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Bol loop actions

Larissa Sbitneva

Abstract. The notions of left Bol and Bol-Bruck actions are introduced. A purely alge-
braic analogue of a Nono family (Lie triple family), the so called Sabinin-Nono family,
is given. It is shown that any Sabinin-Nono family is a left Bol-Bruck action.
Finally it is proved that any local Nono family is a local left Bol-Bruck action. On

general matters see [L.V. Sabinin 91, 99].
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In this paper we show that any Lie triple family (C3-smooth Nono family,
for short) [Nono 61] is a (local) Bol action. The notion of Bol action is due to
L. Sabinin and is formulated in the following way:

1. Definition. Let Q = 〈Q, ·, ε〉 be a left Bol loop and {fa : M → M}a∈Q be
a family of maps. We say that this family is a left Bol loop action (action of the
left Bol loop Q ) if a 7→ fa is injective and

(1) fa ◦ fb ◦ fa = fa · (b · a), fε = id .

Analogously, one can define a partial left Bol loop action.
The notion of a Bol loop action is rather natural since the left translations La

(Lab = a · b) of a left Bol loop satisfy (1), La ◦ Lb ◦ La = La · (b · a).
Our next purpose is to algebraize, according to L. Sabinin, the notion of Nono

family.

2. Definition. We say that a family {fa : M → M}a∈Q (Q being a set with a
selected point ε ∈ Q) is a Sabinin-Nono family if a 7→ fa is injective and

(2) fa ◦ fb ◦ fa = fq(a,b), fε = id,

where qa : b 7→ q(a, b), g : a 7→ q(a, ε) are invertible.

Analogously one can define a partial Sabinin-Nono family.

3. Definition. A left Bol loop, which satisfies the left Bruck identity

(3) (a · b)2 = a · (b2 · a)

is called a left Bol-Bruck loop.
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4. Proposition. Any Sabinin-Nono family is a left Bol-Bruck loop action.

Proof: By (2)

(fa ◦ fb ◦ fa) ◦ fc ◦ (fa ◦ fb ◦ fa) = fa ◦ (fb ◦ (fa ◦ fc ◦ fa) ◦ fb) ◦ fa

implies f[q(qab)c]
= f(qaqbqac), and, since a 7→ fa is injective, q(qab)c = (qaqbqac).

Thus

(4) (qa ◦ qb ◦ qa) = q(qab).

Let us introduce

(5) La = g−1 ◦ qa ◦ g, a ∗ b
def
= Lab.

It is easily verified that 〈Q, ∗, ε〉 is a loop (because, due to (2), qε = id which
implies g(ε) = ε).
Further, due to (4), (5),

(6) La ◦ Lb ◦ La = Lg(a∗g−1b).

Since at b = ε (6) gives La ◦ La = Lg(a), we have LaLa ε = Lg(a) ε, or,

(7) a2 = a ∗ a = g(a).

Thus (7) and (6) give

(8) La ◦ Lb2 ◦ La = L(a∗b)2 .

Applying both parts of (8) to ε we get

(9) a ∗ (b2 ∗ a) = (a ∗ b)2,

that is, the left Bruck property.
Substituting from (9) to (8) and changing b2 by c , which is correct due to the

invertibility of g : a 7→ a2 (see (2), (7)), we get

La ◦ Lc ◦ La = La∗(c∗a),

that is, the left Bol property.
As a result, 〈Q, ∗, ε〉 is a left Bol-Bruck left loop with two-sided neutral ε. But

it is known [L.V. Sabinin 99] that a left Bol loop with two-sided neutral possesses
the right division. Thus 〈Q, ∗, ε〉 is a left Bol-Bruck (two-sided) loop.
Further, by (5)

(10) q(a, b) = (a ∗ g−1b)
2
= a ∗ (b ∗ a)

and, due to (2),
fa ◦ fb ◦ fa = fa∗(b∗a).

This proves the theorem. �
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5. Now we are going to consider a local Nono family and to show that it is a
Sabinin-Nono (partial) family. First of all we recall the definition [Nono 61].

6. Definition. A family {fa : M → M}a∈Q of local transformations, defined

for a ∈ Q near fixed ε ∈ Q (Q being a set), is called a C3-smooth Nono family
(Lie triple family) if a 7→ fa is injective,

(11) fε = id, fa ◦ fb ◦ fa = fq(a,b)

(if defined) and (a, b) 7→ q(a, b) is C3-smooth.

7. Remark. C3-smoothness is needed for the complete infinitesimal theory.

8. Proposition. Any local Nono family is a partial Sabinin-Nono family.

Proof: We should prove that qa : b 7→ q(a, b) and g : a 7→ q(a, ε) are locally
invertible. For this we use the characteristic differential equation of a local Nono
action [Nono 61]:

(12) −P j
α(x)

∂(bx)i

∂xj
+ 2Γλ

α(b)
∂(bx)i

∂bλ
= P i

α(bx) , εx = x,

where bx = fbx,

(13) P j
α(x) =

[

∂(ax)j

∂aα

]

a=ε

, Γλ
α(b) =

1

2

[

∂qλ(a, b)

∂aα

]

a=ε

.

Note that Pα(x) = (P
j
α(x))j=1...n are linearly independent over R (because of

injectivity a 7→ fa).
Setting b = ε in (12), we get

(δλ
α − Γλ

α(ε))P
i
λ(x) = 0

and, further,

δλ
α − Γλ

α(ε) = 0.

Thus

(14)

[

∂{g(a)}λ

∂aα

]

a=ε

=

[

∂qλ(a, ε)

∂aα

]

a=ε

= δλ
α.

By the inverse map theorem it means the local existence of g−1.
Further fb = fε ◦ fb ◦ fε = fqεb implies qεb = b. Thus

∂qλ(ε, b)

∂bα
=

∂(qεb)
λ

∂bα
= δλ

α.
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Since ∂q(a, b)λ/∂bα is continuous, the above means that

∂qλ(a, b)

∂bα
=

∂(qab)λ

∂bα

is an invertible matrix for a near ε.
It means that qa : b 7→ q(a, b) (a, b being near ε) is locally invertible.
Thus any local Nono family is a partial Sabinin-Nono family. �

Now, one may repeat the proof of Proposition 4 for a partial Sabinin-Nono
family. Thus

9. Proposition. Any partial Sabinin-Nono family is a left Bol-Bruck loop action.

Combining Propositions 8 and 9 we come to

10. Proposition. Any local Nono family is a local left Bol-Bruck action of a

left Bol-Bruck loop.
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