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Elliptic boundary value problem

in Vanishing Mean Oscillation hypothesis

Maria Alessandra Ragusa

Dedicated to the memory of Professor Filippo Chiarenza

Abstract. In this note the well-posedness of the Dirichlet problem (1.2) below is proved

in the class H1,p
0
(Ω) for all 1 < p < ∞ and, as a consequence, the Hölder regularity of

the solution u.
L is an elliptic second order operator with discontinuous coefficients (V MO) and the

lower order terms belong to suitable Lebesgue spaces.
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Classification: Primary 46E35, 35R05, 45P05; Secondary 35B65, 35J15

1. Introduction

Let us consider the Dirichlet problem for the equation

(1.1) Lu + biuxi − (diu)xi + cu = (fj)xj

in an open bounded set Ω ⊂ R
n, n ≥ 3, where we assume L to be the elliptic

second order operator in the divergence form

L ≡ −
∂

∂xj

(

aij
∂

∂xi

)

with discontinuous coefficients aij which belong to the Sarason class V MO of
the vanishing mean oscillation functions (see [23]). V MO is the subspace of the
John-Nirenberg’s space BMO (see [14]) whose elements have norm on the balls
vanishing as the radius of the ball approaches zero (see Section 2 for definitions).
This hypothesis will be crucial to obtain our results. The lower order terms bi, c,
di belong to suitable Lebesgue spaces Ls(Ω).
The aim of this note is to prove the well-posedness of the following Dirichlet

problem

(1.2)

{
Lu+ biuxi − (dju)xj + cu = (fj)xj a.e. x ∈ Ω,

u = 0 on ∂Ω

in the class of weak solutions u ∈ H
1,p
0 (Ω) for all 1 < p < ∞.
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Then we extend the result contained in [8] in order to allow operators to have
lower order terms.
In our treatment we will always assume the following

Hypothesis I.






I1 aij(x) ∈ V MO ∩ L∞(Rn) ∀ i, j = 1, . . . , n,

I2 aij(x) = aji(x) ∀ i, j = 1, . . . , n, a.e. in Ω,

I3 ∃ τ > 0 : τ−1|ξ|2 ≤ aij(x)ξiξj ≤ τ |ξ|2, ∀ ξ ∈ R
n, a.e. x ∈ Ω,

and

bi, di ∈ Lr(Ω) ∀ i = 1, . . . , n with







r = n if 1 < p < n,

r > n if p = n,

r = p if p > n,

c ∈ L
r
2 (Ω) where r is defined as above.

We also make the following assumption

c − (dj)xj ≥ c0 > 0.

We next enunciate the main results of this note, while for the precise meaning
of the hypothesis

aij(x) ∈ V MO, ∀ i, j = 1, . . . , n

we refer to Section 2.

Theorem 1.1. Let aij , bi, c, di verify Hypothesis I, f ∈ [Lp(Ω)]n, 1 < p < ∞,

and ∂Ω ∈ C1,1.
Then the Dirichlet problem (1.2) has a unique solution and there exists a

constant k independent on u and f such that

‖∇u‖Lp(Ω) ≤ k‖f‖Lp(Ω).

Theorem 1.2. Let aij , bi, c, di satisfy Hypothesis I, f ∈ [Lp(Ω)]n, p > n and

∂Ω ∈ C1,1.
The solution of (1.2) is Hölder regular in Ω and there exists a constant k

independent on u and f such that

‖u‖C0,α(Ω) ≤ k‖f‖Lp(Ω).

The hypothesis aij ∈ V MO allows us to extend classical results obtained only
for p = 2 with hypothesis aij ∈ L∞ (see e.g. [15], [12], [17]) to all p ∈]1,+∞[ .
We also observe that the structure of the equation in the divergence form and

the non existence of the derivatives of the coefficients aij leads us to examine
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the weak and not the strong solutions even if there is a certain similarity in the
technique used to study both strong and weak solutions.
During this century the variational approach to the Dirichlet problem for linear

elliptic equations has been object of much research and has been developed by
many authors. Far from being complete we recall the research of Ladyzhenskaya,
Uralt’seva, see [15], and Stampacchia, see [26] and [27]. These authors derived the
Fredholm alternative but their existence and uniqueness results were restricted
by smallness or coercivity conditions.
The Dirichlet problem was also considered by Friedrichs in [10], [11] and Gard-

ing in [13].
Furthermore we wish to mention classical results by Miranda, see [19] and

[18] who deals with the case of strong solutions, with hypotheses aij ∈ H1,n,
bi, c ∈ Ln, di = 0.
Higher order differentiability theorems for weak solutions were proved by var-

ious authors including Browder [2], Nirenberg in [21] and [22], Agmon in [1], Lax
in [16], Bers and Schechter in [3] and Friedman in [9].
We also recall the celebrated paper [7] by De Giorgi in which the author studies

local pointwise estimates. The global bound appears in the works of Ladyzhen-
skaya and Uralt’seva [15] and Stampacchia [26], [27] and is an extension of an
earlier version by Stampacchia [24], [25]. A priori bound is due to Trudinger
in [28].
The method used in this paper, following the idea of the papers [4], [5], is

based on explicit representation formulas for the first derivatives. It permits us
to obtain interior and boundary estimates for the solution of the Dirichlet problem
(1.2) (respectively Lemma 3.1 and 3.2). In the interior case the integral operators
appearing in the representation formula are Calderón-Zygmund singular integrals
and singular commutators like those used by Coifman, Rochberg and Weiss in [6].
The boundary estimates are similar because the representation formula ob-

tained using the half space Green function contains the same integral operators
as in the interior case and a second type which are less singular operators.
Finally, both interior and boundary estimates assuring the global regularity for

the first derivatives of a solution of (1.2) are used to prove in Theorem 1.1 the
well-posedness of (1.2). As a consequence the Hölder regularity of u is proved in
Theorem 1.2.

2. Definitions and preliminary results

Definition 2.1 (see [14]). We say that a function f ∈ L1loc(R
n) belongs to the

space BMO if

sup
B

1

|B|

∫

B

|f(x) − fB| dx ≡ ‖f‖∗ < ∞

where B is a ball in R
n and fB is the average

1
|B|

∫

B f(x) dx.
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BMO is a Banach space with the norm ‖f‖∗ modulo constant functions,
see [20].
Let f ∈ BMO and r > 0. We set

η(r) = sup
x∈Rn

ρ≤r

1

|Bρ|

∫

Bρ

|f(x)− fBρ
| dx

where Bρ is a ball of radius ρ centered at the point x ∈ R
n.

Definition 2.2. We say that a function f ∈ BMO is in the space V MO if

lim
r→0+

η(r) = 0

and we call η the V MO modulus of the function f .

In the following we denote by ηij the V MO modulus of aij , i, j = 1, . . . , n,
and let ‖a‖∗ =

∑n
i,j=1 ηij .

Definition 2.3. Let k : Rn \ {0} → R. We say that k(x) is a Calderón-Zygmund
kernel (C-Z kernel) if

k ∈ C∞(Rn \ {0});
k(x) is homogeneous of degree −n;
∫

Σ k(x) dx = 0, where Σ = { x ∈ R
n : |x| = 1}.

Definition 2.4. We set

Γ(x, ζ) =
1

n(2− n)ωn
√
det{aij(x)}

( n∑

i,j=1

Aij(x)ζiζj

)(2−n)/2

for a.a. x and ∀ ζ ∈ R
n \ {0}, where Aij(x) stand for the entries of the inverse

matrix of the matrix {aij(x)}i,j=1,... ,n, and ωn is the measure of the unit ball

in R
n. Also we denote

Γi(x, ζ) =
∂

∂ζi
Γ(x, ζ), Γij(x, ζ) =

∂

∂ζi∂ζj
Γ(x, ζ).

It is well known that Γij(x, ζ) are Calderón-Zygmund kernels in the ζ variable.

Theorem 2.5 (see [4, Theorem 2.10]). Let k : Rn × (Rn \ {0})→ R be such that

(i) k(x, .) is a Calderón-Zygmund kernel for a.a. x ∈ R
n;

(ii) max|j|≤2n

∥
∥
∥

∂j

∂zj k(x, z)
∥
∥
∥

L∞(Rn×Σ)
=M < +∞.

Let also f ∈ Lp(Rn), 1 < p < ∞, a ∈ L∞(Rn).
For any ε > 0 and x ∈ R

n we set

Kεf(x) =

∫

|x−y|>ε

k(x, x − y)f(y) dy,
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Cε(a, f)(x) =

∫

|x−y|>ε

k(x, x − y)(a(x)− a(y))f(y) dy.

Then, there exist Kf , C(a, f) ∈ Lp(Rn) such that

lim
ε→0

‖Kεf − Kf‖Lp(Rn) = 0, lim
ε→0

‖Cε(a, f)− C(a, f)‖Lp(Rn) = 0

and there exists a constant c = c(n, p, M) such that

‖Kf‖Lp(Rn) ≤ c‖f‖Lp(Rn), ‖C(a, f)‖Lp(Rn) ≤ c‖a‖∗‖f‖Lp(Rn).

As in [4] the functions Kf and C(a, f) obtained by the above limiting process
are called Principal Value functions and the notations usually used to indicate
that Kf and C(a, f) are such linear functionals, are

Kf(x) = P.V.

∫

Rn

k(x, x − y)f(y) dy

and
C(a, f)(x) = a(Kf) − K(af).

The result we are going to mention follows from the above theorem.

Theorem 2.6 (see [4, Theorem 2.13]). Let a ∈ V MO ∩ L∞(Rn) and k(x, z)
satisfy the hypothesis of Theorem 2.5. Then for any ǫ > 0, there exists ρ0 > 0
such that for any ball Br of radius r ∈] 0, ρ0 [ and f ∈ Lp(Br) with 1 < p < ∞
we have

‖C(a, f)‖Lp(Br) ≤ c ǫ ‖f‖Lp(Br).

Let us define R
n
+ = {x = (x1 . . . , xn) ≡ (x

′, xn) : x
′ ∈ R

n−1 , xn > 0} and for

x ∈ R
n let x̃ = (x′,−xn).

Analogous inequalities are proved in [5], as we recall in the next theorem, for
the following operators

K̃f(x) =

∫

Rn
+

f(y)

|x̃ − y|n
dy

and

C̃(a, f)(x) =

∫

Rn
+

[a(x)− a(y)]

|x̃ − y|n
f(y) dy,

where a ∈ V MO ∩ L∞(Rn) and f ∈ Lp(Rn
+), 1 < p < ∞.
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Theorem 2.7. Let f ∈ Lp(Rn
+) with 1 < p < ∞, and let K̃f and C̃(a, f)(x) be

defined as above.

Then there exists a constant c independent of f and φ such that

‖K̃f‖Lp(Rn
+
) ≤ c‖f‖Lp(Rn

+
)

and
‖C̃(a, f)‖Lp(Rn

+
) ≤ c‖a‖∗‖f‖Lp(Rn

+
).

Let Ω ⊂ R
n, n ≥ 3, be an open bounded domain with ∂Ω ∈ C1,1. Consider in

Ω the elliptic equation (1.1) or, equivalently,

(2.1) Lu = (fj + dju)xj − (biuxi + cu)

and the associated Dirichlet problem

(2.2)

{
Lu = (fj + dju)xj − (biuxi + cu),

u ∈ H1,p0 (Ω), 1 < p < ∞.

In our treatment we assume that f = (f1, . . . , fn) ∈ [L
p(Ω)]n with 1 < p < ∞.

We shall say that u ∈ H1,p0 (Ω), 1 < p < ∞, is a weak solution of the Dirichlet
problem (1.2) if

(2.3)

∫

Ω

(aijuxiφxj − biuxiφ − cuφ) dx = −

∫

Ω

(fj + dju)φxj dx, ∀φ ∈ C∞
0 (Ω).

3. Proofs of Theorems 1.1 and 1.2

Now we shall make some preliminary observations.
Let θ be a standard cut-off function, θ ∈ C∞

0 (R), such that for fixed r ∈ R and
every s : 0 < s < r

θ(x) =

{
1 x ∈ Bs,

0 x /∈ Br.

Then if u is a solution of (1.2) we have

L(θu) = −
(
aij(θu)xi

)

xj

= L(θu)− θLu + θ{(fj + dju)xj − (biuxi + cu)}

= −
(
aij(θxiu+ θuxi)

)

xj
− θ{−(aijuxi)xj}+ θ{(fj + dju)xj − biuxi + cu}

= −(aijθxiu − θ(fj + dju))xj − (aijθxj uxi + θxj (fj + dju) + θbiuxi + cθu).

Then we write, for v = θu,

(3.1) L(v) ≡ L(θu) = div(Φ) + Ψ
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with Φ, Ψ supported in Br and defined by

Φ ≡ −(aijθxiu − θ(fj + dju))

and
Ψ ≡ −(aijθxjuxi + θxj (fj + dju) + θbiuxi + cθu).

In the following we consider only p > 2 because the case p = 2 is classical and
1 < p < 2 will be obtained by duality.
Before proving Theorem 1.1 and Theorem 1.2 we need the following two lem-

mas.

Lemma 3.1. Let u ∈ C∞(Ω) such that (2.3) is satisfied, let θ and v be defined
as above.

Let also aij ∈ C∞(Rn) ∩ L∞(Rn), such that I2 and I3 of Hypothesis I are
true. Let also f ∈ [C∞(Ω)]n and bi, di, c ∈ C∞(Ω), for every i, j = 1, . . . , n.
Then there exist r > 0 and C = C(n, p, τ, ηij , dist(Br, ∂Ω)) such that

(3.2) ‖∇u‖Lp(Bs) ≤ C
(

‖∇u‖L2(Br) + ‖f‖Lp(Br) + ‖u‖Lp(Br)

)

for every s ∈]0, r[ .

Proof: Let us define

θ(x) =

{
1 x ∈ Bρr, 0 < ρ < 1,

0 x /∈ Br.

Set L(v) = div(Φ)+Ψ. If aij ∈ C∞(Rn)∩L∞(Rn), Φ ∈ [C∞
0 (Br)]

n, Ψ ∈ C∞
0 (Br)

we have (see [8]) the representation formula and the consequent estimate based
on Theorem 2.5 and Theorem 2.6

vxi(x) = P.V.

∫

Br

Γij(x, x − y){(akj(x)− akj(y))vxk
(y)− Φj(y)} dy

+ cijΦj(x) −

∫

Br

Ψ(y)Γi(x, x − y) dy, ∀x ∈ Br

with cij =
∫

|ξ|=1 Γi(x, ξ)ξjdσξ ,

(3.3) ‖∇v‖Lp(Br) ≤ C
(

‖a‖∗‖∇v‖Lp(Br) + ‖Φ‖Lp(Br) + ‖Ψ‖Lp∗(Br)

)

where C ≥ 0 does not depend on v,Φ,Ψ and p∗ such that
1
p∗
= 1p +

1
n .

Fixing r > 0 so small that C‖a‖∗ is less than 1 it follows

(3.4) ‖∇v‖Lp(Br) ≤ C
(

‖Φ‖Lp(Br) + ‖Ψ‖Lp∗(Br)

)

.
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From (3.4) we have

‖∇(θu)‖Lp(Br) ≤ C
(

‖aijθxiu − θ(fj + dju)‖Lp(Br)

+‖aijθxj uxi + θxi(fj + dju) + θ(biuxi + cu)‖Lp∗(Br)

)

and then

‖∇(θu)‖Lp(Br) ≤ C
(

‖aijθxiu‖Lp(Br) + ‖θfj‖Lp(Br) + ‖θdju‖Lp(Br)

+ ‖aijθxj uxi‖Lp∗(Br) + ‖θxifj‖Lp∗(Br)

+‖θxidju‖Lp∗(Br) + ‖θbiuxi‖Lp∗(Br) + ‖cθu‖Lp∗(Br)

)

.

Let us suppose at the beginning 2 < p ≤ 2∗ where 2∗ is such that 12∗ =
1
2 −

1
n ;

then p∗ ≤ 2.
Majorizing each term we have

‖aijθxiu‖Lp(Br) ≤ C1‖u‖Lp(Br),

‖θfj‖Lp(Br) + ‖θdju‖Lp(Br) ≤ ‖f‖Lp(Br) + ‖dj‖Lr(Br)‖θu‖LpS (Br)

≤ ‖f‖Lp(Br) + S‖dj‖Lr(Br)‖∇(θu)‖Lp(Br)

where pS =
pn

n−p and S is Sobolev constant,

‖aijθxj uxi‖Lp∗(Br) ≤ C2‖∇u‖Lp∗(Br) ≤ C2‖∇u‖L2(Br)

‖θxifj‖Lp∗(Br) ≤ C3‖f‖Lp(Br)

and, using Hölder inequality,

‖θxidju‖Lp∗(Br) ≤ ‖dj‖Lr(Br)‖u‖Lp(Br).

Moreover,

‖θbiuxi‖Lp∗(Br) = ‖bi[(θu)xi − θxiu]‖Lp∗(Br)

≤ ‖bi(θu)xi‖Lp∗(Br) + ‖biθxiu‖Lp∗(Br)

≤ ‖bi‖Lr(Br)‖∇(θu)‖Lp(Br) + C4‖bi‖Lr(Br)‖u‖Lp(Br),

‖cθu‖Lp∗(Br) ≤ ‖c‖
L

r
2 (Br)

‖θu‖Lp∗(Br)
≤ S‖c‖

L
r
2 (Br)

‖∇(θu)‖Lp(Br).

Fix r̃ > 0 so small that
[

‖bi‖Lr(Br) + S
(

‖dj‖Lr(Br) + ‖c‖
L

r
2 (Br)

)]

<
1

3C
,
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then for every r ∈]0, r̃] we have proved

(3.5)
‖∇u‖Lp(Bs) ≤ ‖∇(θu)‖Lp(Br)

≤ C
(

‖u‖Lp(Br) + ‖f‖Lp(Br) + ‖∇u‖Lp∗(Br)

)

, ∀ s ∈]0, r[ .

Let us now prove (3.2) if 2 < p ≤ 2∗, choosing

θ(x) =

{
1 x ∈ Bρr, 0 < ρ < 1,

0 x /∈ Br.

From (3.5) we obtain

(3.6)
‖∇u‖Lp(Bρr) ≤ C

(

‖u‖Lp(Br) + ‖f‖Lp(Br) + ‖∇u‖Lp∗(Br)

)

≤ C
(

‖u‖Lp(Br) + ‖f‖Lp(Br) + ‖∇u‖L2(Br)

)

because p∗ ≤ 2, and then we get (3.2) choosing ρ = s
r .

Let us define 2∗∗ such that 1
2∗∗ =

1
2∗ − 1

n .
Set 2∗ < p ≤ 2∗∗ (observe that we put formally 2∗∗ =∞ and take 2∗ < p < ∞

provided 2∗ ≥ n); then p∗ ≤ 2∗, and

θ(x) =

{
1 x ∈ Bρ2r, 0 < ρ < 1,

0 x /∈ Bρr.

Using again (3.4) we have

‖∇(θu)‖Lp(B
ρ2r
) ≤ C

(

‖u‖Lp(Bρr) + ‖f‖Lp(Bρr) + ‖∇u‖Lp∗(Bρr) + ‖f‖Lp∗(Bρr)

)

≤ C
(

‖u‖Lp(Br) + ‖f‖Lp(Br) + ‖∇u‖L2∗(Bρr)

)

and, majorizing the last term with (3.6) for p = 2∗,

‖∇u‖Lp(B
ρ2r
) ≤ C

(

‖u‖Lp(Br) + ‖f‖Lp(Br) + ‖∇u‖L2(Br)

)

.

We obtain again (3.2) choosing ρ =
(

s
r

) 1
2 .

Finally the estimate (3.2) is obtained for every p > 2 iterating this method a
finite number of times. More precisely it is always possible to getm ∈ N such that

pm−1 < p ≤ pm with pm−1 = 2

m−1
︷ ︸︸ ︷
∗ ∗ . . . ∗, pm = 2

m
︷ ︸︸ ︷
∗ ∗ . . . ∗, then setting ρ =

(
s
r

) 1
m

the result is obtained.
The technique used here is similar to that in [8]. �

Let us define B+r = {x = (x1, . . . , xn) ≡ (x
′, xn) ∈ Br : xn > 0}.
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Lemma 3.2. There exists a positive number r such that if

(i) aij(x) ∈ C∞(Rn)∩L∞(Rn), ∀ i, j = 1, . . . , n such that I2 and I3 are true;

(ii) u ∈ C∞(B+r ) is a solution of (1.2) in B+r ,

u vanishing on {xn = 0} ∩ B
+
r ;

(iii) f ∈ [C∞
0 (B

+
r )]

n;

(iv) bi, c, di ∈ C∞(B+r ), ∀ i = 1, . . . , n;

then
‖∇u‖Lp(B+s )

≤ C
(

‖u‖Lp(B+r )
+ ‖f‖Lp(B+r )

+ ‖∇u‖L2(B+r )

)

where C = C(n, p, τ, ηij , dist(B
+
r , ∂Ω)).

Proof: Let θ ∈ C∞
0 (B

+
r ) and let v = θu be a solution of (3.1). It is easy to show

that the representation formula for the first derivatives of v is

vxi(x) = P.V.

∫

B+r

Γij(x, x − y)
{
(akj(x) − akj(y))vxh

(y)

−(aijθxiu − θ(fj + dju))j(y)
}

dy

+

∫

B+γ

(aijθxj uxi + θxj (fj + dju) + θbiuxi + cθu)(y)Γi(x, x − y) dy

+ cij(aijθxiu − θ(fj + dju))j(x) + Ii(x), ∀x ∈ B+r ,

where cij is defined as above and

Ii(x) =

∫

B+r

Γij(x, T (x) − y)
{
(akj(x) − akj(y))vxk

(y)

−(aijθxiu − θ(fj + dju))j(y)
}

dy, for 1 ≤ i < n;

In(x) =

∫

B+r

Γkj(x, T (x)− y)Ak(x)
{
(akj(x) − akj(y))vxh

(y)

−(aijθxiu − θ(fj + dju))j(y)
}

dy,

where A(y) = (A1(y), . . . , An(y)) = T (en, y) ≡ T ((0, . . . , 0, 1), y) and T is defined
by

T (x, y) = x −
2xn

ann(y)
an(y), T (x) ≡ T (x, x),

and an(y) = ( ain(y) )i=1,... ,n is the last row (column) of the matrix a(y) =
{aij(y)}i,j=1,... ,n.
We also have, using Theorem 2.7, that there exists a positive number r > 0

and a positive constant C such that

‖∇v‖Lp(B+r )
≤ C

(

‖Φ‖Lp(B+r )
+ ‖Ψ‖Lp∗(B+r )

)

,
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where C is independent of the functions v, Φ and Ψ. Then similarly to Lemma 3.1
we get the conclusion. �

We are now ready to establish the main result of the paper.

Proof of Theorem 1.1

We first observe that it is possible to find subsequences {(aij)h}h∈N,
{(bi)h}h∈N, {ch}h∈N, {(di)h}h∈N, {fh}h∈N, with (aij)h ∈ C∞(Rn) ∩ L∞(Rn),
fh ∈ [C∞(Ω)]n, (bi)h, ch, (di)h ∈ C∞(Ω), ∀ i, j = 1, . . . , n, such that {(aij)h}
converges in the ∗−norm to aij , {fh} converges to f in [Lp(Ω)]n and {(bi)h},
{ch}, {(di)h} are respectively converging to bi, c, di in Lr(Ω), ∀ i = 1, . . . , n.
We first prove the theorem with smooth hypothesis on the coefficients and the

known term, then in the second step with the assumption requested.

FIRST STEP.

Let aij ∈ C∞(Rn) ∩ L∞(Rn), f ∈ [C∞(Ω)]n, bi, c, di ∈ C∞(Ω), ∀ i, j =
1, . . . , n.
From Lemma 3.1 and Lemma 3.2 by a covering and flattering argument (see

[5, Theorem 4.2])

(3.7) ‖∇u‖Lp(Ω) ≤ C
(

‖u‖Lp(Ω) + ‖f‖Lp(Ω) + ‖∇u‖L2(Ω)

)

, ∀ p > 2.

Let 2 < p ≤ 2∗ (p∗ ≤ 2). From Sobolev theorem

‖u‖Lp(Ω) ≤ C‖∇u‖Lp∗(Ω) ≤ C‖∇u‖L2(Ω).

Then by (3.7) and the well known L2-results obtained by Miranda (see [18])

(3.8)
‖∇u‖Lp(Ω) ≤ C

(

‖∇u‖L2(Ω) + ‖f‖Lp(Ω)

)

≤ C
(

‖f‖L2(Ω) + ‖f‖Lp(Ω)

)

≤ C‖f‖Lp(Ω).

Let us suppose now 2∗ < p ≤ 2∗∗; then it follows p∗ ≤ 2∗. From Sobolev
theorem

(3.9) ‖u‖Lp(Ω) ≤ C‖∇u‖Lp∗(Ω) ≤ C‖∇u‖L2∗(Ω).

Applying (3.8) with p = 2∗, from (3.9) we have

‖u‖Lp(Ω) ≤ C‖∇u‖L2∗(Ω) ≤ C‖f‖L2∗(Ω) ≤ C‖f‖Lp(Ω).

Then using the above inequality, (3.7) and the L2-results mentioned above, we
obtain

‖∇u‖Lp(Ω) ≤ C‖f‖Lp(Ω), for p ≤ 2∗∗.
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The last inequality for every p > 2 can be obtained iterating this method.

SECOND STEP.

Let us consider the above sequences of smooth functions; and uh, ∀h ∈ N, the
solution of the associated Dirichlet problem.
Then there exists a constant C independent of h such that

‖∇uh‖Lp(Ω) ≤ C‖fh‖Lp(Ω), ∀h ∈ N.

Using the above inequality we have that ∃u ∈ H1,p0 (Ω) verifying

‖∇u‖Lp(Ω) ≤ C‖f‖Lp(Ω)

where u is the solution of (1.2).
This completes the proof of Theorem 1.1 with the constant

k = k(n, p, τ, ηij , ∂Ω). �

Proof of Theorem 1.2

It is easy to see that it is a consequence of Theorem 1.1 and of the Sobolev
imbedding theorem. �

Acknowledgments. The author takes this opportunity to thank Professor
A. Maugeri for useful suggestions in this work.

References

[1] Agmon S., Lectures on Elliptic boundary Value Problems, Van Nostrand, N.J., 1965.

[2] Browder F.E., Strongly elliptic systems of differential equations, in: Contributions to the
Theory of Partial Differential Equations, Princeton University Press, Princeton N.J., 1954,
pp. 15–51.

[3] Bers L., Schechter M., Elliptic Equations In Partial Differential Equations, Interscience,
New York, 1964, pp. 131–299.

[4] Chiarenza F., Frasca M., Longo P., Interior W 2,p estimates for non-divergence elliptic

equations with discontinuous coefficients, Ricerche Mat. 40 (1991), 149–168.
[5] Chiarenza F., Frasca M., Longo P., W 2,p-solvability of the Dirichlet problem for nondi-

vergence elliptic equations with V MO coefficients, Trans. Amer. Math. Soc. 336 (1993),
841–853.

[6] Coifman R., Rochberg R., Weiss G., Factorization theorems for Hardy spaces in several
variables, Ann. of Math. 103 (1976), 611–635.

[7] De Giorgi E., Sulla differenziabilita’ e l’analiticita’ delle estremali degli integrali multipli
regolari, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. 3 (1957), 25–43.

[8] Di Fazio G., Lp Estimates for divergence form elliptic equations with discontinuous coef-

ficients, Boll. U.M.I. (7) 10-A (1996), 409–420.
[9] Friedman A., Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969.
[10] Friedrichs K.O., The identity of weak and strong extensions of differential operators, Trans.

Amer. Math. Soc. 55 (1944), 132–151.
[11] Friedrichs K.O., On the differentiability of the solutions of linear elliptic equations, Comm.

Pure Appl. Math. 6 (1953), 299–326.



Elliptic boundary value problem in Vanishing Mean Oscillation hypothesis 663

[12] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, 2nd
ed., Springer-Verlag, 1983.

[13] Garding L., Dirichlet’s problem for linear elliptic partial differential equations, Math.
Scand. 1 (1953), 55–72.

[14] John F., Nirenberg L., On functions of bounded mean oscillation, Comm. Pure Appl. Math.
14 (1961), 415–426.

[15] Ladyzenskaya O.A., Uralt́seva N.N., Linear and Quasilinear Elliptic Equations, English
Translation: Academic Press, New York, 2nd Russian ed., 1973.

[16] Lax P.D., On Cauchy’s problem for hyperbolic equations and the differentiability of solu-
tions of elliptic equations, Comm. Pure Appl. Math. 8 (1955), 615–633.

[17] Miranda C., Partial Differential Equations of Elliptic Type, second revised edition, Springer
Verlag, 1970.

[18] Miranda C., Sulle equazioni ellittiche del secondo ordine di tipo non variazionale, a coef-
ficienti discontinui, Annali di Matematica 63 (1963), 353–386.

[19] Miranda C., Alcune osservazioni sulla maggiorazione in Lν delle soluzioni deboli delle

equazioni ellittiche del secondo ordine, Annali di Matematica 61 (1963), 151–170.
[20] Neri U., Some properties of bounded mean oscillation, Studia Math. 41 (1977), 63–75.
[21] Nirenberg L., On nonlinear elliptic partial differential equations and Hölder continuity,
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