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Abstract. Some results concerning spaces with countably weakly uniform bases are gen-
eralized for spaces with n-in-countable ones.
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All spaces in the paper are assumed to be T1. If τ and λ are cardinals, then
one says that a family B of sets is τ-in-λ if for every set A of cardinality τ , A ⊂ B
holds for no more than λ members B ∈ B. τ-in-< λ is defined similarly. One
says that a family is τ-in-countable in place of τ-in-ω and that a family is τ-in-
finite in place of τ-in-< ω. A 2-in-finite family is called weakly uniform and a
2-in-countable family is also called countably weakly uniform.

We are going to extend results of paper [6] on spaces with countably weakly
uniform bases to spaces with n-in-countable bases, where n is a natural number.
A few results concern n-in-finite bases.

Lemma 1. Let n ≥ 1 be a natural number. An n-in-countable open family in a
separable space is countable.

Proof: It is evident. �

Theorem 1. Let n ≥ 1 be a natural number. A regular countably compact space
with an n-in-countable T1-separating open cover is metrizable.

Proof: Let X be a regular countably compact space and let B be its n-in-
countable T1-separating open cover. Denote by L(X) the set of all nonisolated
points of X . It is evident that if x ∈ L(X) then ord(x,B) ≤ min{|A| : x is an
accumulation point of A}. Let us consider the set Z = {x ∈ L(X) : ord(x,B) ≤
ω}. Because X is regular countably compact, Z̄ = L(X). Now, by analogy with
the proof of Miscenco’s theorem [3] with using Lemma 1 one can prove that there
exists a countable set Y ⊂ Z such that Ȳ = L(X). Hence |{B ∈ B : B ∩ L(X) 6=
∅}| ≤ ω. We can assume that if B ∈ B and B ∩L(X) = ∅ then B is an one-point
set. Hence B is countable. Therefore X is metrizable. �

Corollary 1 ([1]). Let n ≥ 1 be a natural number. A regular countably compact
space with an n-in-countable base is metrizable.

Later on we will denote by I(X) the set of all isolated points of a space X .
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Lemma 2. Let n ≥ 1 be a natural number. Let X be a space with an n-in-
countable base B and let |I(X)| = τ , where τ is an uncountable cardinal. Then
X has an n-in-countable base B⋆ such that for each x ∈ I(X), ord(x,B⋆) < τ .

Proof: Let I(X) = {xξ : ξ < τ}. Let us define B0 = {B ∈ B : x0 ∈ B}. Let
η < τ . Assume that Bξ are defined for each ξ < η. Then we define Bη = {B ∈ B :

xη ∈ B, B /∈ Bξ under ξ < η}. Now put B1ξ = {B \ {xξ} : B ∈ Bξ} for each ξ < τ

and B1 =
⋃
{B1ξ : ξ < τ}. It is evident that if A ⊂ I(X) and |A| = n − 1 then

|{B ∈ B1 : A ⊂ B}| < τ . Repeating this step n − 1 times (of course we assume

n ≥ 2), we obtain a family B(n−1) such that B⋆ = B(n−1) ∪ {B ∈ B : B ∩ I(X) =
∅} ∪ {{x} : x ∈ I(X)} is a base with all the required properties. �

Lemma 3. Let n ≥ 1 be a natural number. Let X be a space with an n-in-
countable base B and let |I(X)| ≤ ω. Then X has an n-in-countable base B⋆

such that for each x ∈ I(X), ord(x,B⋆) ≤ ω.

Proof: The statement can be proved just as Lemma 2. �

Theorem 2. Let n ≥ 1 be a natural number. A regular locally separable space
with an n-in-countable base is metrizable.

Proof: The statement is proved in just the same way as Theorem from [7] with
using above-mentioned Lemmas 1, 2, and 3. Here is a sketch of the proof. By
Lemma 1 the space is locally metrizable. Hence every its n-in-countable base has
a countable order at each nonisolated point. Let us maintain induction on the
cardinality of the set of all isolated points. Let a space X satisfy the assumptions
of Theorem 2, and let |I(X)| ≤ ω. Then with respect to the above remark and by
Lemma 3, X has a point-countable base. Therefore X is divided into a disjoint
family of open metrizable subspaces. Consequently, X is metrizable. Now, let τ
be an uncountable cardinal. Let us assume that the statement of the theorem is
true for each cardinal λ < τ . Suppose now that |I(X)| = τ . We will consider two
cases.

Case 1. τ is regular. By Lemmas 1 and 2 there is a base B of X of order
< τ at each point of X . Without loss of generality we may assume that every
element of the base is separable. For every B⋆ ∈ B define a family E(B⋆) in
the following way: E0(B

⋆) = {B⋆}, E1(B
⋆) = {B ∈ B : B ∩ B⋆ 6= ∅}, · · · ,

En(B
⋆) = {B ∈ B : B ∩ (

⋃
En−1) 6= ∅}, etc., E(B⋆) =

⋃
{En(B

⋆) : n ∈ ω}. Then
we have |E(B⋆)| < τ , and

⋃
E(B⋆) has less than τ isolated points. It follows that⋃

E(B⋆) is metrizable, hence X is metrizable too.

Case 2. τ is singular. Then there are a cardinal λ < τ and a partition {Iξ : ξ < λ}
of the set I(X) such that |Iξ | = τξ < τ . Let B be a base of X with the same
properties as in Case 1. Fix an ordinal ξ < λ. For each point a ∈ Iξ put
Sa = {B ∈ B : a ∈ B}. Put Aη = ∪ ∪ {Sa : |Sa| < τη}. Since Aη is an open
subspace of X , which has the set of all isolated points of cardinality less than τ ,
it is metrizable. Hence, the space Gξ =

⋃
{B ∈ B : B ∩ Iξ 6= ∅} =

⋃
{Aη : η < λ}
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has a base of order no more than λ at each its point. It follows that the space
G =

⋃
{Gξ : ξ < λ} =

⋃
{B ∈ B : B ∩ I(X) 6= ∅} has a base U of order no

more than λ at each its point. Without loss of generality we may assume that
every element of the base is separable. In the same way as in Case 1 it can be
proved that G is metrizable. Because X \ G is contained in an open subspace
of X without isolated points, it is metrizable. Thus, X is the union of two open
locally separable metrizable subspaces. Hence X is metrizable. �

Corollary 2. Let n ≥ 1 be a natural number. A regular space which admits an
n-in-countable cover of open separable metrizable subspaces is metrizable.

Corollary 3. Let n ≥ 1 be a natural number. A regular locally countably
compact space with an n-in-countable base is metrizable.

Corollary 4 ([2]). Let n ≥ 1 be a natural number. A Hausdorff locally compact
space with an n-in-countable base is metrizable.

Lemma 4 (MA + ¬CH). Let n ≥ 1 be a natural number. If X is a Čech-

complete space with c(X) = ω, then every open n-in-countable family of X is
countable.

Proof: Under n = 1 this is a result of Shapirovskii [9]. Then the statement is
proved by induction on n. �

It follows from [8] that the statement of Lemma 4 is false under ¬SH even if
n = 1.

Theorem 3 (MA + ¬CH). Let n ≥ 1 be a natural number. Suppose that X is a
regular space which is locally Čech-complete and locally has the Souslin property.

If X has an n-in-countable base, then X is metrizable.

Proof: The statement follows from Lemma 4 and Theorem 2. �

Theorem 4. Let n ≥ 1 be a natural number. Every pseudocompact space with
an n-in-finite base is Čech complete first countable.

Proof: Let X be a pseudocompact space and B be an n-in-finite base for X .
For each B ∈ B choose an open in βX set B′ such that B = X ∩B′, and consider
the family B′ consisting of such sets. We show that the family B′ is n-in-finite
in βX . Let A ⊂ βX and let |A| = n. Let S be an infinite countable subfamily
of the family B. Denote by F the set

⋂
S ∩ A. By definition, the cardinality

of F is less than n. Then G =
⋂
{B′ \ F : B ∈ S} ⊂ βX \ X . Because X is

pseudocompact, the set G being a Gδ-set of βX that is contained in βX \ X is
empty by the well known result of Hewitt [5]. Thus B′ is an n-in-finite family
in βX . The same arguments show that the family B′ has finite order at each
point of βX \ X . Denote by I the set of all isolated points of X and define
Fm = {x ∈ βX : ord(x,B′) ≤ m} \ I. Because I is open in βX , each Fm is
a closed subset of βX . Moreover, βX \ X =

⋃
{Fm : m ∈ ω}. So X is Čech
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complete; therefore, X is a k-space. It is evident that a k-space with an n-in-
finite base is first countable.

�

Corollary 5. Let n ≥ 1 be a natural number. Every submetacompact pseudo-
compact space with an n-in-finite base is metrizable.

Theorem 5. Let n ≥ 2 be a natural number. Every space X with an n-in-finite
base has cardinality at most expn−1(L(X)), where L(X) is the Lindelöf degree
of X .

Proof: Let B be an n-in-finite base of X . Put τ = L(X). We will use the
theorem of Erdös and Rado: (expn−1(τ))

+ → (τ+)nτ ([4]). Let us assume that
|X | > expn−1(τ). Consider a mapping P : [X ]n → ω defined by the rule: A 7→
|{B ∈ B : A ⊂ B}|. There exists a homogeneous with respect to P set H of
cardinality τ+. It is easy to show that the set H is a closed discrete subset of X ,
a contradiction. �

Let us note that there exists an example of a Hausdorff Lindelöf space with a
weakly uniform base which is not first countable ([6]).
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