIP (ξ), which is clearly equivalent to the onto character of j over 2ξ .
Suppose j is not onto and let γ̂ = min

{

γ ∈ ξ+
∣

∣Mγ *
{

xα

∣

∣α ∈ 2ξ
}}

; fix

σ̂ ∈ 2ξ such that yσ̂ ∈ Mγ̂ \
{

xα

∣

∣α ∈ 2ξ
}

and put A = supp (yσ̂). Then ev-

ery a ∈ A belongs to some Mγ with γ < γ̂, hence there exists α(a) ∈ 2ξ such

that xα(a) = a; as |A| ≤ ξ and cof 2ξ > ξ, there exists α̂ ∈ 2ξ such that

α̂ > α(a) for every a ∈ A. Then for every α ∈ 2ξ with α ≥ α̂, since σ̂ ∈
{

σ ∈ 2ξ \
{

j
(

α′
)

|α′ < α
}

∣

∣ supp (yσ) ⊆
{

yj(α′)

∣

∣α′ < α
}}

, we have that j (α) ≤
σ̂; this is in contrast with the one-to-one character of j. �

3. The main construction

Henceforth, we assume MA. We will associate by transfinite induction to every
α ∈ 2ω, a pair

〈

ϕ0α, ϕ
1
α

〉

of elements of Φ̃. We adopt the following notation: for

every x ∈ DIP (ω), let α♯(x) denote the unique α ∈ 2ω such that xα = x (so that
α♯ (xα) = α for every α ∈ 2ω).
Also, we denote by K the set of all strictly increasing functions k:ω → ω and

by Λ the set of all functions λ:ω → K.

Let
{

Fι,m

}

〈ι,m〉∈2×ω
be a partition of ω — where 〈ι,m〉 7→ Fι,m is one-to-one

— such that |Fι,m| = ω for every 〈ι,m〉 ∈ 2× ω. For every 〈ι,m〉 ∈ 2× ω, let f ι
m

be an element of Φ̃ such that Im f ι
m = Fι,m. For every α ∈ ω and ι ∈ 2, we put

ϕι
α = f

ι
α.

Suppose now to have defined ϕι
α′ for every ι ∈ 2 and α′ < α, where α ∈ 2ω\ω, in

such a way that ϕι′

α′ a.d.ϕι′′

α′′ for 〈ι′, α′〉 6= 〈ι′′, α′′〉. Let xα =
〈

µ0, µ1, β0, β1
〉

and

define ϑ0α, ϑ
1
α ∈ Θ by ϑι

α(m) = ϕι
α♯(µι(m))

for ι ∈ 2. Consider the two elements

ϑι
α ◦ θβι of Θ (ι = 0, 1): since ϑι

α(m) a.d.ϑ
ι′
α(m

′) for 〈ι,m〉 6=
〈

ι′,m′
〉

, we also

have that ϑι
α(m) ◦ θβι(m) a.d.ϑι′

α(m
′) ◦ θβι(m′) for 〈ι,m〉 6=

〈

ι′,m′
〉

. Let Φ∗ =
{

ϕι
α′

∣

∣ ι ∈ 2 ∧ α′ < α
}

: then Φ∗ is an almost disjoint family and |Φ∗| = |α| < 2ω.
Moreover,

∀ 〈ι,m〉 ∈ 2× ω: Im
(

ϑι
α(m) ◦ θβι(m)

)

⊆ Im
(

ϑι
α(m)

)

= Im ϕι
α♯(µι(m));

since 〈ι,m〉 7→ ϕι
α♯(µι(m))

is one-to-one from 2×ω to Φ∗, we may apply Lemma 2

to get a j ∈ ωω such that the functions ϕ̃0α, ϕ̃
1
α, defined by

(4) ϕ̃ι
α(m) =

(

ϑι
α(m)

)

(

(

θβι(m)
)(

j(m)
)

)

for ι ∈ 2,
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are such that:

1) ϕ̃ι
α ∈ Φ̃ for ι ∈ 2 and ϕ̃0 a.d. ϕ̃1;

2) ϕ̃ι
α a.d.ϕ

ι′

α′ for every ι, ι′ ∈ 2 and α′ < α.

Put ϕ0α = ϕ̃
0
α, so that ϕ

0
α a.d.ϕ

ι
α′ for every

〈

ι, α′
〉

∈ 2×α. Also, define λ̂α ∈ Λ
by:

(5)
(

λ̂α(m)
)

(n) = n+ ̂α(m)

for every m,n ∈ ω — remember (♠).
Now, consider the almost disjoint collection of functions: Φ̂ = Φ∗ ∪

{

ϕ0α
}

:
putting

(6) ϑ̂α(m) = f
0
m ◦

(

λ̂α(m)
)

we get a function ϑ̂α ∈ Θ such that ϑ̂α(m) a.d. ϑ̂α(m
′) form 6= m′ and Im

(

ϑ̂α(m)
)

⊆ Im f0m for every m ∈ ω. Since m 7→ f0m is one-to-one (from ω to Φ̂), we have by

Lemma 3 that there exists ρα ∈ Φ̃ such that ρα a.d.ϕ for every ϕ ∈ Φ̂ and that

(7) Im ρα ∩ Im
(

ϑ̂α(m)
)

6= ∅ for every m ∈ ω.

Put Sα = Im ϕ̃1α ∪ Im ρα and let ϕ
1
α be an element of Φ̃ such that Im ϕ1α = Sα.

Since both ρα and ϕ̃
1
α are a.d. from every ϕ ∈ Φ̂, the same holds for ϕ1α. This

completes the inductive definition.

Thus the family {ϕι
α | 〈ι, α〉 ∈ 2× 2ω} is such that ϕι

α a.d.ϕ
ι′

α′ for 〈ι, α〉 6=
〈

ι′, α′
〉

∈ 2×2ω. Moreover, by our construction we have that for every α ∈ 2ω \ω

there exist ϕ̃0α, ϕ̃
1
α, ρα ∈ Φ̃ such that ϕ̃0α = ϕ0α, Im ϕ̃1α ⊆ ϕ1α, Im ρα ⊆ ϕ1α, and

(4), (7) are fulfilled (with λ̂α and ϑ̂α defined by (5) and (6)).

We put Φι = {ϕι
α |α ∈ 2ω} for ι = 0, 1. We claim that XΦ0 and XΦ1 are the

required spaces X and Y .

4. Proof of the main result

First, we want to prove that XΦ0 , XΦ1 and XΦ0 × XΦ1 are 〈α4〉-spaces. In
accordance with [En], for f, g:A→ X,Y we denote by f∆g the function from A
to X × Y defined by: (f∆g) (a) = 〈f(a), g(a)〉 for every a ∈ A.

Lemma 5. Let X0, X1 be two topological spaces, such that Xι = Dι ∪{∞ι} for
ι ∈ 2, where Dι is discrete and ∞ι /∈ Dι. Suppose that for every ι ∈ 2 there is at
least a ρι:ω → Dι such that limn→+∞ ρι(n) =∞ι. Also, suppose that whenever

for every 〈ι, i〉 ∈ 2× ω, ψ̂ι
i is a sequence in D

ι such that limn→+∞ ψ̂ι
i(n) = ∞ι,

then there exist ψ̂ι:ω → Dι for ι ∈ 2 such that limi→+∞ ψ̂ι(i) =∞ι and

∣

∣

∣

{

i ∈ ω
∣

∣

∣
Im

(

ψ̂0∆ψ̂1
)

∩ Im
(

ψ̂0i∆ψ̂
1
i

)

6= ∅
}∣

∣

∣
= ω.
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Then X0, X1 and X0 ×X1 are all 〈α4〉-spaces.

Proof: We first prove that, for ι ∈ 2, Xι is an 〈α4〉-space. Let ι = 0 (the proof for
ι = 1 is symmetric). Since the points of D0 trivially have the property 〈α4〉, sup-
pose to have for every i ∈ ω a ψ̃i:ω → X0 such that limn→+∞ ψ̃i(n) =∞0. If for
infinitely many i ∈ ω the sequence ψ̃i takes on the value∞

0, then the ψ̃:ω → X0

having constant value ∞0 is such that
∣

∣

{

i ∈ ω
∣

∣ Im ψ̃i ∩ Im ψ̃
}∣

∣ = ω. Thus, we

may suppose ψ̃i:ω → D0 for every i ∈ ω. Putting ψ̂0i = ψ̃i and ψ̂
1
i = ρ1 for ev-

ery i ∈ ω, we get by hypothesis ψ̂0, ψ̂1:ω → D0, D1 such that limn→+∞ ψ̂ι(n) =

∞ι for ι ∈ 2 and
∣

∣

{

i ∈ ω
∣

∣ Im
(

ψ̂0∆ψ̂1
)

∩ Im
(

ψ̂0i∆ψ̂
1
i

)

6= ∅
}∣

∣ = ω; thus ψ̂0 is

such that limn→+∞ ψ̂0(n) = ∞0 and
∣

∣

{

i ∈ ω
∣

∣ Im ψ̂0 ∩ Im ψ̂0i 6= ∅
}
∣

∣ = ω, i.e.,
∣

∣

{

i ∈ ω
∣

∣ Im ψ̂0 ∩ Im ψ̃i 6= ∅
}∣

∣ = ω.

Now we prove that X0 × X1 is an 〈α4〉-space. Property 〈α4〉 is trivial at
the points of D0 × D1, while at the points of

(

D0 ×
{

∞1
})

∪
({

∞0
}

×D1
)

it

easily comes from the 〈α4〉 character of X
0 and X1. Then consider the point

〈

∞0,∞1
〉

and suppose to have, for every 〈ι, i〉 ∈ 2× ω, a ψ̃ι
i :ω → Xι such that

limn→+∞ ψ̃ι
i(n) = ∞ι. Let M ι =

{

i ∈ ω
∣

∣ ψ̃ι
i is frequently equal to ∞

ι
}

for

ι ∈ 2: if |M0| = ω, then the property 〈α4〉 at the point ∞
1 of X1 easily gives the

property 〈α4〉 at
〈

∞0,∞1
〉

, in this case; if |M1| = ω, the situation is symmetric.

If |M ι| < ω for every ι ∈ 2, then we may suppose that ψ̃ι
i :ω → Dι for every i ∈ ω;

hence the hypothesis gives the property 〈α4〉 at
〈

∞0,∞1
〉

, in this case. �

Lemma 6. Let a ∈ X , where X is any topological space, and (an)n∈ω be a

sequence in X with limn→+∞ an = a. For every m ∈ ω, let km be an element

of K — so that
(

akm(i)

)

i∈ω
is a subsequence of (an)n∈ω; then there exists j ∈

ωω

such that for every j′ ∈ ωω with j′ ≥ j, limm→+∞ akm(j′(m)) = a.

Proof: Define j by induction: let j(0) be arbitrary; if j(m) is defined, let
j(m + 1) be such that km+1

(

j(m + 1)
)

> km

(

j(m)
)

(this is possible because
limn→+∞ km+1(n) = +∞). Suppose now j′ ≥ j: given any nbhd V of a, we
know that there exists n̄ ∈ ω such that ∀n ≥ n̄: an ∈ V ; since m 7→ km

(

j(m)
)

is

strictly increasing, there exists m̄ ∈ ω such that km̄

(

j (m̄)
)

≥ n̄; then for every

m ≥ m̄ we have km

(

j′(m)
)

≥ km

(

j(m)
)

≥ km̄

(

j (m̄)
)

≥ n̄ (because km is strictly
increasing) and hence akm(j′(m)) ∈ V . �

Lemma 7. Let ηι, for ι ∈ 2, be a one-to-one function from ω to 2ω, and for
every m ∈ ω let Ψ̃m:ω → ω × ω be such that Ψ̃m = ψ̃0m∆ψ̃

1
m, with Im ψ̃ι

m ⊆
Im ϕι

ηι(m) and ψ̃
ι
m ∈ Φ̃ for ι ∈ 2. Then there exists Ψ̃:ω → ω × ω such that

limm→+∞ Ψ̃(m) = 〈∞Φ0 ,∞Φ1〉 and Ψ̃(m) ∈ Im Ψ̃m for every m ∈ ω.

Proof: For ι ∈ 2, let µι:ω → DIP (ω) be defined by µι(m) = xηι(m): then µ
ι is

one-to-one. For every 〈ι,m〉 ∈ 2× ω, there exists γι
m ∈ ω1 such that µ

ι(m) ∈Mγι
m

(remember the definition of DIP (ω)): take γ̂ ∈ ω1 such that γ
ι
m < γ̂ for every
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〈ι,m〉 ∈ 2× ω. Also, for every 〈ι,m〉 ∈ 2× ω there exists a φι
m ∈ Φ̃ such that

ψ̃ι
m = ϕ

ι
ηι(m) ◦ φ

ι
m

— namely, φι
m =

(

ϕι
ηι(m)

)−1
◦ ψ̃ι

m; define θ̂
ι ∈ Θ, for ι ∈ 2, by θ̂ι(m) = φι

m,

and take βι ∈ 2ω such that θ̂ι = θβι . Then
〈

µ0, µ1, β0, β1
〉

∈ Mγ̂ ⊆ DIP (ω)

and hence there exists α̂ ∈ 2ω \ ω such that
〈

µ0, µ1, β0, β1
〉

= xα̂; we claim that

Ψ̃ = ϕ̃0α̂∆ϕ̃
1
α̂ = ϕ

0
α̂∆ϕ̃

1
α̂ has the desired properties.

Indeed, since ϕ̃1α̂ ∈ Φ̃, Im ϕ̃1α̂ ⊆ Im ϕ1α̂, and limm→+∞ ϕ1α̂(m) =∞Φ1 , we also

have that limm→+∞ ϕ̃1α̂(m) =∞Φ1 ; since ϕ̃
0
α̂ = ϕ

0
α̂, we get:

lim
m→+∞

(

ϕ̃0α̂∆ϕ̃
1
α̂

)

(m) = 〈∞Φ0 ,∞Φ1〉 .

On the other hand, by (4) we know that there exists a j ∈ ωω such that

ϕ̃ι
α̂(m) =

(

ϑι
α̂(m)

)

(

(

θβι(m)
)(

j(m)
)

)

for every 〈ι,m〉 ∈ 2× ω,

where ϑι
α̂(m) = ϕι

α♯(µι(m))
= ϕι

α♯(xηι(m))
= ϕι

ηι(m). Since θβι(m) = θ̂ι(m) = φι
m

for 〈ι,m〉 ∈ 2× ω, we have that ϕ̃ι
α̂(m) =

(

ϕι
ηι(m) ◦ φ

ι
m

)(

j(m)
)

= ψ̃ι
m

(

j(m)
)

,

and hence for every m ∈ ω: Ψ̃(m) =
〈

ϕ̃0α̂(m), ϕ̃
1
α̂(m)

〉

=
〈

ψ̃0m
(

j(m)
)

, ψ̃1m
(

j(m)
)〉

∈ Im Ψ̃m. �

Corollary 8. Let η be a one-to-one function from ω to 2ω, ι ∈ 2 and for every
m ∈ ω let ψ̃m be an element of Φ̃ such that Im ψ̃m ⊆ Im ϕι

η(m). Then there exists

ψ̃ ∈ ωω such that limm→+∞ ψ̃(m) =∞Φι and ψ̃(m) ∈ Im ψ̃m for every m ∈ ω.

Proof: We may suppose ι = 0. Put η0 = η1 = η and, for every m ∈ ω, let
ψ̃0m = ψ̃m, ψ̃

1
m = ϕ

1
η(m) and Ψ̃m = ψ̃

0
m∆ψ̃

1
m. If Ψ̃ = ψ̃

0∆ψ̃1 satisfies the thesis of

Lemma 7, then ψ̃0 is the required ψ̃. �

Lemma 9. If ϕ′, ϕ′′ are functions from ω to any set E such that | Im ϕ′ ∩
Im ϕ′′| = ω, then there exist k′, k′′ ∈ K such that ϕ′ ◦ k′ = ϕ′′ ◦ k′′ (i.e., ϕ′

and ϕ′′ have a common subsequence), and such a function is one-to-one.

Proof: We will construct simultaneously k′ and k′′ by induction. Put F =

Im ϕ′ ∩ Im ϕ′′ and fix a0 ∈ F : let k′(0) be an element of
(

ϕ′
)−1
(a0) and k

′′(0)

an element of
(

ϕ′′
)−1
(a0), so that ϕ

′
(

k′ (0)
)

= a0 = ϕ
′′
(

k′ (0)
)

.
Suppose now to have defined k′(m′), k′′(m′) for every m′ ≤ m: since F is

infinite, the set F \
({

ϕ′(n) |n ≤ k′(m)
}

∪
{

ϕ′′(n) |n ≤ k′′(m)
})

contains a point

am+1. Then choose k
′(m+1) ∈

(

ϕ′
)−1
(am+1) and k

′′(m+1) ∈
(

ϕ′′
)−1
(am+1):

thus k′(m+1) > k′(m), k′′(m+1) > k(m), ϕ′
(

k′(m+1)
)

= am+1 = ϕ
′′
(

k′′(m+1)
)

and ϕ′
(

k′(m+ 1)
)

6= ϕ′
(

k′(m′)
)

for every m′ ≤ m. �
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We prove now that XΦ0 , XΦ1 and XΦ0 ×XΦ1 are 〈α4〉-spaces. By Lemma 5,

it is sufficient to show that whenever
(

Ψ̂i

)

i∈ω
is a sequence of functions from ω

to ω × ω such that

∀ i ∈ ω: lim
n→+∞

Ψ̂i(n) = 〈∞Φ0 ,∞Φ1〉 ,

there exists a Ψ̂:ω → ω × ω such that
∣

∣

{

i ∈ ω
∣

∣ Im Ψ̂ ∩ Im Ψ̂i 6= ∅
}
∣

∣ = ω.

For every i ∈ ω, we have that Ψ̂i = ψ̂
0
i∆ψ̂

1
i , where limn→+∞ ψ̂ι

i(n) =∞Φι for

ι ∈ 2. By Remark 1, for every i ∈ ω there exists α0i ∈ 2ω such that | Im ϕα0i
∩

Im ψ̂0i | = ω; now use Lemma 9 to get a k̂
0
i ∈ K such that ψ̂0i ◦ k̂0i is a one-to-one

subsequence of ϕ0
α0i
. Of course, for every i ∈ ω we still have that limm→+∞

(

ψ̂1i ◦

k̂0i
)

(m) =∞Φ1 , hence by Remark 1 there exists α
1
i such that

∣

∣ Im ϕ1
α1i

∩ Im
(

ψ̂1i ◦

k̂0i
)∣

∣ = ω; using again Lemma 9, we get a k̃1i ∈ K such that ψ̂1i ◦ k̂0i ◦ k̂1i is a

one-to-one subsequence of ϕ1
α1i
.

Putting, for 〈ι, i〉 ∈ 2× ω, ψι
i = ψ̃

ι
i◦k̂
0
i ◦k̂

1
i and Ψi = ψ

0
i∆ψ

1
i = Ψ̂◦k̂

0
i ◦k̂

1
i , for ev-

ery 〈ι, i〉 ∈ 2× ω we have at the same time that Ψi is a subsequence of Ψ̂i and that
ψι

i is a one-to-one subsequence of ϕ
ι
αι

i
. In particular, if we can find a Ψ:ω → ω × ω

with limm→+∞Ψ(m) = 〈∞Φ0 ,∞Φ1〉, such that | {i ∈ ω | Im Ψ ∩ Im Ψi 6= ∅} | =
ω, we will also have that

∣

∣

{

i ∈ ω
∣

∣ Im Ψ ∩ Im Ψ̂i 6= ∅
}∣

∣ = ω.

Let A0 =
{

α0i
∣

∣ i ∈ ω
}

: we have two cases.

1st case. A0 is infinite.

Fix H0 ⊆ ω such that
{

α0i | i ∈ H0
}

= A0 and α0i′ 6= α0i′′ for i
′, i′′ ∈ H0 with

i′ 6= i′′. Consider now Ã1 =
{

α1i | i ∈ H0
}

.

1st subcase. Ã1 is infinite.

Then there exists an (infinite) H̃ ⊆ H0 such that
{

α1i
∣

∣ i ∈ H̃
}

= Ã1 and α1i′ 6= α
1
i′′

for i′, i′′ ∈ H̃ with i′ 6= i′′. Let Ã0 =
{

α0i
∣

∣ i ∈ H̃
}

: since H̃ ⊆ H0, we also have

that α0i′ 6= α
0
i′′ for i

′, i′′ ∈ H̃ with i′ 6= i′′.

As |H̃ | = ω, there exists a (unique) k̃ ∈ K such that Im k̃ = H̃ ; then
{

αι
k̃(m)

∣

∣m ∈ ω
}

= Ãι for ι ∈ 2. Define ηι:ω → 2ω, for ι ∈ 2, by ηι(m) = αι
k̃(m)
:

since each ηι is one-to-one and Im ψι
k̃(m)

⊆ Im ϕι
ηι(m) for every 〈ι,m〉 ∈ 2× ω (be-

cause ψι
k̃(m)

is a subsequence of ϕι
ηι(m)), by Lemma 7 there exists Ψ̃:ω → ω × ω

such that limm→+∞ Ψ̃(m) = 〈∞Φ0 ,∞Φ1〉 and Im Ψ̃ ∩ Im Ψ
k̃(m) 6= ∅ for every

m ∈ ω, which implies that
∣

∣

{

i ∈ ω
∣

∣ Im Ψ̃ ∩ Im Ψi 6= ∅
}
∣

∣ = ω.
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2nd subcase. Ã1 is finite.

Then there exists an infinite subset H̃ of H1 and an α̂ ∈ 2ω such that ∀ i ∈
H̃ :α1i = α̂. Again, let k̃ ∈ K be such that Im k̃ = H̃ : since H̃ ⊆ H0, we have

that η:ω → 2ω defined by η(m) = α0
k̃(m)

is one-to-one.

For every m ∈ ω we have that ψ1
k̃(m)

is a one-to-one subsequence of ϕ1
α1

k̃(m)

,

which coincides with ϕ1α̂ because k̃(m) ∈ H̃ ; hence by Lemma 6 there exists
j ∈ ωω such that

(8) ∀ j′ ≥ j: lim
m→+∞

ψ1
k̃(m)

(

j′(m)
)

=∞Φ1 .

Now define, for every m ∈ ω, a ψ̃m ∈ Φ̃ by:

(9) ψ̃m(n) = ψ
0
k̃(m)

(

n+ j(m)
)

.

Observe that, for every m ∈ ω, Im ψ̃m ⊆ Im ψ0
k̃(m)

⊆ Im ϕ0
α0

k̃(m)

= Im ϕ0
η(m).

Then by Corollary 8 there exists ψ0 ∈ ωω such that

lim
m→+∞

ψ0(m) =∞Φ0 and ∀m ∈ ω:ψ0(m) ∈ Im ψ̃m;

using (9), we have that for every m ∈ ω there exists ñ(m) ∈ ω such that ψ0(m) =
ψ0

k̃(m)

(

ñ(m) + j(m)
)

.

Put j′(m) = ñ(m)+j(m) and define ψ1 ∈ ωω by ψ1 (m) = ψ1
k̃(m)

(

j′(m)
)

: then

limm→+∞ ψ1(m) =∞Φ1 by (8). Thus, putting Ψ = ψ
0∆ψ1, we have that

lim
m→+∞

Ψ(m) = 〈∞Φ0 ,∞Φ1〉 ;

moreover, for every m ∈ ω,

Ψ(m) =
〈

ψ0(m), ψ1(m)
〉

=
〈

ψ0
k̃(m)

(

j′(m)
)

, ψ1
k̃(m)

(

j′(m)
)

〉

= Ψ
k̃(m)

(

j′(m)
)

∈ Im Ψ
k̃(m)

,

so that
∣

∣

{

i ∈ ω
∣

∣ Im Ψ ∩ Im Ψi 6= ∅
}
∣

∣ = ω.

2nd case. A0 is finite.

Then there exists an infinite subset H0 of ω and an α̂0 ∈ 2ω such that ∀ i ∈
H0:α0i = α̂

0. Again, let Ã1 =
{

α1i | i ∈ H0
}

.

1st subcase. Ã1 is infinite.

Then there exists an infinite subset H̃ of H1 such that
{

α1i
∣

∣ i ∈ H̃
}

= Ã1 and

α1i′ 6= α1i′′ for distinct i
′, i′′ ∈ H̃ . The situation is symmetric to the 2nd subcase

of the 1st case.



548 C.Costantini

2nd subcase. Ã1 is finite.

Then there exists an infinite H̃ ⊆ H0 and an α̂1 ∈ 2ω such that ∀ i ∈ H̃ :α1i = α̂
1;

clearly, since H̃ ⊆ H0, we also have that ∀ i ∈ H̃ :α0i = α̂0. Let k̃ ∈ K such that

Im k̃ = H̃: then for every 〈ι,m〉 ∈ 2× ω we have that ψι
k̃(m)

is a subsequence of

ϕι
αι

k̃(m)

= ϕι
α̂ι . Applying Lemma 6, we get j0, j1 ∈ ωω such that

∀ ι ∈ 2: ∀ j′ ∈ ωω:
(

j′ ≥ jι =⇒ lim
m→+∞

ψι
k̃(m)

(

j′(m)
)

=∞Φι

)

.

Let j = sup
{

j0, j1
}

and define ψι ∈ ωω for ι ∈ 2 by:

ψι(m) = ψι
k̃(m)

(

j(m)
)

for every m ∈ ω. Putting Ψ = ψ0∆ψ1, we have that limm→+∞Ψ(m) =
〈∞Φ0 ,∞Φ1〉 and that

∀m ∈ ω: Ψ(m) =
〈

ψ0(m), ψ1(m)
〉

=
〈

ψ0
k̃(m)

(

j(m)
)

, ψ1
k̃(m)

(

j(m)
)

〉

∈ Im Ψ
k̃(m)

,

whence
∣

∣

{

i ∈ ω
∣

∣ Im Ψ ∩ Im Ψi 6= ∅
}
∣

∣ = ω.

Now we proceed to show that XΦ0 ×XΦ1 is not Fréchet-Urysohn. First of
all, we prove that putting D = {〈ℓ, ℓ〉 | ℓ ∈ ω}, we have that 〈∞Φ0 ,∞Φ1〉 ∈ D in
XΦ0 ×XΦ1 .
Indeed, let V 0, V 1 be arbitrary nbhds of ∞Φ0 ,∞Φ1 in XΦ0 , XΦ1 , respectively.

For every m ∈ ω, ϕ0m = f
0
m belongs to Φ

0, and hence there exists j ∈ ω such that

(10) ∀m ∈ ω: ∀n ≥ j(m): f0m(n) ∈ V 0.

Take α̂ ∈ 2ω \ ω such that j = ̂α̂: then (5), (6) and (7) (for α = α̂) combine
to show that

∀m ∈ ω: ∃n′ ≥ ̂α̂(m): f
0
m(n

′) ∈ Im ρα̂;

hence we can associate to every m ∈ ω a ñ(m) ≥ ̂α̂(m) such that

(11) f0m
(

ñ(m)
)

∈ Im ρα̂ ⊆ Im ϕ1α̂.

Since limn→+∞ ϕ1α̂(n) =∞Φ1 in XΦ1 , there exists n
♯ ∈ ω such that

(12) ∀n ≥ n♯:ϕ1α̂(n) ∈ V 1.

Observe that m 7→ f0m
(

ñ(m)
)

is one-to-one from ω to ω (because Im f0m′ ∩

Im f0m′′ = F0,m′ ∩F0,m′′ = ∅ for m′ 6= m′′); therefore the set
{

f0m
(

ñ(m)
)
∣

∣m ∈ ω
}
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cannot be contained into
{

ϕ1α̂(n)
∣

∣n < n♯
}

, and hence by (11) there exists n∗ ≥ n♯

such that
ϕ1α̂ (n

∗) ∈
{

f0m
(

ñ(m)
) ∣

∣m ∈ ω
}

.

Since ϕ1α̂ (n
∗) ∈ V 1 by (12), and f0m

(

ñ(m)
)

∈ V 0 for every m ∈ ω (because of
(10) and the fact that ñ(m) ≥ ̂α̂(m) = j(m)), we conclude that for some ℓ ∈ ω,
〈ℓ, ℓ〉 ∈ V 0 × V 1.

Now, if XΦ0 ×XΦ1 were Fréchet, there would exist a sequence in D which
converges to 〈∞Φ0 ,∞Φ1〉, and clearly it could be supposed to be one-to-one.
Thus, there would exist ϕ̃ ∈ Φ̃ such that limn→+∞ ϕ̃(n) = ∞Φ0 in XΦ0 and
limn→+∞ ϕ̃(n) = ∞Φ1 in XΦ1 . From the former relation we have that

∣

∣ Im ϕ̃ ∩

Im ϕ0α̂
∣

∣ = ω for some α̂ ∈ 2ω; by Lemma 9, there exists ϕ∗ ∈ Φ̃ which is a

common subsequence of ϕ̃ and ϕ0α̂. In particular, since limn→+∞ ϕ̃(n) = ∞Φ1
in XΦ1 , we also have that limn→+∞ ϕ∗(n) = ∞Φ1 in XΦ1 , so that there exists
α∗ ∈ 2ω such that

∣

∣ Im ϕ∗ ∩ Im ϕ1α∗

∣

∣ = ω, and hence
∣

∣ Im ϕ0α̂ ∩ Im ϕ1α∗

∣

∣ = ω

(because Im ϕ∗ ⊆ Im ϕ0α̂). This contradicts the fact that every element of Φ
0 is

almost disjoint from every element of Φ1.
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10123 Torino, Italy

(Received August 10, 1998)


		webmaster@dml.cz
	2012-04-30T18:49:52+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




