Commentationes Mathematicae Universitatis Carolinae

Camillo Costantini
On a problem of Nogura about the product of Fréchet-Urysohn $\left\langle\alpha_{4}\right\rangle$-spaces

Commentationes Mathematicae Universitatis Caroline, Vol. 40 (1999), No. 3, 537--549

Persistent URL: http://dml.cz/dmlcz/119109

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1999

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

On a problem of Nogura about the product of Fréchet-Urysohn $\left\langle\alpha_{4}\right\rangle$-spaces

Camillo Costantini

Abstract

Assuming Martin's Axiom, we provide an example of two Fréchet-Urysohn $\left\langle\alpha_{4}\right\rangle$-spaces, whose product is a non-Fréchet-Urysohn $\left\langle\alpha_{4}\right\rangle$-space. This gives a consistent negative answer to a question raised by T. Nogura.

Keywords: Fréchet-Urysohn space, $\left\langle\alpha_{4}\right\rangle$-space, Martin's Axiom, almost disjoint functions, double iterated power
Classification: Primary 54D55; Secondary 54G15, 54B10, 54D80, 03E50

0. Introduction

The classes of $\left\langle\alpha_{i}\right\rangle$-spaces, with $1 \leq i \leq 4$, were introduced by Arhangel'skii in [Ar1], to study the product of Fréchet-Urysohn spaces (Arhangel'skii also introduced the class of $\left\langle\alpha_{5}\right\rangle$-spaces, which turned out to coincide with that of $\left\langle\alpha_{2}\right\rangle$-spaces: see [No, Theorem 2.1]). Each $\left\langle\alpha_{i}\right\rangle$-space is also an $\left\langle\alpha_{i+1}\right\rangle$-space for $1 \leq i \leq 3$, and each first countable space is an $\left\langle\alpha_{1}\right\rangle$-space.

The above mentioned paper gave rise, in the following twenty years, to a wide literature, where several problems concerning this kind of spaces are investigated (see, for example, [Do] and related bibliography); often, in these articles, the Fréchet-Urysohn $\left\langle\alpha_{i}\right\rangle$-spaces are briefly called $\left\langle\alpha_{i}\right.$-FU \rangle-spaces. For $i=1,2,3$, Nogura [No] proved that the product of two $\left\langle\alpha_{i}\right\rangle$-spaces is still an $\left\langle\alpha_{i}\right\rangle$-space. Also, the product of an $\left\langle\alpha_{3}-\mathrm{FU}\right\rangle$-space and of a countably compact, regular Fréchet space (which is always an $\left\langle\alpha_{4}\right\rangle$-space, see [Ol]) is a Fréchet space [Ar2]; this is one of the best results about preservation of the Fréchet property under products. Recall that, without additional assumptions, even the product of two compact $\left(\mathrm{T}_{2}\right)$ Fréchet spaces may fail to be Fréchet; the first, celebrated example in ZFC of this fact is due to Simon [Si1].

As for $\left\langle\alpha_{4}\right\rangle$-spaces and $\left\langle\alpha_{4}\right.$-FU \rangle-spaces (which coincide with the strongly Fréchet spaces - see [Ar2] and the remarks after Theorem 1.4 of [No]), their product is not very well behaved. The product of two $\left\langle\alpha_{4}-\mathrm{FU}\right\rangle$-spaces may fail both to be Fréchet and to be an $\left\langle\alpha_{4}\right\rangle$-space (cf. [No, Example 1.2 and Theorem 3.10]). Thus, Nogura put the following questions [No, Problem 3.15 and 3.18]:
(a) Let X and Y be $\left\langle\alpha_{4}\right.$-FU \rangle-spaces. If $X \times Y$ is Fréchet, then is it an $\left\langle\alpha_{4}\right\rangle$ space?
(b) Let X and Y be $\left\langle\alpha_{4}\right.$-FU \rangle-spaces. If $X \times Y$ is an $\left\langle\alpha_{4}\right\rangle$-space, then is it Fréchet?

Very recently, the first question was solved in the negative by Simon, under the Continuum Hypothesis ([Si2]). In this paper, we give under Martin's Axiom (MA) a negative answer to the second question - actually, our X and Y will turn out to be countable (paracompact) T_{2} spaces, where each point, except one, is isolated. We point out that, after this paper had been written, a ZFC example for the same problem was found by Simon and the author (see [CS]).

1. Notations and basic facts

Throughout the paper, the left exponentiation ${ }^{A} B$ among sets will denote the set of all functions $f: A \rightarrow B$, while the right exponentiation ξ^{κ} among cardinals will denote the cardinal number: $\left.\right|^{\kappa} \xi \mid$. The ordered pairs, triples, and so on are denoted, respectively, by $\langle a, b\rangle,\langle a, b, c\rangle$, etc. For every function f, we denote by $\operatorname{dom} f$ its domain and by $\operatorname{Im} f$ its image $\{f(x) \mid x \in \operatorname{dom} f\}$.

We say that a topological space X has the property $\left\langle\alpha_{4}\right\rangle$ at a point \bar{x} if for every family $\left\{\psi_{m} \mid m \in \omega\right\}$ of functions from ω to X such that $\lim _{n \rightarrow+\infty} \psi_{m}(n)=\bar{x}$, there exists a $\psi \in{ }^{\omega} X$ such that $\lim _{m \rightarrow+\infty} \psi(m)=\bar{x}$ and $\mid\{m \in \omega \mid \operatorname{Im} \psi \cap$ $\left.\operatorname{Im} \psi_{m} \neq \emptyset\right\} \mid=\omega$. We say that X is an $\left\langle\alpha_{4}\right\rangle$-space if it has the property $\left\langle\alpha_{4}\right\rangle$ at each of its points.
$\tilde{\Phi}$ is the set of all one-to-one functions from ω to ω (throughout the paper, one-to-one does not ever involve onto, unless explicitly stated). To every $\Phi \subseteq \tilde{\Phi}$ a topological space X_{Φ} is associated, where $X_{\Phi}=\omega \cup\left\{\infty_{\Phi}\right\}, \infty_{\Phi} \notin \omega$, the points of ω are isolated and the point ∞_{Φ} has a local base given by $\left\{W_{\zeta} \mid \zeta \in \Phi_{\omega}\right\}$, with

$$
W_{\zeta}=\left\{\infty_{\Phi}\right\} \cup\{\varphi(n) \mid \varphi \in \Phi \wedge n \geq \zeta(\varphi)\}
$$

for every $\zeta \in \Phi^{\Phi}$. In particular, it is clear that for every $\varphi \in \Phi$ (and for every subsequence of it) we have that $\lim _{n \rightarrow+\infty} \varphi(n)=\infty_{\Phi}$.

Observe that for every $\Phi \subseteq \tilde{\Phi}, X_{\Phi}$ is a T_{2} paracompact Fréchet space. To prove the latter property, let A be any subset of ω such that $\infty_{\Phi} \in \bar{A}$. Then for at least one $\tilde{\varphi} \in \Phi$ we have that $|\operatorname{Im} \tilde{\varphi} \cap A|=\omega$ (if, by contradiction, $\forall \varphi \in$ $\Phi: \exists \zeta(\varphi) \in \omega: \forall n \geq \zeta(\varphi): \varphi(n) \notin A$, then W_{ζ} would be a nbhd of ∞_{Φ} in X_{Φ} which does not meet A). Then there is a subsequence φ^{*} of φ whose image is entirely contained in A, and we have $\lim _{n \rightarrow+\infty} \varphi^{*}(n)=\infty_{\Phi}$.
Remark 1. It is easy to prove, using an analogous argument, that whenever $\varphi^{\prime} \in{ }^{\omega} \omega$ is such that $\lim _{n \rightarrow+\infty} \varphi^{\prime}(n)=\infty_{\Phi}$ in X_{Φ}, there exists $\varphi \in \tilde{\Phi}$ such that $\left|\operatorname{Im} \varphi^{\prime} \cap \operatorname{Im} \varphi\right|=\omega$. We will often use this fact in the sequel.

We say that two elements $\varphi^{\prime}, \varphi^{\prime \prime}$ of $\tilde{\Phi}$ are almost disjoint (briefly, φ^{\prime} a.d. $\varphi^{\prime \prime}$) if $\operatorname{Im} \varphi^{\prime}$ and $\operatorname{Im} \varphi^{\prime \prime}$ are almost disjoint (i.e., if $\left|\operatorname{Im} \varphi^{\prime} \cap \operatorname{Im} \varphi^{\prime \prime}\right|<\omega$). We say that a subcollection Φ of $\tilde{\Phi}$ is almost disjoint if φ a.d. φ^{\prime} for distinct $\varphi, \varphi^{\prime} \in \Phi$. Clearly, φ^{\prime} a.d. $\varphi^{\prime \prime}$ if and only if $\exists n \in \omega:\left\{\varphi^{\prime}\left(n^{\prime}\right) \mid n^{\prime} \geq n\right\} \cap \operatorname{Im} \varphi^{\prime \prime}=\emptyset$.

We denote by Θ the set ${ }^{\omega} \tilde{\Phi}$. For $\vartheta, \theta \in \Theta$ we will often abuse notation and write $\vartheta \circ \theta$ to denote the element of Θ defined by

$$
(\vartheta \circ \theta)(m)=(\vartheta(m)) \circ(\theta(m))
$$

for every $m \in \omega$. Of course, $|\Theta|=2^{\omega}$; in all the paper, we suppose to have fixed a one-to-one indexing

$$
\left\{\theta_{\beta} \mid \beta \in 2^{\omega}\right\}
$$

of Θ, and a one-to-one indexing
($\boldsymbol{\oplus}$

$$
\left\{\hat{\jmath}_{\alpha} \mid \alpha \in 2^{\omega} \backslash \omega\right\}
$$

of ${ }^{\omega} \omega$.

2. Auxiliary results

Lemma 2 (MA). Let $\Phi^{*} \subseteq \tilde{\Phi}$ be an almost disjoint collection, with $\left|\Phi^{*}\right|=\kappa<$ 2^{ω}. Suppose to have $\vartheta^{0}, \vartheta^{1} \in \Theta$ such that it is possible to associate to every $\langle\iota, m\rangle \in 2 \times \omega$ a $\varphi_{m}^{\iota} \in \Phi^{*}$ in such a way that $\langle\iota, m\rangle \mapsto \varphi_{m}^{\iota}$ is one-to-one and

$$
\forall \iota \in 2: \forall m \in \omega: \operatorname{Im}\left(\vartheta^{\iota}(m)\right) \subseteq \operatorname{Im} \varphi_{m}^{\iota} .
$$

Then there exists $j \in{ }^{\omega} \omega$ such that, defining $\varphi^{\iota} \in{ }^{\omega} \omega$ for $\iota \in 2$ by

$$
\begin{equation*}
\varphi^{\iota}(m)=\left(\vartheta^{\iota}(m)\right)(j(m)), \tag{1}
\end{equation*}
$$

we have:
(a) $\varphi^{\iota} \in \tilde{\Phi}$ for $\iota=0,1$, and $\operatorname{Im} \varphi^{0} \cap \operatorname{Im} \varphi^{1}=\emptyset$;
(b) φ^{ι} a.d. φ for every $\iota \in 2$ and $\varphi \in \Phi^{*}$.

Proof: Since $\varphi_{m^{\prime}}^{\iota^{\prime}}$ a.d. $\varphi_{m^{\prime \prime}}^{\iota^{\prime \prime}}$ for $\left\langle\iota^{\prime}, m^{\prime}\right\rangle \neq\left\langle\iota^{\prime \prime}, m^{\prime \prime}\right\rangle$, for every $m \in \omega$ there exists $j^{\star}(m)$ such that $\left\{\varphi_{m}^{\iota}(n) \mid n \geq j^{\star}(m)\right\} \cap \operatorname{Im} \varphi_{m^{\prime}}^{\iota^{\prime}}=\emptyset$ for every $m^{\prime} \leq m$ and $\left\langle\iota^{\prime}, m^{\prime}\right\rangle \neq\langle\iota, m\rangle$. For every $m \in \omega$, since $\forall \iota \in 2:\left(\vartheta^{\iota}(m) \in \tilde{\Phi} \wedge \operatorname{Im}\left(\vartheta^{\iota}(m)\right) \subseteq\right.$ $\left.\operatorname{Im} \varphi_{m}^{\iota}\right)$, there exists $j^{*}(m) \in \omega$ such that $\forall \iota \in 2: \forall n \geq j^{*}(m):\left(\vartheta^{\iota}(m)\right)(n) \in$ $\left\{\varphi_{m}^{\iota}\left(n^{\prime}\right) \mid n^{\prime} \geq j^{\star}(m)\right\}$. Putting $j^{\sharp}=\sup \left\{j^{\star}, j^{*}\right\}$, for every $\left\langle\iota^{\prime}, m^{\prime}\right\rangle,\left\langle\iota^{\prime \prime}, m^{\prime \prime}\right\rangle \in$ $2 \times \omega$ with $\left\langle\iota^{\prime}, m^{\prime}\right\rangle \neq\left\langle\iota^{\prime \prime}, m^{\prime \prime}\right\rangle$ we will have at the same time:

$$
\begin{equation*}
\left\{\left(\vartheta^{\iota^{\prime}}\left(m^{\prime}\right)\right)(n) \mid n \geq j^{\sharp}\left(m^{\prime}\right)\right\} \cap\left\{\left(\vartheta^{\iota^{\prime \prime}}\left(m^{\prime \prime}\right)\right)(n) \mid n \geq j^{\sharp}\left(m^{\prime \prime}\right)\right\}=\emptyset \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\left(\vartheta^{\iota^{\prime}}\left(m^{\prime}\right)\right)(n) \mid n \geq j^{\sharp}\left(m^{\prime}\right)\right\} \cap\left\{\varphi_{m^{\prime \prime}}^{\prime \prime}(n) \mid n \geq j^{\sharp}\left(m^{\prime \prime}\right)\right\}=\emptyset . \tag{3}
\end{equation*}
$$

We proceed now to a routine application of MA. Put $\Phi^{\sharp}=\Phi^{*} \backslash\left\{\varphi_{m}^{\iota} \mid\langle\iota, m\rangle \in\right.$ $2 \times \omega\}$ and define a poset $\langle\mathbf{P}, \leq\rangle$ in the following way:

$$
\mathbf{P}=\left\{\langle g, \mathcal{A}\rangle \mid \mathcal{A} \in\left[\Phi^{\sharp}\right]^{<\omega} \wedge g \in e^{<\omega} \omega \wedge \forall m \in \operatorname{dom} g: g(m) \geq j^{\sharp}(m)\right\} ;
$$

for $\left\langle g^{\prime}, \mathcal{A}^{\prime}\right\rangle,\left\langle g^{\prime \prime}, \mathcal{A}^{\prime \prime}\right\rangle \in \mathbf{P}$, let $\left\langle g^{\prime}, \mathcal{A}^{\prime}\right\rangle \geq\left\langle g^{\prime \prime}, \mathcal{A}^{\prime \prime}\right\rangle$ if $g^{\prime} \subseteq g^{\prime \prime}, \mathcal{A}^{\prime} \subseteq \mathcal{A}^{\prime \prime}$ and $\forall \iota \in 2: \forall m \in \operatorname{dom} g^{\prime \prime} \backslash \operatorname{dom} g^{\prime}: \forall \varphi \in \mathcal{A}^{\prime}:\left(\vartheta^{\iota}(m)\right)\left(g^{\prime \prime}(m)\right) \notin \operatorname{Im} \varphi$.

Observe that for every $g \in{ }^{<\omega} \omega$ and $\mathcal{A}^{\prime}, \mathcal{A}^{\prime \prime} \in\left[\Phi^{\sharp}\right]^{<\omega},\left\langle g, \mathcal{A}^{\prime} \cup \mathcal{A}^{\prime \prime}\right\rangle$ is clearly a common extension of $\left\langle g, \mathcal{A}^{\prime}\right\rangle$ and $\left\langle g, \mathcal{A}^{\prime \prime}\right\rangle$: thus, if $\left\langle g^{\prime}, \mathcal{A}^{\prime}\right\rangle$ and $\left\langle g^{\prime \prime}, \mathcal{A}^{\prime \prime}\right\rangle$ are incompatible, then $g^{\prime} \neq g^{\prime \prime}$; since $\left.\right|^{<\omega} \omega \mid=\omega$, we have that $\langle\mathbf{P}, \leq\rangle$ is c.c.c.

For every $\varphi \in \Phi^{\sharp}$ and $m \in \omega$, the set $D_{\varphi, m}=\{\langle g, \mathcal{A}\rangle \in \mathbf{P} \mid \varphi \in \mathcal{A} \wedge m \in \operatorname{dom} g\}$ is dense in \mathbf{P}. Indeed, let $\langle g, \mathcal{A}\rangle$ be any element of \mathbf{P} : if $m \in \operatorname{dom} g$, then $\langle g, \mathcal{A} \cup\{\varphi\}\rangle$ is an extension of $\langle g, \mathcal{A}\rangle$ which belongs to $D_{\varphi, m}$. If $m \notin \operatorname{dom} g$, then consider that since $\vartheta^{\iota}(m)$ a.d. φ^{\prime} for every $\iota \in 2$ and $\varphi^{\prime} \in \mathcal{A}$, there exist $n^{0}, n^{1} \in \omega$ such that $\forall \iota \in 2: \forall \varphi^{\prime} \in \mathcal{A}:\left\{\left(\vartheta^{\iota}(m)\right)(n) \mid n \geq n^{\iota}\right\} \cap \operatorname{Im} \varphi^{\prime}=\emptyset$; define an extension \tilde{g} of g with $\operatorname{dom} \tilde{g}=\operatorname{dom} g \cup\{m\}$ and $\tilde{g}(m)=\max \left\{j^{\sharp}(m), n^{0}, n^{1}\right\}$: then $\langle\tilde{g}, \mathcal{A} \cup\{\varphi\}\rangle \in D_{\varphi, m}$ and $\langle g, \mathcal{A}\rangle \geq\langle\tilde{g}, \mathcal{A} \cup\{\varphi\}\rangle$.

Since $\left|\left\{D_{\varphi, m} \mid \varphi \in \Phi^{\sharp} \wedge m \in \omega\right\}\right| \leq \kappa \cdot \omega=\kappa$, there exists a filter G on \mathbf{P} such that $\forall \varphi \in \Phi^{\sharp}: \forall m \in \omega: G \cap D_{\varphi, m} \neq \emptyset$. Let $j=\bigcup\left\{g \in{ }^{<\omega} \omega \mid \exists \mathcal{A} \in\left[\Phi^{\sharp}\right]^{<\omega}\right.$: $\langle g, \mathcal{A}\rangle \in G\}$: it is easy to see that j is a function and that $j: \omega \rightarrow \omega$ (of course, we may always suppose that $\Phi^{\sharp} \neq \emptyset$). We must prove that the functions φ^{ι} for $\iota=0,1$, defined by (1), satisfy (a) and (b).

First of all, observe that $j \geq j^{\sharp}$. Indeed, let $m \in \omega$: then $\langle m, j(m)\rangle \in j$, i.e., there exists $\langle g, \mathcal{A}\rangle \in G$ such that $\langle m, j(m)\rangle \in g$; thus $g(m)=j(m)$, and by the definition of \mathbf{P} we have that $j(m)=g(m) \geq j^{\sharp}(m)$. Now, if $m^{\prime}, m^{\prime \prime} \in \omega$ with $m^{\prime} \neq m^{\prime \prime}$, then $\varphi^{\iota}\left(m^{\prime}\right)=\left(\vartheta^{\iota}\left(m^{\prime}\right)\right)\left(j\left(m^{\prime}\right)\right) \in\left\{\left(\vartheta^{\iota}\left(m^{\prime}\right)\right)(n) \mid n \geq j^{\sharp}\left(m^{\prime}\right)\right\}$ and $\varphi^{\iota}\left(m^{\prime \prime}\right)=\left(\vartheta^{\iota}\left(m^{\prime \prime}\right)\right)\left(j\left(m^{\prime \prime}\right)\right) \in\left\{\left(\vartheta^{\iota}\left(m^{\prime \prime}\right)\right)(n) \mid n \geq j^{\sharp}\left(m^{\prime \prime}\right)\right\}$ for $\iota \in 2$, so that $\varphi^{\iota}\left(m^{\prime}\right) \neq \varphi^{\iota}\left(m^{\prime \prime}\right)$ by (2), and hence φ^{0}, φ^{1} are one-to-one. Moreover, for every $m^{\prime}, m^{\prime \prime} \in \omega$ (even, possibly, $m^{\prime}=m^{\prime \prime}$), we have that $\varphi^{0}\left(m^{\prime}\right) \in\left\{\left(\vartheta^{0}\left(m^{\prime}\right)\right)(n) \mid n \geq\right.$ $\left.j^{\sharp}\left(m^{\prime}\right)\right\}$ and $\varphi^{1}\left(m^{\prime \prime}\right) \in\left\{\left(\vartheta^{1}\left(m^{\prime \prime}\right)\right)(n) \mid n \geq j^{\sharp}\left(m^{\prime \prime}\right)\right\}$, so that $\varphi^{0}\left(m^{\prime}\right) \neq \varphi^{1}\left(m^{\prime \prime}\right)$ again by (2), and hence $\operatorname{Im} \varphi^{0} \cap \operatorname{Im} \varphi^{1}=\emptyset$.

To prove (b), let φ^{*} be any element of Φ^{*}, and consider first the case where $\varphi^{*} \in \Phi^{\sharp}$. Given $\iota \in 2$, suppose by contradiction that $\operatorname{Im} \varphi^{*} \cap \operatorname{Im} \varphi^{\iota}$ is infinite. Fix any $\bar{m} \in \omega$ and take $\langle g, \mathcal{A}\rangle \in G \cap D_{\varphi^{*}, \bar{m}}$, so that $\varphi^{*} \in \mathcal{A}$. Since $\operatorname{Im} \varphi^{*} \cap \operatorname{Im} \varphi^{\iota}$ is infinite, the set $M=\left(\varphi^{\iota}\right)^{-1}\left(\operatorname{Im} \varphi^{*} \cap \operatorname{Im} \varphi^{\iota}\right)=\left(\varphi^{\iota}\right)^{-1}\left(\operatorname{Im} \varphi^{*}\right)$ is infinite, too: then fix $\hat{m} \in M \backslash \operatorname{dom} g$. Now take $\langle\hat{g}, \hat{\mathcal{A}}\rangle \in G$ such that $\hat{m} \in \operatorname{dom} \hat{g}$, and let $\left\langle g^{\sharp}, \mathcal{A}^{\sharp}\right\rangle \in G$ be a common extension of $\langle g, \mathcal{A}\rangle$ and $\langle\hat{g}, \hat{\mathcal{A}}\rangle$, so that, in particular, $\hat{m} \in \operatorname{dom} \hat{g} \subseteq \operatorname{dom} g^{\sharp}$ and $\left(\vartheta^{\iota}(\hat{m})\right)\left(g^{\sharp}(\hat{m})\right)=\left(\vartheta^{\iota}(\hat{m})\right)(j(\hat{m}))=\varphi^{\iota}(\hat{m}) \in$ $\operatorname{Im} \varphi^{*}$ (by the definition of M). This is a contradiction, because $\hat{m} \notin \operatorname{dom} g$, $\varphi^{*} \in \mathcal{A}$ and $\langle g, \mathcal{A}\rangle \geq\left\langle g^{\sharp}, \mathcal{A}^{\sharp}\right\rangle$.

Consider now the case where $\varphi^{*}=\varphi_{m^{*}}^{\iota^{*}}$ for some $\left\langle\iota^{*}, m^{*}\right\rangle \in 2 \times \omega$. Given any $\iota \in 2$, from $j \geq j^{\sharp}$ we have that $\varphi^{\iota}(m)=\left(\vartheta^{\iota}(m)\right)(j(m)) \in\left\{\left(\vartheta^{\iota}(m)\right)(n) \mid n \geq\right.$ $\left.j^{\sharp}(m)\right\}$, which implies by (3) that $\forall m \neq m^{*}: \varphi^{\iota}(m) \notin\left\{\varphi_{m^{*}}^{\iota^{*}}(n) \mid n \geq j^{\sharp}\left(m^{*}\right)\right\}$ $\left(m \neq m^{*}\right.$ entails in any case $\left.\langle\iota, m\rangle \neq\left\langle\iota^{*}, m^{*}\right\rangle\right)$; therefore, $\operatorname{Im} \varphi^{\iota} \cap \operatorname{Im} \varphi_{m^{*}}^{\iota^{*}} \subseteq$ $\left\{\varphi^{\iota}\left(m^{*}\right)\right\} \cup\left\{\varphi_{m^{*}}^{\iota^{*}}(n) \mid n<j^{\sharp}\left(m^{*}\right)\right\}$, which is a finite set.

The following lemma is, in some sense, a "one-dimension" formulation of the previous one; they will both be useful in the sequel.
Lemma 3 (MA). Let $\hat{\Phi} \subseteq \tilde{\Phi}$ be an almost disjoint collection, with $|\hat{\Phi}|=\kappa<2^{\omega}$. Suppose that there exists a $\vartheta \in \Theta$ such that for every $m \in \omega$ there exists an $f_{m} \in \hat{\Phi}$ with $\operatorname{Im}(\vartheta(m)) \subseteq \operatorname{Im} f_{m}$; also, suppose that $m \mapsto f_{m}$ is one-to-one. Then there exists $\rho \in \tilde{\Phi}$ such that ρ a.d. φ for every $\varphi \in \hat{\Phi}$ and $\operatorname{Im} \rho \cap \operatorname{Im}(\vartheta(m)) \neq \emptyset$ for every $m \in \omega$.

The proof may be obtained following the outlines of the previous one; or, alternatively, applying Lemma 2 (after extending $\hat{\Phi}$ to a collection Φ^{*} by adding specular elements, which is possible by $[\mathrm{Ku}$, Corollary 2.16]) and then taking as ρ a suitable φ^{ι}; or, alternatively, applying $[\mathrm{Ku}$, Theorem 2.15] to $\mathcal{C}=\{\operatorname{Im}(\vartheta(m)) \mid m \in \omega\}$ and $\mathcal{A}=\{\operatorname{Im} \varphi \mid \varphi \in \hat{\Phi}\} \backslash\left\{\operatorname{Im} f_{m} \mid m \in \omega\right\}$, and then shrinking and indexing the set d.

Now we introduce a set-theoretic operator which will play a crucial role for our further constructions. Let ξ be any infinite cardinal number, and define by transfinite induction the sets M_{γ}, for $\gamma \in \xi^{+}$, in the following way. $M_{0}=\xi$; if $M_{\gamma^{\prime}}$ is defined for every $\gamma^{\prime}<\gamma$, where $\gamma \in \xi^{+} \backslash\{0\}$, then

$$
\begin{aligned}
M_{\gamma}=\{ & \left\langle\mu^{0}, \mu^{1}, \beta^{0}, \beta^{1}\right\rangle \mid \\
& \left.\forall \iota \in 2:\left(\beta^{\iota} \in 2^{\xi} \text { and } \mu^{\iota} \text { is a one-to-one function from } \xi \text { to } \bigcup_{\gamma^{\prime}<\gamma} M_{\gamma^{\prime}}\right)\right\} .
\end{aligned}
$$

The set $\bigcup_{\gamma \in \xi^{+}} M_{\gamma}$ will be called the double iterated power of ξ, and denoted by DIP (ξ). For every $x \in \operatorname{DIP}(\xi)$, we also define a subset $\operatorname{supp}(x)$ of $\operatorname{DIP}(\xi)$, the support of x, putting $\operatorname{supp}(x)=\emptyset$ if $x \in M_{0}=\xi$, and $\operatorname{supp}(x)=\operatorname{Im} \mu^{0} \cup \operatorname{Im} \mu^{1}$ if $x \in \bigcup_{\gamma \in \xi^{+} \backslash\{0\}} M_{\gamma}$ and $x=\left\langle\mu^{0}, \mu^{1}, \beta^{0}, \beta^{1}\right\rangle$.

It is immediate to prove by transfinite induction that $\left|M_{\gamma}\right|=2^{\xi}$ for every $\gamma \in \xi^{+} \backslash\{0\}$; therefore, $|\operatorname{DIP}(\xi)|=2^{\xi}$. We will say that an indexing $\left\{x_{\alpha} \mid \alpha \in 2^{\xi}\right\}$ of $\operatorname{DIP}(\xi)$ is well founded if it is one-to-one, $x_{\alpha}=\alpha$ for every $\alpha \in \xi$, and $\forall \alpha \in$ $2^{\omega}: \operatorname{supp}\left(x_{\alpha}\right) \subseteq\left\{x_{\alpha^{\prime}} \mid \alpha^{\prime}<\alpha\right\}$.
Lemma 4. For every infinite cardinal ξ there exists a well founded indexing of $\operatorname{DIP}(\xi)$.
Proof: First, fix any one-to-one indexing $\left\{y_{\sigma} \mid \sigma \in 2^{\xi}\right\}$ of DIP (ξ). Then define $j: 2^{\xi} \rightarrow 2^{\xi}$ in the following way:
$-j(\alpha)=\alpha$, for $\alpha \in \xi ;$
$-j(\alpha)=\min \left\{\sigma \in 2^{\xi} \backslash\left\{j\left(\alpha^{\prime}\right) \mid \alpha^{\prime}<\alpha\right\} \mid \operatorname{supp}\left(y_{\sigma}\right) \subseteq\left\{y_{j\left(\alpha^{\prime}\right)} \mid \alpha^{\prime}<\alpha\right\}\right\}$, for $\alpha \geq \xi$.
Observe that the above set cannot be empty. Indeed, for every $\beta \in 2^{\xi}$, we have $\left\langle\operatorname{id}_{\xi}, \operatorname{id}_{\xi}, \beta, 0\right\rangle \in M_{1} \subseteq \operatorname{DIP}(\xi)$, hence there exists $\sigma_{\beta} \in 2^{\xi}$ such that
$\left\langle\operatorname{id}_{\xi}, \operatorname{id}_{\xi}, \beta, 0\right\rangle=y_{\sigma_{\beta}}$. Since $\beta \mapsto \sigma_{\beta}$ is one-to-one, there must exist $\hat{\beta} \in 2^{\xi}$ such that $\sigma_{\hat{\beta}} \notin\left\{j\left(\alpha^{\prime}\right) \mid \alpha^{\prime}<\alpha\right\}$, and for such a $\sigma_{\hat{\beta}}$ we have that $\operatorname{supp}\left(y_{\sigma_{\hat{\beta}}}\right)=$ $\operatorname{supp}\left(\left\langle\operatorname{id}_{\xi}, \operatorname{id}_{\xi}, \beta, 0\right\rangle\right)=\xi \subseteq\left\{j\left(\alpha^{\prime}\right) \mid \alpha^{\prime}<\alpha\right\}$.

Now put, for every $\alpha \in 2^{\xi}, x_{\alpha}=y_{j(\alpha)}$: by the definition of $j, \alpha \mapsto x_{\alpha}$ is one-to-one and $\operatorname{supp}\left(x_{\alpha}\right)=\operatorname{supp}\left(y_{j(\alpha)}\right) \subseteq\left\{y_{j\left(\alpha^{\prime}\right)} \mid \alpha^{\prime}<\alpha\right\}=\left\{x_{\alpha^{\prime}} \mid \alpha^{\prime}<\alpha\right\}$ for every $\alpha \in 2^{\xi} \backslash \xi$. Thus, we only need to prove the onto character of $\alpha \mapsto x_{\alpha}$ over DIP (ξ), which is clearly equivalent to the onto character of j over 2^{ξ}.

Suppose j is not onto and let $\hat{\gamma}=\min \left\{\gamma \in \xi^{+} \mid M_{\gamma} \nsubseteq\left\{x_{\alpha} \mid \alpha \in 2^{\xi}\right\}\right\}$; fix $\hat{\sigma} \in 2^{\xi}$ such that $y_{\hat{\sigma}} \in M_{\hat{\gamma}} \backslash\left\{x_{\alpha} \mid \alpha \in 2^{\xi}\right\}$ and put $A=\operatorname{supp}\left(y_{\hat{\sigma}}\right)$. Then every $a \in A$ belongs to some M_{γ} with $\gamma<\hat{\gamma}$, hence there exists $\alpha(a) \in 2^{\xi}$ such that $x_{\alpha(a)}=a$; as $|A| \leq \xi$ and $\operatorname{cof} 2^{\xi}>\xi$, there exists $\hat{\alpha} \in 2^{\xi}$ such that $\hat{\alpha}>\alpha(a)$ for every $a \in A$. Then for every $\alpha \in 2^{\xi}$ with $\alpha \geq \hat{\alpha}$, since $\hat{\sigma} \in$ $\left\{\sigma \in 2^{\xi} \backslash\left\{j\left(\alpha^{\prime}\right) \mid \alpha^{\prime}<\alpha\right\} \mid \operatorname{supp}\left(y_{\sigma}\right) \subseteq\left\{y_{j\left(\alpha^{\prime}\right)} \mid \alpha^{\prime}<\alpha\right\}\right\}$, we have that $j(\alpha) \leq$ $\hat{\sigma}$; this is in contrast with the one-to-one character of j.

3. The main construction

Henceforth, we assume MA. We will associate by transfinite induction to every $\alpha \in 2^{\omega}$, a pair $\left\langle\varphi_{\alpha}^{0}, \varphi_{\alpha}^{1}\right\rangle$ of elements of $\tilde{\Phi}$. We adopt the following notation: for every $x \in \operatorname{DIP}(\omega)$, let $\alpha^{\sharp}(x)$ denote the unique $\alpha \in 2^{\omega}$ such that $x_{\alpha}=x$ (so that $\alpha^{\sharp}\left(x_{\alpha}\right)=\alpha$ for every $\left.\alpha \in 2^{\omega}\right)$.

Also, we denote by K the set of all strictly increasing functions $k: \omega \rightarrow \omega$ and by Λ the set of all functions $\lambda: \omega \rightarrow K$.

Let $\left\{F_{\iota, m}\right\}_{\langle\iota, m\rangle \in 2 \times \omega}$ be a partition of ω - where $\langle\iota, m\rangle \mapsto F_{\iota, m}$ is one-to-one - such that $\left|F_{\iota, m}\right|=\omega$ for every $\langle\iota, m\rangle \in 2 \times \omega$. For every $\langle\iota, m\rangle \in 2 \times \omega$, let f_{m}^{ι} be an element of $\tilde{\Phi}$ such that $\operatorname{Im} f_{m}^{\iota}=F_{\iota, m}$. For every $\alpha \in \omega$ and $\iota \in 2$, we put $\varphi_{\alpha}^{\iota}=f_{\alpha}^{\iota}$.

Suppose now to have defined $\varphi_{\alpha^{\prime}}^{\iota}$ for every $\iota \in 2$ and $\alpha^{\prime}<\alpha$, where $\alpha \in 2^{\omega} \backslash \omega$, in such a way that $\varphi_{\alpha^{\prime}}^{\iota^{\prime}}$ a.d. $\varphi_{\alpha^{\prime \prime}}^{\iota^{\prime \prime}}$ for $\left\langle\iota^{\prime}, \alpha^{\prime}\right\rangle \neq\left\langle\iota^{\prime \prime}, \alpha^{\prime \prime}\right\rangle$. Let $x_{\alpha}=\left\langle\mu^{0}, \mu^{1}, \beta^{0}, \beta^{1}\right\rangle$ and define $\vartheta_{\alpha}^{0}, \vartheta_{\alpha}^{1} \in \Theta$ by $\vartheta_{\alpha}^{\iota}(m)=\varphi_{\alpha^{\sharp}\left(\mu^{\iota}(m)\right)}^{\iota}$ for $\iota \in 2$. Consider the two elements $\vartheta_{\alpha}^{\iota} \circ \theta_{\beta^{\iota}}$ of $\Theta(\iota=0,1)$: since $\vartheta_{\alpha}^{\iota}(m)$ a.d. $\vartheta_{\alpha}^{\iota^{\prime}}\left(m^{\prime}\right)$ for $\langle\iota, m\rangle \neq\left\langle\iota^{\prime}, m^{\prime}\right\rangle$, we also have that $\vartheta_{\alpha}^{\iota}(m) \circ \theta_{\beta^{\iota}}(m)$ a.d. $\vartheta_{\alpha}^{\iota^{\prime}}\left(m^{\prime}\right) \circ \theta_{\beta^{\iota}}\left(m^{\prime}\right)$ for $\langle\iota, m\rangle \neq\left\langle\iota^{\prime}, m^{\prime}\right\rangle$. Let $\Phi^{*}=$ $\left\{\varphi_{\alpha^{\prime}}^{\iota} \mid \iota \in 2 \wedge \alpha^{\prime}<\alpha\right\}$: then Φ^{*} is an almost disjoint family and $\left|\Phi^{*}\right|=|\alpha|<2^{\omega}$. Moreover,

$$
\forall\langle\iota, m\rangle \in 2 \times \omega: \operatorname{Im}\left(\vartheta_{\alpha}^{\iota}(m) \circ \theta_{\beta^{\iota}}(m)\right) \subseteq \operatorname{Im}\left(\vartheta_{\alpha}^{\iota}(m)\right)=\operatorname{Im} \varphi_{\alpha^{\sharp}\left(\mu^{\iota}(m)\right)}^{\iota} ;
$$

since $\langle\iota, m\rangle \mapsto \varphi_{\alpha^{\sharp}\left(\mu^{\iota}(m)\right)}^{\iota}$ is one-to-one from $2 \times \omega$ to Φ^{*}, we may apply Lemma 2 to get a $j \in{ }^{\omega} \omega$ such that the functions $\tilde{\varphi}_{\alpha}^{0}, \tilde{\varphi}_{\alpha}^{1}$, defined by

$$
\begin{equation*}
\tilde{\varphi}_{\alpha}^{\iota}(m)=\left(\vartheta_{\alpha}^{\iota}(m)\right)\left(\left(\theta_{\beta^{\iota}}(m)\right)(j(m))\right) \quad \text { for } \quad \iota \in 2 \tag{4}
\end{equation*}
$$

are such that:

1) $\tilde{\varphi}_{\alpha}^{\iota} \in \tilde{\Phi}$ for $\iota \in 2$ and $\tilde{\varphi}^{0}$ a.d. $\tilde{\varphi}^{1}$;
2) $\tilde{\varphi}_{\alpha}^{\iota}$ a.d. $\varphi_{\alpha^{\prime}}^{\iota^{\prime}}$ for every $\iota, \iota^{\prime} \in 2$ and $\alpha^{\prime}<\alpha$.

Put $\varphi_{\alpha}^{0}=\tilde{\varphi}_{\alpha}^{0}$, so that φ_{α}^{0} a.d. $\varphi_{\alpha^{\prime}}^{\iota}$ for every $\left\langle\iota, \alpha^{\prime}\right\rangle \in 2 \times \alpha$. Also, define $\hat{\lambda}_{\alpha} \in \Lambda$ by:

$$
\begin{equation*}
\left(\hat{\lambda}_{\alpha}(m)\right)(n)=n+\hat{\jmath}_{\alpha}(m) \tag{5}
\end{equation*}
$$

for every $m, n \in \omega$ - remember ($\boldsymbol{\wedge}$).
Now, consider the almost disjoint collection of functions: $\hat{\Phi}=\Phi^{*} \cup\left\{\varphi_{\alpha}^{0}\right\}$: putting

$$
\begin{equation*}
\hat{\vartheta}_{\alpha}(m)=f_{m}^{0} \circ\left(\hat{\lambda}_{\alpha}(m)\right) \tag{6}
\end{equation*}
$$

we get a function $\hat{\vartheta}_{\alpha} \in \Theta$ such that $\hat{\vartheta}_{\alpha}(m)$ a.d. $\hat{\vartheta}_{\alpha}\left(m^{\prime}\right)$ for $m \neq m^{\prime}$ and $\operatorname{Im}\left(\hat{\vartheta}_{\alpha}(m)\right)$ $\subseteq \operatorname{Im} f_{m}^{0}$ for every $m \in \omega$. Since $m \mapsto f_{m}^{0}$ is one-to-one (from ω to $\hat{\Phi}$), we have by Lemma 3 that there exists $\rho_{\alpha} \in \tilde{\Phi}$ such that ρ_{α} a.d. φ for every $\varphi \in \hat{\Phi}$ and that

$$
\begin{equation*}
\operatorname{Im} \rho_{\alpha} \cap \operatorname{Im}\left(\hat{\vartheta}_{\alpha}(m)\right) \neq \emptyset \text { for every } m \in \omega \tag{7}
\end{equation*}
$$

Put $S_{\alpha}=\operatorname{Im} \tilde{\varphi}_{\alpha}^{1} \cup \operatorname{Im} \rho_{\alpha}$ and let φ_{α}^{1} be an element of $\tilde{\Phi}$ such that $\operatorname{Im} \varphi_{\alpha}^{1}=S_{\alpha}$. Since both ρ_{α} and $\tilde{\varphi}_{\alpha}^{1}$ are a.d. from every $\varphi \in \hat{\Phi}$, the same holds for φ_{α}^{1}. This completes the inductive definition.

Thus the family $\left\{\varphi_{\alpha}^{\iota} \mid\langle\iota, \alpha\rangle \in 2 \times 2^{\omega}\right\}$ is such that φ_{α}^{ι} a.d. $\varphi_{\alpha^{\prime}}^{\iota^{\prime}}$ for $\langle\iota, \alpha\rangle \neq$ $\left\langle\iota^{\prime}, \alpha^{\prime}\right\rangle \in 2 \times 2^{\omega}$. Moreover, by our construction we have that for every $\alpha \in 2^{\omega} \backslash \omega$ there exist $\tilde{\varphi}_{\alpha}^{0}, \tilde{\varphi}_{\alpha}^{1}, \rho_{\alpha} \in \tilde{\Phi}$ such that $\tilde{\varphi}_{\alpha}^{0}=\varphi_{\alpha}^{0}, \operatorname{Im} \tilde{\varphi}_{\alpha}^{1} \subseteq \varphi_{\alpha}^{1}$, $\operatorname{Im} \rho_{\alpha} \subseteq \varphi_{\alpha}^{1}$, and (4), (7) are fulfilled (with $\hat{\lambda}_{\alpha}$ and $\hat{\vartheta}_{\alpha}$ defined by (5) and (6)).

We put $\Phi^{\iota}=\left\{\varphi_{\alpha}^{\iota} \mid \alpha \in 2^{\omega}\right\}$ for $\iota=0,1$. We claim that $X_{\Phi^{0}}$ and $X_{\Phi^{1}}$ are the required spaces X and Y.

4. Proof of the main result

First, we want to prove that $X_{\Phi^{0}}, X_{\Phi^{1}}$ and $X_{\Phi^{0}} \times X_{\Phi^{1}}$ are $\left\langle\alpha_{4}\right\rangle$-spaces. In accordance with [En], for $f, g: A \rightarrow X, Y$ we denote by $f \Delta g$ the function from A to $X \times Y$ defined by: $(f \Delta g)(a)=\langle f(a), g(a)\rangle$ for every $a \in A$.
Lemma 5. Let X^{0}, X^{1} be two topological spaces, such that $X^{\iota}=D^{\iota} \cup\left\{\infty^{\iota}\right\}$ for $\iota \in 2$, where D^{ι} is discrete and $\infty^{\iota} \notin D^{\iota}$. Suppose that for every $\iota \in 2$ there is at least a $\rho^{\iota}: \omega \rightarrow D^{\iota}$ such that $\lim _{n \rightarrow+\infty} \rho^{\iota}(n)=\infty^{\iota}$. Also, suppose that whenever for every $\langle\iota, i\rangle \in 2 \times \omega, \hat{\psi}_{i}^{\iota}$ is a sequence in D^{ι} such that $\lim _{n \rightarrow+\infty} \hat{\psi}_{i}^{\iota}(n)=\infty^{\iota}$, then there exist $\hat{\psi}^{\iota}: \omega \rightarrow D^{\iota}$ for $\iota \in 2$ such that $\lim _{i \rightarrow+\infty} \hat{\psi}^{\iota}(i)=\infty^{\iota}$ and

$$
\left|\left\{i \in \omega \mid \operatorname{Im}\left(\hat{\psi}^{0} \Delta \hat{\psi}^{1}\right) \cap \operatorname{Im}\left(\hat{\psi}_{i}^{0} \Delta \hat{\psi}_{i}^{1}\right) \neq \emptyset\right\}\right|=\omega
$$

Then X^{0}, X^{1} and $X^{0} \times X^{1}$ are all $\left\langle\alpha_{4}\right\rangle$-spaces.
Proof: We first prove that, for $\iota \in 2, X^{\iota}$ is an $\left\langle\alpha_{4}\right\rangle$-space. Let $\iota=0$ (the proof for $\iota=1$ is symmetric). Since the points of D^{0} trivially have the property $\left\langle\alpha_{4}\right\rangle$, suppose to have for every $i \in \omega$ a $\tilde{\psi}_{i}: \omega \rightarrow X^{0}$ such that $\lim _{n \rightarrow+\infty} \tilde{\psi}_{i}(n)=\infty^{0}$. If for infinitely many $i \in \omega$ the sequence $\tilde{\psi}_{i}$ takes on the value ∞^{0}, then the $\tilde{\psi}: \omega \rightarrow X^{0}$ having constant value ∞^{0} is such that $\left|\left\{i \in \omega \mid \operatorname{Im} \tilde{\psi}_{i} \cap \operatorname{Im} \tilde{\psi}\right\}\right|=\omega$. Thus, we may suppose $\tilde{\psi}_{i}: \omega \rightarrow D^{0}$ for every $i \in \omega$. Putting $\hat{\psi}_{i}^{0}=\tilde{\psi}_{i}$ and $\hat{\psi}_{i}^{1}=\rho^{1}$ for every $i \in \omega$, we get by hypothesis $\hat{\psi}^{0}, \hat{\psi}^{1}: \omega \rightarrow D^{0}, D^{1}$ such that $\lim _{n \rightarrow+\infty} \hat{\psi}^{\iota}(n)=$ ∞^{ι} for $\iota \in 2$ and $\left|\left\{i \in \omega \mid \operatorname{Im}\left(\hat{\psi}^{0} \Delta \hat{\psi}^{1}\right) \cap \operatorname{Im}\left(\hat{\psi}_{i}^{0} \Delta \hat{\psi}_{i}^{1}\right) \neq \emptyset\right\}\right|=\omega$; thus $\hat{\psi}^{0}$ is such that $\lim _{n \rightarrow+\infty} \hat{\psi}^{0}(n)=\infty^{0}$ and $\left|\left\{i \in \omega \mid \operatorname{Im} \hat{\psi}^{0} \cap \operatorname{Im} \hat{\psi}_{i}^{0} \neq \emptyset\right\}\right|=\omega$, i.e., $\left|\left\{i \in \omega \mid \operatorname{Im} \hat{\psi}^{0} \cap \operatorname{Im} \tilde{\psi}_{i} \neq \emptyset\right\}\right|=\omega$.

Now we prove that $X^{0} \times X^{1}$ is an $\left\langle\alpha_{4}\right\rangle$-space. Property $\left\langle\alpha_{4}\right\rangle$ is trivial at the points of $D^{0} \times D^{1}$, while at the points of $\left(D^{0} \times\left\{\infty^{1}\right\}\right) \cup\left(\left\{\infty^{0}\right\} \times D^{1}\right)$ it easily comes from the $\left\langle\alpha_{4}\right\rangle$ character of X^{0} and X^{1}. Then consider the point $\left\langle\infty^{0}, \infty^{1}\right\rangle$ and suppose to have, for every $\langle\iota, i\rangle \in 2 \times \omega$, a $\tilde{\psi}_{i}^{\iota}: \omega \rightarrow X^{\iota}$ such that $\lim _{n \rightarrow+\infty} \tilde{\psi}_{i}^{\iota}(n)=\infty^{\iota}$. Let $M^{\iota}=\left\{i \in \omega \mid \tilde{\psi}_{i}^{\iota}\right.$ is frequently equal to $\left.\infty^{\iota}\right\}$ for $\iota \in 2$: if $\left|M^{0}\right|=\omega$, then the property $\left\langle\alpha_{4}\right\rangle$ at the point ∞^{1} of X^{1} easily gives the property $\left\langle\alpha_{4}\right\rangle$ at $\left\langle\infty^{0}, \infty^{1}\right\rangle$, in this case; if $\left|M^{1}\right|=\omega$, the situation is symmetric. If $\left|M^{\iota}\right|<\omega$ for every $\iota \in 2$, then we may suppose that $\tilde{\psi}_{i}^{\iota}: \omega \rightarrow D^{\iota}$ for every $i \in \omega$; hence the hypothesis gives the property $\left\langle\alpha_{4}\right\rangle$ at $\left\langle\infty^{0}, \infty^{1}\right\rangle$, in this case.
Lemma 6. Let $a \in X$, where X is any topological space, and $\left(a_{n}\right)_{n \in \omega}$ be a sequence in X with $\lim _{n \rightarrow+\infty} a_{n}=a$. For every $m \in \omega$, let k_{m} be an element of $K-$ so that $\left(a_{k_{m}(i)}\right)_{i \in \omega}$ is a subsequence of $\left(a_{n}\right)_{n \in \omega}$; then there exists $j \in{ }^{\omega} \omega$ such that for every $j^{\prime} \in \omega_{\omega}$ with $j^{\prime} \geq j, \lim _{m \rightarrow+\infty} a_{k_{m}\left(j^{\prime}(m)\right)}=a$.
Proof: Define j by induction: let $j(0)$ be arbitrary; if $j(m)$ is defined, let $j(m+1)$ be such that $k_{m+1}(j(m+1))>k_{m}(j(m))$ (this is possible because $\left.\lim _{n \rightarrow+\infty} k_{m+1}(n)=+\infty\right)$. Suppose now $j^{\prime} \geq j$: given any nbhd V of a, we know that there exists $\bar{n} \in \omega$ such that $\forall n \geq \bar{n}$: $a_{n} \in V$; since $m \mapsto k_{m}(j(m))$ is strictly increasing, there exists $\bar{m} \in \omega$ such that $k_{\bar{m}}(j(\bar{m})) \geq \bar{n}$; then for every $m \geq \bar{m}$ we have $k_{m}\left(j^{\prime}(m)\right) \geq k_{m}(j(m)) \geq k_{\bar{m}}(j(\bar{m})) \geq \bar{n}$ (because k_{m} is strictly increasing) and hence $a_{k_{m}\left(j^{\prime}(m)\right)} \in V$.
Lemma 7. Let η^{l}, for $\iota \in 2$, be a one-to-one function from ω to 2^{ω}, and for every $m \in \omega$ let $\widetilde{\Psi}_{m}: \omega \rightarrow \omega \times \omega$ be such that $\tilde{\Psi}_{m}=\tilde{\psi}_{m}^{0} \Delta \tilde{\psi}_{m}^{1}$, with $\operatorname{Im} \tilde{\psi}_{m}^{\iota} \subseteq$ $\operatorname{Im} \varphi_{\eta^{\iota}(m)}^{\iota}$ and $\tilde{\psi}_{m}^{\iota} \in \tilde{\Phi}$ for $\iota \in 2$. Then there exists $\tilde{\Psi}: \omega \rightarrow \omega \times \omega$ such that $\lim _{m \rightarrow+\infty} \tilde{\Psi}(m)=\left\langle\infty_{\Phi^{0}}, \infty_{\Phi^{1}}\right\rangle$ and $\tilde{\Psi}(m) \in \operatorname{Im} \tilde{\Psi}_{m}$ for every $m \in \omega$.
Proof: For $\iota \in 2$, let $\mu^{\iota}: \omega \rightarrow \operatorname{DIP}(\omega)$ be defined by $\mu^{\iota}(m)=x_{\eta^{\iota}(m)}$: then μ^{ι} is one-to-one. For every $\langle\iota, m\rangle \in 2 \times \omega$, there exists $\gamma_{m}^{\iota} \in \omega_{1}$ such that $\mu^{\iota}(m) \in M_{\gamma_{m}^{\iota}}$ (remember the definition of DIP (ω)): take $\hat{\gamma} \in \omega_{1}$ such that $\gamma_{m}^{\iota}<\hat{\gamma}$ for every
$\langle\iota, m\rangle \in 2 \times \omega$. Also, for every $\langle\iota, m\rangle \in 2 \times \omega$ there exists a $\phi_{m}^{\iota} \in \tilde{\Phi}$ such that

$$
\tilde{\psi}_{m}^{\iota}=\varphi_{\eta^{\iota}(m)}^{\iota} \circ \phi_{m}^{\iota}
$$

- namely, $\phi_{m}^{\iota}=\left(\varphi_{\eta^{\iota}(m)}^{\iota}\right)^{-1} \circ \tilde{\psi}_{m}^{\iota}$; define $\hat{\theta}^{\iota} \in \Theta$, for $\iota \in 2$, by $\hat{\theta}^{\iota}(m)=\phi_{m}^{\iota}$, and take $\beta^{\iota} \in 2^{\omega}$ such that $\hat{\theta}^{\iota}=\theta_{\beta^{\iota}}$. Then $\left\langle\mu^{0}, \mu^{1}, \beta^{0}, \beta^{1}\right\rangle \in M_{\hat{\gamma}} \subseteq \operatorname{DIP}(\omega)$ and hence there exists $\hat{\alpha} \in 2^{\omega} \backslash \omega$ such that $\left\langle\mu^{0}, \mu^{1}, \beta^{0}, \beta^{1}\right\rangle=x_{\hat{\alpha}}$; we claim that $\tilde{\Psi}=\tilde{\varphi}_{\hat{\alpha}}^{0} \Delta \tilde{\varphi}_{\hat{\alpha}}^{1}=\varphi_{\hat{\alpha}}^{0} \Delta \tilde{\varphi}_{\hat{\alpha}}^{1}$ has the desired properties.

Indeed, since $\tilde{\varphi}_{\hat{\alpha}}^{1} \in \tilde{\Phi}, \operatorname{Im} \tilde{\varphi}_{\hat{\alpha}}^{1} \subseteq \operatorname{Im} \varphi_{\hat{\alpha}}^{1}$, and $\lim _{m \rightarrow+\infty} \varphi_{\hat{\alpha}}^{1}(m)=\infty_{\Phi^{1}}$, we also have that $\lim _{m \rightarrow+\infty} \tilde{\varphi}_{\hat{\alpha}}^{1}(m)=\infty_{\Phi^{1}} ;$ since $\tilde{\varphi}_{\hat{\alpha}}^{0}=\varphi_{\hat{\alpha}}^{0}$, we get:

$$
\lim _{m \rightarrow+\infty}\left(\tilde{\varphi}_{\hat{\alpha}}^{0} \Delta \tilde{\varphi}_{\hat{\alpha}}^{1}\right)(m)=\left\langle\infty_{\Phi^{0}}, \infty_{\Phi^{1}}\right\rangle
$$

On the other hand, by (4) we know that there exists a $j \in{ }^{\omega} \omega$ such that

$$
\tilde{\varphi}_{\hat{\alpha}}^{\iota}(m)=\left(\vartheta_{\hat{\alpha}}^{\iota}(m)\right)\left(\left(\theta_{\beta^{\iota}}(m)\right)(j(m))\right) \text { for every }\langle\iota, m\rangle \in 2 \times \omega
$$

where $\vartheta_{\hat{\alpha}}^{\iota}(m)=\varphi_{\alpha^{\sharp}\left(\mu^{\iota}(m)\right)}^{\iota}=\varphi_{\alpha^{\sharp}\left(x_{\eta^{\iota}(m)}^{\iota}\right)}=\varphi_{\eta^{\iota}(m)}^{\iota}$. Since $\theta_{\beta^{\iota}}(m)=\hat{\theta}^{\iota}(m)=\phi_{m}^{\iota}$ for $\langle\iota, m\rangle \in 2 \times \omega$, we have that $\tilde{\varphi}_{\hat{\alpha}}^{\iota}(m)=\left(\varphi_{\eta^{\iota}(m)}^{\iota} \circ \phi_{m}^{\iota}\right)(j(m))=\tilde{\psi}_{m}^{\iota}(j(m))$, and hence for every $m \in \omega: \tilde{\Psi}(m)=\left\langle\tilde{\varphi}_{\hat{\alpha}}^{0}(m), \tilde{\varphi}_{\hat{\alpha}}^{1}(m)\right\rangle=\left\langle\tilde{\psi}_{m}^{0}(j(m)), \tilde{\psi}_{m}^{1}(j(m))\right\rangle$ $\in \operatorname{Im} \tilde{\Psi}_{m}$.

Corollary 8. Let η be a one-to-one function from ω to $2^{\omega}, \iota \in 2$ and for every $m \in \omega$ let $\tilde{\psi}_{m}$ be an element of $\tilde{\Phi}$ such that $\operatorname{Im} \tilde{\psi}_{m} \subseteq \operatorname{Im} \varphi_{\eta(m)}^{\iota}$. Then there exists $\tilde{\psi} \in{ }^{\omega} \omega$ such that $\lim _{m \rightarrow+\infty} \tilde{\psi}(m)=\infty_{\Phi^{\iota}}$ and $\tilde{\psi}(m) \in \operatorname{Im} \tilde{\psi}_{m}$ for every $m \in \omega$.
Proof: We may suppose $\iota=0$. Put $\eta_{\tilde{\sim}}^{0}=\eta_{\tilde{\sim}}^{1}=\eta$ and, for every $m \in \omega$, let $\tilde{\psi}_{m}^{0}=\tilde{\psi}_{m}, \tilde{\psi}_{m}^{1}=\varphi_{\eta(m)}^{1}$ and $\tilde{\Psi}_{m}=\tilde{\psi}_{m}^{0} \Delta \tilde{\psi}_{m}^{1}$. If $\tilde{\Psi}=\tilde{\psi}^{0} \Delta \tilde{\psi}^{1}$ satisfies the thesis of Lemma 7 , then $\tilde{\psi}^{0}$ is the required $\tilde{\psi}$.

Lemma 9. If $\varphi^{\prime}, \varphi^{\prime \prime}$ are functions from ω to any set E such that $\mid \operatorname{Im} \varphi^{\prime} \cap$ $\operatorname{Im} \varphi^{\prime \prime} \mid=\omega$, then there exist $k^{\prime}, k^{\prime \prime} \in K$ such that $\varphi^{\prime} \circ k^{\prime}=\varphi^{\prime \prime} \circ k^{\prime \prime}\left(\right.$ i.e., φ^{\prime} and $\varphi^{\prime \prime}$ have a common subsequence), and such a function is one-to-one.
Proof: We will construct simultaneously k^{\prime} and $k^{\prime \prime}$ by induction. Put $F=$ $\operatorname{Im} \varphi^{\prime} \cap \operatorname{Im} \varphi^{\prime \prime}$ and fix $a_{0} \in F$: let $k^{\prime}(0)$ be an element of $\left(\varphi^{\prime}\right)^{-1}\left(a_{0}\right)$ and $k^{\prime \prime}(0)$ an element of $\left(\varphi^{\prime \prime}\right)^{-1}\left(a_{0}\right)$, so that $\varphi^{\prime}\left(k^{\prime}(0)\right)=a_{0}=\varphi^{\prime \prime}\left(k^{\prime}(0)\right)$.

Suppose now to have defined $k^{\prime}\left(m^{\prime}\right), k^{\prime \prime}\left(m^{\prime}\right)$ for every $m^{\prime} \leq m$: since F is infinite, the set $F \backslash\left(\left\{\varphi^{\prime}(n) \mid n \leq k^{\prime}(m)\right\} \cup\left\{\varphi^{\prime \prime}(n) \mid n \leq k^{\prime \prime}(m)\right\}\right)$ contains a point a_{m+1}. Then choose $k^{\prime}(m+1) \in\left(\varphi^{\prime}\right)^{-1}\left(a_{m+1}\right)$ and $k^{\prime \prime}(m+1) \in\left(\varphi^{\prime \prime}\right)^{-1}\left(a_{m+1}\right)$: thus $k^{\prime}(m+1)>k^{\prime}(m), k^{\prime \prime}(m+1)>k(m), \varphi^{\prime}\left(k^{\prime}(m+1)\right)=a_{m+1}=\varphi^{\prime \prime}\left(k^{\prime \prime}(m+1)\right)$ and $\varphi^{\prime}\left(k^{\prime}(m+1)\right) \neq \varphi^{\prime}\left(k^{\prime}\left(m^{\prime}\right)\right)$ for every $m^{\prime} \leq m$.

We prove now that $X_{\Phi^{0}}, X_{\Phi^{1}}$ and $X_{\Phi^{0}} \times X_{\Phi^{1}}$ are $\left\langle\alpha_{4}\right\rangle$-spaces. By Lemma 5, it is sufficient to show that whenever $\left(\hat{\Psi}_{i}\right)_{i \in \omega}$ is a sequence of functions from ω to $\omega \times \omega$ such that

$$
\forall i \in \omega: \lim _{n \rightarrow+\infty} \hat{\Psi}_{i}(n)=\left\langle\infty_{\Phi^{0}}, \infty_{\Phi^{1}}\right\rangle
$$

there exists a $\hat{\Psi}: \omega \rightarrow \omega \times \omega$ such that $\left|\left\{i \in \omega \mid \operatorname{Im} \hat{\Psi} \cap \operatorname{Im} \hat{\Psi}_{i} \neq \emptyset\right\}\right|=\omega$.
For every $i \in \omega$, we have that $\hat{\Psi}_{i}=\hat{\psi}_{i}^{0} \Delta \hat{\psi}_{i}^{1}$, where $\lim _{n \rightarrow+\infty} \hat{\psi}_{i}^{\iota}(n)=\infty_{\Phi^{\iota}}$ for $\iota \in 2$. By Remark 1, for every $i \in \omega$ there exists $\alpha_{i}^{0} \in 2^{\omega}$ such that $\mid \operatorname{Im} \varphi_{\alpha_{i}^{0}} \cap$ $\operatorname{Im} \hat{\psi}_{i}^{0} \mid=\omega$; now use Lemma 9 to get a $\hat{k}_{i}^{0} \in K$ such that $\hat{\psi}_{i}^{0} \circ \hat{k}_{i}^{0}$ is a one-to-one subsequence of $\varphi_{\alpha_{i}^{0}}^{0}$. Of course, for every $i \in \omega$ we still have that $\lim _{m \rightarrow+\infty}\left(\hat{\psi}_{i}^{1} \circ\right.$ $\left.\hat{k}_{i}^{0}\right)(m)=\infty_{\Phi^{1}}$, hence by Remark 1 there exists α_{i}^{1} such that $\mid \operatorname{Im} \varphi_{\alpha_{i}^{1}}^{1} \cap \operatorname{Im}\left(\hat{\psi}_{i}^{1} \circ\right.$ $\left.\hat{k}_{i}^{0}\right) \mid=\omega$; using again Lemma 9 , we get a $\tilde{k}_{i}^{1} \in K$ such that $\hat{\psi}_{i}^{1} \circ \hat{k}_{i}^{0} \circ \hat{k}_{i}^{1}$ is a one-to-one subsequence of $\varphi_{\alpha_{i}^{1}}^{1}$.

Putting, for $\langle\iota, i\rangle \in 2 \times \omega, \psi_{i}^{\iota}=\tilde{\psi}_{i}^{\iota} \circ \hat{k}_{i}^{0} \circ \hat{k}_{i}^{1}$ and $\Psi_{i}=\psi_{i}^{0} \Delta \psi_{i}^{1}=\hat{\Psi} \circ \hat{k}_{i}^{0} \circ \hat{k}_{i}^{1}$, for every $\langle\iota, i\rangle \in 2 \times \omega$ we have at the same time that Ψ_{i} is a subsequence of $\hat{\Psi}_{i}$ and that ψ_{i}^{ι} is a one-to-one subsequence of $\varphi_{\alpha_{i}^{\iota}}^{\iota}$. In particular, if we can find a $\Psi: \omega \rightarrow \omega \times \omega$ with $\lim _{m \rightarrow+\infty} \Psi(m)=\left\langle\infty_{\Phi^{0}}, \infty_{\Phi^{1}}\right\rangle$, such that $\left|\left\{i \in \omega \mid \operatorname{Im} \Psi \cap \operatorname{Im} \Psi_{i} \neq \emptyset\right\}\right|=$ ω, we will also have that

$$
\left|\left\{i \in \omega \mid \operatorname{Im} \Psi \cap \operatorname{Im} \hat{\Psi}_{i} \neq \emptyset\right\}\right|=\omega
$$

Let $A^{0}=\left\{\alpha_{i}^{0} \mid i \in \omega\right\}$: we have two cases.
$1^{\text {st }}$ case. A^{0} is infinite.
Fix $H^{0} \subseteq \omega$ such that $\left\{\alpha_{i}^{0} \mid i \in H^{0}\right\}=A^{0}$ and $\alpha_{i^{\prime}}^{0} \neq \alpha_{i^{\prime \prime}}^{0}$ for $i^{\prime}, i^{\prime \prime} \in H^{0}$ with $i^{\prime} \neq i^{\prime \prime}$. Consider now $\tilde{A}^{1}=\left\{\alpha_{i}^{1} \mid i \in H^{0}\right\}$.
$\mathbf{1}^{\text {st }}$ subcase. \tilde{A}^{1} is infinite.
Then there exists an (infinite) $\tilde{H} \subseteq H^{0}$ such that $\left\{\alpha_{i}^{1} \mid i \in \tilde{H}\right\}=\tilde{A}^{1}$ and $\alpha_{i^{\prime}}^{1} \neq \alpha_{i^{\prime \prime}}^{1}$ for $i^{\prime}, i^{\prime \prime} \in \tilde{H}$ with $i^{\prime} \neq i^{\prime \prime}$. Let $\tilde{A}^{0}=\left\{\alpha_{i}^{0} \mid i \in \tilde{H}\right\}$: since $\tilde{H} \subseteq H^{0}$, we also have that $\alpha_{i^{\prime}}^{0} \neq \alpha_{i^{\prime \prime}}^{0}$ for $i^{\prime}, i^{\prime \prime} \in \tilde{H}$ with $i^{\prime} \neq i^{\prime \prime}$.

As $|\tilde{H}|=\omega$, there exists a (unique) $\tilde{k} \in K$ such that $\operatorname{Im} \tilde{k}=\tilde{H}$; then $\left\{\alpha_{\tilde{k}(m)}^{\iota} \mid m \in \omega\right\}=\tilde{A}^{\iota}$ for $\iota \in 2$. Define $\eta^{\iota}: \omega \rightarrow 2^{\omega}$, for $\iota \in 2$, by $\eta^{\iota}(m)=\alpha_{\tilde{k}(m)}^{\iota}$: since each η^{ι} is one-to-one and $\operatorname{Im} \psi_{\tilde{k}(m)}^{\iota} \subseteq \operatorname{Im} \varphi_{\eta^{\iota}(m)}^{\iota}$ for every $\langle\iota, m\rangle \in 2 \times \omega$ (because $\psi_{\tilde{k}(m)}^{\iota}$ is a subsequence of $\left.\varphi_{\eta^{\iota}(m)}^{\iota}\right)$, by Lemma 7 there exists $\tilde{\Psi}: \omega \rightarrow \omega \times \omega$ such that $\lim _{m \rightarrow+\infty} \tilde{\Psi}(m)=\left\langle\infty_{\Phi^{0}}, \infty_{\Phi^{1}}\right\rangle$ and $\operatorname{Im} \tilde{\Psi} \cap \operatorname{Im} \Psi_{\tilde{k}(m)} \neq \emptyset$ for every $m \in \omega$, which implies that $\left|\left\{i \in \omega \mid \operatorname{Im} \tilde{\Psi} \cap \operatorname{Im} \Psi_{i} \neq \emptyset\right\}\right|=\omega$.
$2^{\text {nd }}$ subcase. \tilde{A}^{1} is finite.
Then there exists an infinite subset \tilde{H} of H^{1} and an $\hat{\alpha} \in 2^{\omega}$ such that $\forall i \in$ $\tilde{H}: \alpha_{i}^{1}=\hat{\alpha}$. Again, let $\tilde{k} \in K$ be such that $\operatorname{Im} \tilde{k}=\tilde{H}$: since $\tilde{H} \subseteq H^{0}$, we have that $\eta: \omega \rightarrow 2^{\omega}$ defined by $\eta(m)=\alpha_{\tilde{k}(m)}^{0}$ is one-to-one.

For every $m \in \omega$ we have that $\psi_{\tilde{k}(m)}^{1}$ is a one-to-one subsequence of $\varphi_{\alpha_{\tilde{k}(m)}^{1}}^{1}$, which coincides with $\varphi_{\hat{\alpha}}^{1}$ because $\tilde{k}(m) \in \tilde{H}$; hence by Lemma 6 there exists $j \in{ }^{\omega} \omega$ such that

$$
\begin{equation*}
\forall j^{\prime} \geq j: \lim _{m \rightarrow+\infty} \psi_{\tilde{k}(m)}^{1}\left(j^{\prime}(m)\right)=\infty_{\Phi^{1}} \tag{8}
\end{equation*}
$$

Now define, for every $m \in \omega$, a $\tilde{\psi}_{m} \in \tilde{\Phi}$ by:

$$
\begin{equation*}
\tilde{\psi}_{m}(n)=\psi_{\tilde{k}(m)}^{0}(n+j(m)) . \tag{9}
\end{equation*}
$$

Observe that, for every $m \in \omega, \operatorname{Im} \tilde{\psi}_{m} \subseteq \operatorname{Im} \psi_{\tilde{k}(m)}^{0} \subseteq \operatorname{Im} \varphi_{\alpha_{\tilde{k}(m)}^{0}}^{0}=\operatorname{Im} \varphi_{\eta(m)}^{0}$. Then by Corollary 8 there exists $\psi^{0} \in{ }^{\omega} \omega$ such that

$$
\lim _{m \rightarrow+\infty} \psi^{0}(m)=\infty_{\Phi^{0}} \quad \text { and } \quad \forall m \in \omega: \psi^{0}(m) \in \operatorname{Im} \tilde{\psi}_{m} ;
$$

using (9), we have that for every $m \in \omega$ there exists $\tilde{n}(m) \in \omega$ such that $\psi^{0}(m)=$ $\psi_{\tilde{k}(m)}^{0}(\tilde{n}(m)+j(m))$.

Put $j^{\prime}(m)=\tilde{n}(m)+j(m)$ and define $\psi^{1} \in{ }^{\omega} \omega$ by $\psi^{1}(m)=\psi_{\tilde{k}(m)}^{1}\left(j^{\prime}(m)\right)$: then $\lim _{m \rightarrow+\infty} \psi^{1}(m)=\infty_{\Phi^{1}}$ by (8). Thus, putting $\Psi=\psi^{0} \Delta \psi^{1}$, we have that

$$
\lim _{m \rightarrow+\infty} \Psi(m)=\left\langle\infty_{\Phi^{0}}, \infty_{\Phi^{1}}\right\rangle
$$

moreover, for every $m \in \omega$,

$$
\begin{aligned}
\Psi(m)=\left\langle\psi^{0}(m), \psi^{1}(m)\right\rangle & =\left\langle\psi_{\tilde{k}(m)}^{0}\left(j^{\prime}(m)\right), \psi_{\tilde{k}(m)}^{1}\left(j^{\prime}(m)\right)\right\rangle \\
& =\Psi_{\tilde{k}(m)}\left(j^{\prime}(m)\right) \in \operatorname{Im} \Psi_{\tilde{k}(m)},
\end{aligned}
$$

so that $\left|\left\{i \in \omega \mid \operatorname{Im} \Psi \cap \operatorname{Im} \Psi_{i} \neq \emptyset\right\}\right|=\omega$.
$2^{\text {nd }}$ case. A^{0} is finite.
Then there exists an infinite subset H^{0} of ω and an $\hat{\alpha}^{0} \in 2^{\omega}$ such that $\forall i \in$ $H^{0}: \alpha_{i}^{0}=\hat{\alpha}^{0}$. Again, let $\tilde{A}^{1}=\left\{\alpha_{i}^{1} \mid i \in H^{0}\right\}$.
$1^{\text {st }}$ subcase. \tilde{A}^{1} is infinite.
Then there exists an infinite subset \tilde{H} of H^{1} such that $\left\{\alpha_{i}^{1} \mid i \in \tilde{H}\right\}=\tilde{A}^{1}$ and $\alpha_{i^{\prime}}^{1} \neq \alpha_{i^{\prime \prime}}^{1}$ for distinct $i^{\prime}, i^{\prime \prime} \in \tilde{H}$. The situation is symmetric to the $2^{\text {nd }}$ subcase of the $1^{\text {st }}$ case.
$2^{\text {nd }}$ subcase. \tilde{A}^{1} is finite.
Then there exists an infinite $\tilde{H} \subseteq H^{0}$ and an $\hat{\alpha}^{1} \in 2^{\omega}$ such that $\forall i \in \tilde{H}: \alpha_{i}^{1}=\hat{\alpha}^{1}$; clearly, since $\tilde{H} \subseteq H^{0}$, we also have that $\forall i \in \tilde{H}: \alpha_{i}^{0}=\hat{\alpha}^{0}$. Let $\tilde{k} \in K$ such that $\operatorname{Im} \tilde{k}=\tilde{H}$: then for every $\langle\iota, m\rangle \in 2 \times \omega$ we have that $\psi_{\tilde{k}(m)}^{\iota}$ is a subsequence of $\varphi_{\alpha_{\tilde{k}(m)}^{\iota}}^{\iota}=\varphi_{\hat{\alpha}^{\iota}}^{\iota}$. Applying Lemma 6 , we get $j^{0}, j^{1} \in{ }^{\omega} \omega$ such that

$$
\forall \iota \in 2: \forall j^{\prime} \in \omega_{\omega}:\left(j^{\prime} \geq j^{\iota} \Longrightarrow \lim _{m \rightarrow+\infty} \psi_{\tilde{k}(m)}^{\iota}\left(j^{\prime}(m)\right)=\infty_{\Phi^{\iota}}\right)
$$

Let $j=\sup \left\{j^{0}, j^{1}\right\}$ and define $\psi^{\iota} \in{ }^{\omega} \omega$ for $\iota \in 2$ by:

$$
\psi^{\iota}(m)=\psi_{\tilde{k}(m)}^{\iota}(j(m))
$$

for every $m \in \omega$. Putting $\Psi=\psi^{0} \Delta \psi^{1}$, we have that $\lim _{m \rightarrow+\infty} \Psi(m)=$ $\left\langle\infty_{\Phi^{0}}, \infty_{\Phi^{1}}\right\rangle$ and that
$\forall m \in \omega: \Psi(m)=\left\langle\psi^{0}(m), \psi^{1}(m)\right\rangle=\left\langle\psi_{\tilde{k}(m)}^{0}(j(m)), \psi_{\tilde{k}(m)}^{1}(j(m))\right\rangle \in \operatorname{Im} \Psi_{\tilde{k}(m)}$,
whence $\left|\left\{i \in \omega \mid \operatorname{Im} \Psi \cap \operatorname{Im} \Psi_{i} \neq \emptyset\right\}\right|=\omega$.
Now we proceed to show that $X_{\Phi^{0}} \times X_{\Phi^{1}}$ is not Fréchet-Urysohn. First of all, we prove that putting $D=\{\langle\ell, \ell\rangle \mid \ell \in \omega\}$, we have that $\left\langle\infty_{\Phi^{0}}, \infty_{\Phi^{1}}\right\rangle \in \bar{D}$ in $X_{\Phi^{0}} \times X_{\Phi^{1}}$.

Indeed, let V^{0}, V^{1} be arbitrary nbhds of $\infty_{\Phi^{0}}, \infty_{\Phi^{1}}$ in $X_{\Phi^{0}}, X_{\Phi^{1}}$, respectively. For every $m \in \omega, \varphi_{m}^{0}=f_{m}^{0}$ belongs to Φ^{0}, and hence there exists $j \in \omega$ such that

$$
\begin{equation*}
\forall m \in \omega: \forall n \geq j(m): f_{m}^{0}(n) \in V^{0} \tag{10}
\end{equation*}
$$

Take $\hat{\alpha} \in 2^{\omega} \backslash \omega$ such that $j=\hat{\jmath}_{\hat{\alpha}}$: then (5), (6) and (7) (for $\alpha=\hat{\alpha}$) combine to show that

$$
\forall m \in \omega: \exists n^{\prime} \geq \hat{\jmath}_{\hat{\alpha}}(m): f_{m}^{0}\left(n^{\prime}\right) \in \operatorname{Im} \rho_{\hat{\alpha}}
$$

hence we can associate to every $m \in \omega$ a $\tilde{n}(m) \geq \hat{\jmath}_{\hat{\alpha}}(m)$ such that

$$
\begin{equation*}
f_{m}^{0}(\tilde{n}(m)) \in \operatorname{Im} \rho_{\hat{\alpha}} \subseteq \operatorname{Im} \varphi_{\hat{\alpha}}^{1} \tag{11}
\end{equation*}
$$

Since $\lim _{n \rightarrow+\infty} \varphi_{\hat{\alpha}}^{1}(n)=\infty_{\Phi^{1}}$ in $X_{\Phi^{1}}$, there exists $n^{\sharp} \in \omega$ such that

$$
\begin{equation*}
\forall n \geq n^{\sharp}: \varphi_{\hat{\alpha}}^{1}(n) \in V^{1} . \tag{12}
\end{equation*}
$$

Observe that $m \mapsto f_{m}^{0}(\tilde{n}(m))$ is one-to-one from ω to ω (because $\operatorname{Im} f_{m^{\prime}}^{0} \cap$ $\operatorname{Im} f_{m^{\prime \prime}}^{0}=F_{0, m^{\prime}} \cap F_{0, m^{\prime \prime}}=\emptyset$ for $\left.m^{\prime} \neq m^{\prime \prime}\right)$; therefore the set $\left\{f_{m}^{0}(\tilde{n}(m)) \mid m \in \omega\right\}$
cannot be contained into $\left\{\varphi_{\hat{\alpha}}^{1}(n) \mid n<n^{\sharp}\right\}$, and hence by (11) there exists $n^{*} \geq n^{\sharp}$ such that

$$
\varphi_{\hat{\alpha}}^{1}\left(n^{*}\right) \in\left\{f_{m}^{0}(\tilde{n}(m)) \mid m \in \omega\right\}
$$

Since $\varphi_{\hat{\alpha}}^{1}\left(n^{*}\right) \in V^{1}$ by (12), and $f_{m}^{0}(\tilde{n}(m)) \in V^{0}$ for every $m \in \omega$ (because of (10) and the fact that $\tilde{n}(m) \geq \hat{\jmath}_{\hat{\alpha}}(m)=j(m)$), we conclude that for some $\ell \in \omega$, $\langle\ell, \ell\rangle \in V^{0} \times V^{1}$.

Now, if $X_{\Phi^{0}} \times X_{\Phi^{1}}$ were Fréchet, there would exist a sequence in D which converges to $\left\langle\infty_{\Phi^{0}}, \infty_{\Phi^{1}}\right\rangle$, and clearly it could be supposed to be one-to-one. Thus, there would exist $\tilde{\varphi} \in \tilde{\Phi}$ such that $\lim _{n \rightarrow+\infty} \tilde{\varphi}(n)=\infty_{\Phi^{0}}$ in $X_{\Phi^{0}}$ and $\lim _{n \rightarrow+\infty} \tilde{\varphi}(n)=\infty_{\Phi^{1}}$ in $X_{\Phi^{1}}$. From the former relation we have that $\mid \operatorname{Im} \tilde{\varphi} \cap$ $\operatorname{Im} \varphi_{\hat{\alpha}}^{0} \mid=\omega$ for some $\hat{\alpha} \in 2^{\omega}$; by Lemma 9 , there exists $\varphi^{*} \in \tilde{\Phi}$ which is a common subsequence of $\tilde{\varphi}$ and $\varphi_{\hat{\alpha}}^{0}$. In particular, since $\lim _{n \rightarrow+\infty} \tilde{\varphi}(n)=\infty_{\Phi^{1}}$ in $X_{\Phi^{1}}$, we also have that $\lim _{n \rightarrow+\infty} \varphi^{*}(n)=\infty_{\Phi^{1}}$ in $X_{\Phi^{1}}$, so that there exists $\alpha^{*} \in 2^{\omega}$ such that $\left|\operatorname{Im} \varphi^{*} \cap \operatorname{Im} \varphi_{\alpha^{*}}^{1}\right|=\omega$, and hence $\left|\operatorname{Im} \varphi_{\hat{\alpha}}^{0} \cap \operatorname{Im} \varphi_{\alpha^{*}}^{1}\right|=\omega$ (because $\operatorname{Im} \varphi^{*} \subseteq \operatorname{Im} \varphi_{\hat{\alpha}}^{0}$). This contradicts the fact that every element of Φ^{0} is almost disjoint from every element of Φ^{1}.

Acknowledgment. The author is very grateful to Alan Dow for general references about $\left\langle\alpha_{i}\right\rangle$-spaces.

References

[Ar1] Arhangel'skii A.V., The frequency spectrum of a topological space and the classification of spaces, Sov. Math. Dokl. 13 (1972), 265-268.
[Ar2] Arhangel'skii A.V., The frequency spectrum of a topological space and the product operation, Transl. Moscow Math. Soc., Issue 2 (1981), 163-200.
[CS] Costantini C., Simon P., An α_{4}, not Fréchet product of α_{4} Fréchet spaces, Topology Appl., to appear.
[Do] Dow A., Two classes of Fréchet-Urysohn spaces, Proc. Amer. Math. Soc. 108 (1990), 241-247.
[En] Engelking R., General Topology. Revised and Completed Ed., Heldermann, Berlin, 1989.
[Ku] Kunen K., Set Theory. An Introduction to Independence Proofs, Nort-Holland, Amsterdam, 1980.
[No] Nogura T., The product of $\left\langle\alpha_{i}\right\rangle$-spaces Topology Appl. 21 (1985), 251-259.
[Ol] Olson R.C., Bi-quotient maps, countably bi-sequential spaces, and related topics, Gen. Topology Appl. 4 (1974), 1-28.
[Si1] Simon P., A compact Fréchet space whose square is not Fréchet, Comment. Math. Univ. Carolinae 21 (1980), 749-753.
[Si2] Simon P., A hedgehog in a product, Acta Univ. Carolin.-Math. Phys., to appear.
Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino, Italy

