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Simple multilinear algebras and hermitian operators

T.S.R. Fuad, J.D. Phillips, X.R. Shen, J.D.H. Smith

Abstract. The paper studies multilinear algebras, known as comtrans algebras, that are
determined by so-called T -Hermitian matrices over an arbitrary field. The main result
of this paper shows that the comtrans algebra of n-dimensional T -Hermitian matrices
furnishes a simple comtrans algebra.
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1. Introduction

A comtrans algebra E over a commutative ring R with unit is a unital R-module
E equipped with two trilinear operations, a commutator [x, y, z] and a translator
〈x, y, z〉, such that the commutator is left alternative:

[x, x, z] = 0,(1.1)

the translator satisfies the Jacobi identity:

〈x, y, z〉+ 〈y, z, x〉+ 〈z, x, y〉 = 0,(1.2)

and together the commutator and translator satisfy the comtrans identity:

[x, y, x] = 〈x, y, x〉.(1.3)

Comtrans algebras were introduced ([9]) as part of the algebraic structure in the
tangent bundle corresponding to the coordinate n-ary loop of an (n+1)-web ([1],
[2]). Thus their relationship with smooth n-ary loops is analogous to the relation-
ship of Lie algebras with Lie groups. In fact the theory of comtrans algebras is
modelled on (and to some extent may subsume) the theory of Lie algebras. The
present paper is part of a continuing program (cf. [5], [6], [8]) of classifying sim-
ple comtrans algebras. Previously known simple comtrans algebras have arisen
from rectangular matrices ([5]), simple Lie algebras ([5]), spaces equipped with
a bilinear form having trivial radical ([6]), and comtrans algebras on spaces of
Hermitian operators over a field L with minimal polynomial x2 + 1 ([8]). This
paper extends the results of [8] to a determination of simple comtrans algebras
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of Hermitian operators over an arbitrary field. Theorem 4.2 below, the main re-
sult of the current paper, shows that the vector space Hn(T ;L, F ) of so-called
n-dimensional T -Hermitian matrices furnishes a simple comtrans algebra. Com-
trans algebra structure on spaces of Hermitian operators was introduced in [10],
where applications to quantum mechanics were discussed.

Section 2 covers the necessary algebraic fundamentals of comtrans algebras:
ideals, simplicity, and the enveloping algebras. Section 3 gives the definition of
the comtrans algebras on spaces of Hermitian operators over an arbitrary field, and
introduces notations for the special elements that feature in the proof of simplicity.
Section 4 derives the main simplicity result from the somewhat technical Slimming
Lemma (Proposition 4.1) whose proof comprises the final Section 5.

2. Ideals and enveloping algebras

For elements x, y of a comtrans algebra E over the ring R, there are R-module
endomorphisms of E defined by

K(x, y) : E −→ E; z 7→ [z, x, y](2.1)

R(x, y) : E −→ E; z 7→ 〈z, x, y〉(2.2)

L(x, y) : E −→ E; z 7→ 〈y, x, z〉.(2.3)

The enveloping algebra M(E) of the comtrans algebra E is the subalgebra of the
R-module endomorphism algebra EndRE generated by

{K(x, y), R(x, y), L(x, y)|x, y ∈ E}

([7]). An ideal J of the comtrans algebra E is a submodule of theM(E)-module E.
The ideals of E are precisely the kernels of comtrans algebra homomorphisms with
domain E ([5, Proposition 3.1]). A comtrans algebra is abelian if the commutators
and translators are all zero. A non-abelian comtrans algebra E is simple if it is
irreducible as an M(E)-module, i.e. if it has no proper non-trivial ideals. For
example, a Lie algebra L furnishes a comtrans algebra CT (L) whose commutator
and translator are both equal to repeated Lie-commutator [[z, x], y] in the Lie-
algebra. Thus K(x, y) = Ad(x)Ad(y) and R(x, y) = Ad(x)Ad(y). Then simplicity
of the Lie algebra L is equivalent to simplicity of the comtrans algebra CT (L)
([5, Theorem 3.2]).

3. Hermitian operators

Let L be a field of odd or zero characteristic. Define an involutory automorphism
τ : L −→ L, having a fixed field F . For x ∈ L, x = 12 (x+xτ )+ 12 (x−xτ ) = x0+x1,
with x0 ∈ F , i.e. xτ

0 = x0, and xτ
1 = −x1. So L = F

⊕
F1 is a vector space over

F , with F1 = {y ∈ L | yτ = −y}. Let G = {1, τ}. Then G is a group of
automorphisms of L, and F is the fixed field of G in L. Moreover, dimF L = 2. If
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q ∈ F1 − {0}, then q2 = k for some k ∈ F . This follows because (q2)τ = qτ qτ =
(−q)(−q) = q2, thus q2 ∈ F . In general, elements of F in L are called real , while
elements of qF in L are called imaginary. Fix an invertible diagonal n×n matrix
T over F . Let Hn(T ;L, F ) be the F -vector space of n× n T -Hermitian matrices
over L, i.e. n×n matrices A over L satisfying T−1AtT = Aτ . Choose q ∈ L−F ,
so q2 = k for some k ∈ K. Then Hn(T ;L, F ) is closed under the Lie product

[X, Y ] = q(XY − Y X)(3.1)

and the Jordan product

X ◦ Y =
1

2
(XY + Y X).(3.2)

These products are connected by the identities

1

4
[Y, [X, Z]] = k−1(X ◦ (Y ◦ Z)− (X ◦ Y ) ◦ Z)(3.3)

and

[X ◦ Y, Z] = X ◦ [Y, Z] + Y ◦ [X, Z](3.4)

(cf. [4, §2.2]). Set

[X, Y, Z]1 = X ◦ (Y ◦ Z)− Y ◦ (Z ◦ X),(3.5)

〈X, Y, Z〉1 = Z ◦ (X ◦ Y )− Y ◦ (Z ◦ X),(3.6)

[X, Y, Z]2 = [X, Y ] ◦ Z,(3.7)

〈X, Y, Z〉2 = [X, Y ◦ Z].(3.8)

Clearly (1.1)–(1.3) hold. Therefore the algebras (Hn(T ;L, F ), [, , ]1, 〈, , 〉1) and
(Hn(T ;L, F ), [, , ]2, 〈, , 〉2) are comtrans algebras. A linear combination of these
two comtrans algebras defines a new comtrans algebra on Hn(T ;L, F ) by taking

[X, Y, Z] = a[X, Y, Z]1 + b[X, Y, Z]2(3.9)

as the commutator and

〈X, Y, Z〉 = a〈X, Y, Z〉1 + b〈X, Y, Z〉2(3.10)

as the translator. For concreteness in the following, we focus on the particular
choice a = 2 and b = 1, obtaining a comtrans algebra with

[X, Y, Z] = 2[X, Y, Z]1 + [X, Y, Z]2(3.11)
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and

〈X, Y, Z〉 = 2〈X, Y, Z〉1 + 〈X, Y, Z〉2.(3.12)

(This particular choice of a and b goes back to the quantum mechanical applica-
tion, in particular the solution to the Heisenberg equation formulated using this
comtrans algebra ([10, 6.11]).)
It is useful to have some notation available for the proof of the simplicity of

the comtrans algebra Hn(T ;L, F ) of n×n T -Hermitian matrices defined in (3.11)
and (3.12). Let Eij denote the n × n matrix with zero everywhere except for
a one located at the intersection of row i and column j. Let T =

∑n
i=1 aiE

ii.

Let Bij denote the symmetric matrix aiE
ij + ajE

ji. Let Cij denote the skew-

symmetric matrix q(aiE
ji−ajE

ij). Let Dij denote the traceless diagonal matrix

Eii − Ejj . Note that the matrices I, Bij , Cij , and Dij are all T -Hermitian, and
thatHn(T ;L, F ) has the n2 elements Bij (1 ≤ i ≤ j ≤ n) and Cij (1 ≤ i < j ≤ n)
as a basis (cf. (4.1), (4.2) below).

Remark 3.1. In the case F = R, L = C, T = I, the matrices B12, C12 and D12

in H2(I;C, R) are observables representing the three components σx, σy and σz

of electron spin ([3, §37]).

The following formulas record the Lie and Jordan products in Hn(T ;L, F ) for
pairs of matrices Bij , Cij , Dij :

(3.13)

[Bij , Bkl] = −{δjlajC
ik + δjkajC

il + δilaiC
jk + δikaiC

jl}

[Bij , Ckl] = k{δjlajB
ik − δjkajB

il + δilaiB
jk − δikaiB

jl}

[Bij , Dkl] = −{δjkCik − δjlC
il + δikCjk − δilC

jl}

[Cij , Ckl] = k{δjlajC
ik − δjkajC

il − δilaiC
jk + δikaiC

jl}

[Cij , Dkl] = k{−δjkBik + δjlB
il + δikBjk − δilB

jl}

and

(3.14)

Bij ◦ Bkl =
1

2
{δjlajB

ik + δjkajB
il + δilaiB

jk + δikaiB
jl}

Bij ◦ Ckl =
1

2
{−δjlajC

ik + δjkajC
il − δilaiC

jk + δikaiC
jl}

Bij ◦ Dkl =
1

2
{δjkBik − δjlB

il + δikBjk − δilB
jl}

Cij ◦ Ckl =
k

2
{−δjlajB

ik + δjkajB
il + δilaiB

jk − δikaiB
jl}

Cij ◦ Dkl =
1

2
{δjkCik − δjlC

il − δikCjk + δilC
jl}.

A typical application of (3.13) in the subsequent sections is to determine

AK(A
′

, I) = [A, A
′

] for various T -Hermitian matrices A, A′.
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The next two sections are devoted to the proof of the simplicity of the comtrans
algebra Hn(T ;L, F ) of T -Hermitian operators defined in (3.11) and (3.12). We
will simply call it the comtrans algebra Hn(T ;L, F ).

4. Simplicity and Slimming Lemma

The sets

{Bij |1 ≤ i ≤ j ≤ n}(4.1)

of real basis elements and

{Cst|1 ≤ s < t ≤ n}(4.2)

of imaginary basis elements together comprise a basis of the F -spaceHn(T ;L, F ).
Consider an element

A =
∑

1≤i≤j≤n

bijB
ij +

∑

1≤s<t≤n

cstC
st(4.3)

of Hn(T ;L, F ). It is said to have real weight |{bij|bij 6= 0}| and imaginary weight
|{cst|cst 6= 0}|. Its (total) weight is the sum of its real and imaginary weights.
The following result, whose proof is relegated to the final section, is known as the
Slimming Lemma.

Proposition 4.1. An Hermitian operator (4.3) of weight bigger than one may
be reduced to an operator of strictly smaller positive weight by the action of the

enveloping algebra.

The Slimming Lemma is the key result yielding the simplicity of the comtrans
algebras Hn(T ;L, F ).

Theorem 4.2. For n > 1, the comtrans algebra Hn(T ;L, F ) of T -Hermitian

operators is simple.

Proof: Let J be non-zero ideal of Hn(T ;L, F ). Recall that J is invariant un-
der the action of the enveloping algebra. Let A be non-zero element of J . By
successive application of the Slimming Lemma (and possibly a scalar multiplica-
tion), it follows that a real or imaginary basis element is an image of A under
the action of the enveloping algebra, and thus an element of J . In fact, since
1
2k

−1a−1t CstK(Btt, I) = Bst, this image may be taken to be Bij for some i ≤ j.

For each of an exhaustive set of three cases, it will be shown that Bij ∈ J en-
tails containment of all the basis elements within J , so that J is improper and
Hn(T ;L, F ) is simple.

Case 1. i = j. For k 6= i = j, one has

(4.4)
1

2
k−1a−1i BijK(Ckj ,−I) = Bik
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in J . Then Bkk = aka−1i [B
ii + k−1a−1k BikK(Cik, I)] ∈ J . Using (4.4) again, all

the real basis elements lie in J . Finally, −12B
stK(Dst, I) = Cst ∈ J for s < t.

Case 2. i 6= j, n > 2. For i 6= k 6= j, k−1a−1j BijK(Ckj ,−I) = Bik, so

Bik ∈ J . Similarly, one obtains Bst ∈ J for s 6= t.
Then −k−1BstK(Cst, I) = −asB

tt+atB
ss ∈ J and −12B

stK(Dst, I) = Cst ∈ J .

Also 12a
−1
t [−asB

tt+atB
ss+k−1BstK(Dst, Cst)] = Bss, so Bss ∈ J for 1 ≤ s ≤ n.

Case 3. i = 1, j = 2, n = 2. First, −k−1B12K(C12, I) = −a1B
22 +

a2B
11 ∈ J . Then 12a

−1
2 [−a1B

22 + a2B
11 + k−1B12K(D12, C12)] = B11 ∈ J and

−12a
−1
1 [−a1B

22 + a2B
11 − k−1B12K(D12, C12)] = B22 ∈ J . Therefore I ∈ J .

Also −12B
12K(D12, I) = C12 ∈ J . �

5. Proof of the Slimming Lemma

In this section, the Slimming Lemma (Proposition 4.1) is proved. The proof is
divided into three lemmas corresponding to an exhaustive set of distinct cases.

Lemma 5.1. The Slimming Lemma holds for T -Hermitian operators

(5.1) A = bBij + cCst

of real and imaginary weight one.

Proof: If the index sets {i, j} and {s, t} are distinct, or if i 6= s < t = j, or if
j > s < t = i, then

AK(Bss, I) = −2ckasB
st(5.2)

has a positive weight strictly smaller than that of A. If i = s < t = j, consider

AK(Bij , I)2 = ck(ajB
ii − aiB

jj)K(Bij , I) = 4ckaiajC
ij .(5.3)

Otherwise, i.e. if i = s < t 6= j or j = s < t > i,

AK(Btt, I) = 2ckatB
st.(5.4) �

Lemma 5.2. The Slimming Lemma holds for T -Hermitian operators (4.3) of
imaginary weight bigger than one.

Proof: If (4.3) comprises non-zero coefficients cst and cs′t′ with distinct index
sets {s, t} and {s′, t′}, or with t = t′, s 6= s′, or with s < t = s′ < t′, then it may
be written in the form

A = cstC
st + cs′t′C

s′t′ +
∑

s<q 6=t

csqC
sq +

∑

p<s<t

cpsC
ps +

∑

s 6=p<q 6=s,(p,q)6=(s′,t′)

cpqC
pq

+bssB
ss +

∑

s<q

bsqB
sq +

∑

p<s

bpsB
ps +

∑

s 6=p≤q 6=s

bpqB
pq
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For an operator of positive weight strictly smaller than that of A, one may
then take

AK(Bss, I) = −2cstaskBst − 2ask
∑

s<q 6=t

csqB
sq + 2ask

∑

p<s<t

cpsB
ps

−2as

∑

s<q

bsqC
sq + 2as

∑

p<s

bpsC
ps.

Otherwise, i.e. if s = s′ < t′ 6= t, (4.3) may be written in the form

A = cstC
st + cs′t′C

s′t′ +
∑

s 6=p<t

cptC
pt +

∑

s<t<q

ctqC
tq +

∑

t6=p<q 6=t,(p,q)6=(s′,t′)

cpqC
pq

+bttB
tt +

∑

p<t

bptB
pt +

∑

t<q

btqB
tq +

∑

t6=p≤q 6=t

bpqB
pq.

For an operator of positive weight strictly smaller than that of A, one may
then take

AK(Btt, I) = 2cstatkBst + 2atk
∑

s 6=p<t

cptB
pt

− 2atk
∑

s<t<q

ctqB
tq + 2at

∑

p<t

bptC
pt − 2at

∑

t<q

btqC
tq .

�

Lemma 5.3. The Slimming Lemma holds for T -Hermitian operators (4.3) of real
weight bigger than one and imaginary weight one or zero.

Proof: The Hermitian operator (4.3) may be written in the form

(5.5) A = cCst +
∑

1≤i≤j≤n

bijB
ij with s < t.

The proof breaks up into two distinct cases.

Case 1. ∃ (i, j) 6= (i′, j′), bij 6= 0 6= bi′j′ , {i, j} ∩ {i′, j′} 6= ∅. Without loss of
generality, i < j. If j ∈ {i′, j′}, then A may be written in the form

A = bijB
ij + bi′j′B

i′j′ +
∑

i≤q 6=j

biqB
iq +

∑

p≤i

bpiB
pi +

∑

i6=p≤q 6=i

bpqB
pq + cCst.

For an operator of positive weight strictly smaller than that of A, one may take

AK(Bii, I) = −2bijaiC
ij − 2ai

∑

i<q 6=j

biqC
iq

+ 2ai

∑

p<i

bpiC
pi + 2ckaiδitB

is − 2ckaiδisB
it.
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If i ∈ {i′, j′}, then A may be written in the form

A = bijB
ij + bi′j′B

i′j′ +
∑

i6=p≤j

bpjB
pj +

∑

j≤q

bjqB
jq +

∑

j 6=p≤q 6=j

bpqB
pq + cCst.

For an operator of positive weight strictly smaller than that of A, one may take

AK(Bjj , I) = 2bijajC
ij + 2aj

∑

i6=p<j

bpjC
pj − 2aj

∑

j<q

bjqC
jq

+ 2ckajδjtB
js − 2ckajδjsB

jt.

Case 2. ∀(i, j) 6= (i′, j′), bij 6= 0 6= bi′j′ ⇒ {i, j} ∩ {i′, j′} = ∅. If there is a
non-zero bij with i 6= j, then A may be written in the form

A = bijB
ij +

∑

p≤q,p/∈{i,j},q /∈{i,j}

bpqB
pq + cCst.

For an operator of positive weight strictly smaller than that of A, one may take

AK(Bii, I) = −2bijaiC
ij + 2ckaiδitB

is − 2ckaiδisB
it.

Otherwise, the real basis elements having non-zero coefficients in A are all
diagonal.
The remaining possibility within Case 2 is where A has the form

(5.6) A = cCst +

n∑

i=1

biiB
ii.

If c 6= 0, then (5.2) holds. If c = 0, then

A =

n∑

i=1

biiE
ii, and bii 6= 0 6= bjj for some i, j.

If aibii − ajbjj 6= 0, then

AK(Bij , I) = −bii[B
ii, Bij ]− bjj[B

jj , Bij ] = 2(aibii − ajbjj)C
ij 6= 0.

If aibii − ajbjj = 0, then aibii + ajbjj 6= 0. Therefore

AL(Cij , Dij) = 〈Dij , Cij , A〉

= 〈Dij , Cij , biiB
ii〉+ 〈Dij , Cij , bjjB

jj〉

= 2(bjjaj − biiai)C
ij − 2k(bjjaj + biiai)B

ij

= −2k(bjjaj + biiai)B
ij 6= 0.

�
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