Commentationes Mathematicae Universitatis Carolinae

L. V. Safonova; K. K. Shchukin
On centrally nilpotent loops

Commentationes Mathematicae Universitatis Carolinae, Vol. 41 (2000), No. 2, 401--404

Persistent URL: http://dml.cz/dmlcz/119172

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2000

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

On centrally nilpotent loops

L.V. Safonova, K.K. Shchukin

Abstract

Using a lemma on subnormal subgroups, the problem of nilpotency of multiplication groups and inner permutation groups of centrally nilpotent loops is discussed.

Keywords: group, subnormal subgroup, loop, multiplication group, inner permutation group
Classification: 20N05, 20B35
R. Baer proved, among others, the following result ([1, Lemma 2.3]): a subgroup H of a group G is subnormal in G if and only if H is subnormal in the subgroup $\langle H, X\rangle$ for every denumerable subset X of G. Moreover, in the same paper, an easy counterexample shows that it is impossible to replace "denumerable" by "finite". As an extension of both this idea and another one [2], we deduce its new variant.

First, we recall some notions. For a subgroup H of a group G we put $H_{0}=G$, $H_{i+1}=H^{H_{i}}=\left\langle x h x^{-1} \mid h \in H, x \in H_{i}\right\rangle, i=0,1, \ldots$. If there exists an n such that $H_{n}=H^{H_{n-1}}=H$ then H is called a subnormal subgroup of depth (or defect) at most n in G. H is of depth (exactly) n if, moreover, $H_{n-1} \neq H$. In the last case, $G=H_{0} \triangleright H_{1} \triangleright \ldots \triangleright H_{n-1} \triangleright H_{n}=H$ and H is nonnormal in H_{n-2} for $n>1$.

Lemma. Let H be a subgroup of a group G and n be a nonnegative integer. Then the following conditions are equivalent:
(i) H is subnormal of depth at most n in G;
(ii) H is subnormal of depth at most n in the subgroup $\langle H, X\rangle$ of G for every denumerable subset X of G;
(iii) H is subnormal of depth at most n in the subgroup $\langle H, X\rangle$ of G for every finite subset X of G.

Proof: The implications (i) \Rightarrow (ii) \Rightarrow (iii) are clear. As for (iii) \Rightarrow (i), its proof can be deduced from the proof of [1, Lemma 2.1]. Nevertheless we present a direct proof here. Let us assume that the condition (iii) of Lemma is fulfilled but $H \neq H_{n}$. Then there is $x_{0} \in H_{n-1}$ such that $x_{0} H x_{0}^{-1}=H^{x_{0}} \nsubseteq H$. Since $H_{n-1}=H^{H_{n-2}}$, there exists a finite subset $X_{1} \subseteq H_{n-2}$ such that $x_{0} \in H^{X_{1}}$. Let us assume that $X_{i} \subseteq H_{n-i-1}$ is selected so that $X_{i-1} \subseteq H^{X_{i}}$. Then $H_{n-i-1}=$ $H^{H_{n-i-2}}$ implies the existence of a subset $X_{i+1} \subseteq H_{n-i-2}$ such that $X_{i} \subseteq H^{X_{i+1}}$.

Now, for the finite subset $X_{n-1} \subseteq H_{0}$, we construct the subgroup $\left\langle H, X_{n-1}\right\rangle=$ K. Since by (iii) the subgroup H is subnormal in K of depth n, we obtain $H^{K, n}=H$, where $K=H^{K, 0}, H^{K, i+1}=H^{H_{K, i}}, i=0,1, \ldots, n-1$. On the other hand, $X_{n-1} \subseteq K=H^{K, 0}$. If $X_{i} \subseteq H^{K_{n-i-1}}$ then $X_{i-1} \subseteq H^{X_{i}} \subseteq H^{K_{n-i-1}}=$ $H^{K_{n-i}}$. From this $x_{0} \in H^{X_{1}} \in H^{H^{K, n-2}}=H^{K, n-1}$ and hence $H^{\bar{x}_{0}} \subseteq H^{H^{X_{1}}} \subseteq$ $H^{H^{K, n-1}}=H$ in contradiction to our assumption.

Remark. For $n=2$, there is the fourth equivalent condition:
(iv) H is subnormal of depth at most 2 in the subgroup $\langle H, X\rangle$ of G for every subset X of $G,|X|=1$.

Proof: Let, on the contrary, condition (iv) be satisfied and $H_{2} \neq H$. Since H is a nonnormal subgroup in G, there is an element $x_{0} \in G$ such that $x_{0} H x_{0}^{-1}=$ $H^{x_{0}} \nsubseteq N_{G}(H)$ (the normalizer of H in G) Then there are elements $h_{0} \in H$ and $x_{0} h_{0} x_{0}^{-1}=x_{1}$ such that $x_{1} H x_{1}=H^{x_{1}} \subseteq H^{H_{1}}=H_{2}$ and $H \nsupseteq H^{x_{1}}$. Now we construct the subgroup $A=\left\langle H, x_{0}\right\rangle$ and then $H_{A, 0}=A, H^{H_{A, 0}}=H_{A, 1} \ni x_{0}$ and $H^{x_{1}} \subseteq H^{H_{A, 1}}=H_{A, 2}=H$ in contradiction to our assumption.

The equivalence of (i) and (iv) is false for $n=3$: there is a group of order 5^{20} and exponent 5 with the properties that every 2 elements generate a subgroup of class 3 and that the group itself has class precisely 5 ([6, Theorem 4]). For $n>3$, an expected answer is also negative.

As an immediate corollary of Lemma we obtain a new version of well known
Theorem 1 ([3, 2.19]). Let Q be a loop with inner permutation group $I(Q)$ and multiplication group $M(Q)$. Then the following statements are equivalent:
(1) $I(Q)$ satisfies at least one (and then every) of the conditions of Lemma;
(2) Q is centrally nilpotent of class at most n.

It can also be proved that the multiplication group $M(Q)$ of a centrally nilpotent loop Q is soluble ([3, Proposition 2.22]). This leads to a natural

Question. For which class of centrally nilpotent loops their multiplication groups are nilpotent?

Moreover, the question is under which hypotheses the following statements:
(3) $M(Q)$ is nilpotent of class at most m;
(4) $I(Q)$ is subnormal and nilpotent of class at most $n-1$;
are equivalent to the condition (2) of Theorem 1?
In an attempt to answer this question, we examine in a loop Q the (upper) central series

$$
e=Z_{0} \subset Z_{1} \subset \ldots \subset Z_{i} \subset Z_{i+1} \subset \ldots \subset Z_{n}=Q
$$

where $Z_{i+1} / Z_{i}=Z\left(Q / Z_{i}\right), i=0,1, \ldots, n-1(Z(Q)$ denotes the center of the loop Q), which induces invariant series both in $M(Q)=G$

$$
\begin{align*}
1=\bar{C}_{0} \subset \bar{C}_{1} \subset Z_{1}^{*} \subset \bar{C}_{2} \subset \ldots \subset Z_{i}^{*} \subset \bar{C}_{i+1} \subset Z_{i+1}^{*} & \subset \ldots \\
& \ldots \subset Z_{n-1}^{*} \subset \bar{C}_{n}=G
\end{align*}
$$

where $Z_{i}^{*}=\left\{\Psi \in G \mid \Psi(x) \equiv x\left(\bmod Z_{1}\right), x \in Q\right\}, \bar{C}_{i+1} / Z_{i}^{*}=C\left(G / Z_{i}^{*}\right), i=$ $0,1, \ldots, n-1$, and in the inner permutation $\operatorname{group} I(Q)=I$

$$
1=I_{0} \subset I_{1} \subset I_{2} \subset \ldots \subset I_{i} \subset I_{i+1} \subset \ldots \subset I_{n-1}=I
$$

where $I_{i}=I \cap Z_{i}^{*}, i=0,1, \ldots, n-2$.
When the series (α) induces also the upper central series of $M(Q)$

$$
1=C_{0} \subset C_{1} \subset C_{2} \subset \ldots \subset C_{i} \subset C_{i+1} \subset \ldots \subset C_{m}=G
$$

where $C_{i+1} / C_{i}=C\left(G / C_{i}\right)$ and $C_{1}=\bar{C}_{1} \cong Z_{1}$?
Besides the trivial case $C_{i}=Z_{i}^{*}, i=0,1, \ldots, n-1$, when $Q \cong M(Q)$ is Abelian, a central refinement of (β) by (δ) is possible in the following situations:
(A) $Z_{i}^{*} \varsubsetneqq C_{i+1}=\bar{C}_{i+1}, i=0,1, \ldots, n-1$, and evidently $M(Q)$ will be nilpotent of class $m=n$;
(B) $Z_{i}^{*}=C_{2 i}$, and then $\bar{C}_{i+1}=C_{2 i+1}, i=0,1, \ldots, n-1$, so that $M(Q)$ will be nilpotent of class $m=2 n-1$.
In both cases (A) and (B), we have the following conclusion:
(Г) $Z_{1}^{*} \subseteq C_{2} \Leftrightarrow Z_{1}^{*} \cap I=C_{2} \cap I=I_{1}$, in particular $I_{1} \subseteq C(I)$ and $Z_{1}^{*}=C_{1} \cdot I_{1}$, $C_{1} \cap I_{1}=1$.
In fact, every $\Psi \in Z_{1}^{*}$ has a unique representation as $\Psi=L_{z} \Theta, z \in Z_{1}, \Theta \in$ $I_{1}=Z_{1}^{*} \cap I$ and $I_{1} \cap C_{1}=1$, so that the converse implication is trivial. If $Z_{1}^{*} \subseteq C_{2}$ then $\left(C_{2} / Z_{1}^{*}\right) \cap I / Z_{1}^{*} \cap I \subseteq\left(\bar{C}_{2} / Z_{1}^{*}\right) \cap\left(I / Z_{1}^{*} \cap I\right)=1$, i.e. $Z_{1}^{*} \cap I=C_{2} \cap I=I_{1}$. Now for $\Theta \in I_{1}, \eta \in I$ we have $\Theta^{-1} \eta^{-1} \Theta \eta \in\left(C_{1} \cap I_{1}\right)=1$, hence $\Theta \in I_{1} \subseteq C(I)$.

Using (Γ) and induction on i, we can easily deduce:
(Δ) In both cases (A) and (B), the inner permutation group $I(Q)=I$ of Q is nilpotent of class (at most) $n-1$.
Now, according to what has been said above, we can formulate
Proposition. Under hypotheses of Theorem 1 and provided that either (A) or (B) is fulfilled, the following statement is valid: $(1) \Leftrightarrow(2) \Leftrightarrow(3) \Rightarrow(4)$.

Indeed, it is clear that $(1) \Leftrightarrow(2) \Rightarrow(3) \Rightarrow(4)$. Since the series (α) and (β) are dual, $(3) \Rightarrow(2)$ is also correct. Moreover, the implication (4) $\Rightarrow(2)$ will be correct in a particular case of (Γ) :
$\left(\Gamma_{0}\right) Z_{1}^{*} \subseteq C_{2} \Rightarrow Z_{1}^{*} \cap I=Z_{1}^{*} \cap C_{2}=I_{1}=C(I)$.
For example, this condition is true for commutative Moufang loops ([4, Lemma 11.6, Chapter VIII]). The case (B) is realized by

Theorem 2 (cf. [4, 11.4, Chapter VIII]; [5]). Let Q be a commutative A-loop $(I(Q) \subseteq \operatorname{Aut}(Q))$ with inner permutation group $I=I(Q)$ and multiplication group $M(Q)$. Then the following statements are equivalent:
(I) Q is centrally nilpotent of class at most n;
(II) $M(Q)$ is nilpotent of class at most $2 n-1$.

Proof: According to Proposition, it is sufficient to establish $Z_{1}^{*}=C_{2}$ and to use easy induction on i. For every $\Theta \in Z_{1}^{*} \cap I, x \in Q$ and some $z \in Z_{1}$, we have $\Theta(x)=x z$. Using $\Theta \in \operatorname{Aut}(Q)$ we get $\Theta^{-1} L_{x} \Theta=L_{\Theta(x)}=L_{x} L_{z}$ and hence $L_{x}^{-1} \Theta^{-1} L_{x} \Theta=L_{z} \in C_{1}$, i.e. $\Theta \in C_{2}$. According to (Γ) we have $Z_{1}^{*} \subseteq C_{2}$. For the proof of the inverse inclusion, writing $\Psi \in C_{2}$ as $\Psi=L_{a} \Theta, a=\Psi(e), \Theta \in I$ and using $I \subseteq \operatorname{Aut}(Q)$, we get a chain of equalities and congruences: $L_{a} L_{\Theta(x)} \Theta=$ $L_{a} \Theta L_{x} \equiv L_{x} L_{a} \Theta\left(\bmod C_{1}\right)$, i.e. $L_{a} L_{\Theta(x)}=L_{x} L_{a} L_{z}$ for every $x \in Q$ and suitable $z \in Z_{1}$. From this $\Theta(x)=L_{\Theta(x)}(e)=L_{a}^{-1} L_{z} L_{x} L_{a}(e)=L_{a}^{-1}(a \cdot x z)=x z$, i.e. $\Theta \in Z_{1}^{*}$. Since $L_{a z}=L_{a} L_{z}$, we get $L_{a} L_{x} L_{z}=L_{x} L_{a} L_{z}$, i.e. $L_{a} L_{x}=L_{x} L_{a}$ for every $x \in Q$. Hence $a \in Z_{1}$ and $L_{a} \Theta=\Psi \in Z_{1}^{*}$. Therefore $Z_{1}^{*}=C_{2}$.

As an immediate consequence of Theorem 2, the case (A) is impossible for commutative A-loops.

Acknowledgment. Both authors express their acknowledgement to Professor T. Kepka and Professor P. Němec for their attention and support of this work.

References

[1] Baer R., Abzählbar erkennbare gruppentheoretische Eigenschaften, Math. Z. 79 (1962), 344-363.
[2] Safonova L.V., Shchukin K.K., About n-Engel elements of groups, 12-th Algebr. Coll. of USSR, Thesis-book 1, Sverdlovsk, 1973, p. 54.
[3] Smith J.D., Multiplication groups of quasigroups, Preprint 603, Technische Hochschule, Darmstadt, 1981.
[4] Bruck R.H., A Survey of Binary Systems, Springer-Verlag, 1966.
[5] Shchukin K.K., On nilpotency of the multiplication group of an A-loop, Mat. Issled. 162 (1988), 116-117.
[6] Macdonald D., Neumann B.H., A third-Engel 5-group, J. Austral. Math. Soc. 7 (1967), 555-569.

Moldova State University, Department of Algebra, 60 Mateevich str., MD-2009, Chisinau, Moldova
E-mail: shchukin@usm.md

