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Loops and quasigroups: Aspects of current

work and prospects for the future

Jonathan D.H. Smith

Abstract. This paper gives a brief survey of certain recently developing aspects of the
study of loops and quasigroups, focussing on some of the areas that appear to exhibit
the best prospects for subsequent research and for applications both inside and outside
mathematics.
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Classification: 20N05

Introduction

Compared to the theory of groups, the theory of quasigroups is considerably
older, dating back at least to Euler’s work on orthogonal Latin squares. In the
first half of the twentieth century, both theories experienced comparable moder-
ate progress. But from the nineteen-fifties to the nineteen-eighties, the theory of
quasigroups was eclipsed by the phenomenal development of the theory of groups
to such an extent that the former sometimes came to be considered as a minor
offshoot of the latter (e.g. as witnessed by the American Mathematical Society’s
1991 Subject Classification 20N05 for loops and quasigroups under the heading
“Other generalizations of groups”). With the initial completion of the classifica-
tion of the finite simple groups, however, attention is once again becoming more
evenly divided between the two theories. The current paper aims to give a brief
survey of some of the recently developing areas of research within the theory of
loops and quasigroups, especially those areas with connections to other parts of
mathematics and to applications outside mathematics. The topics presented are:

1. Nets and homotopy;

2. Transversals;

3. Octonions, topology, and knots;

4. Representation theory.

For background details, see [Al63], [Br58], [CPS90], [Pf90], [Sm86], [SR99].
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1. Nets and homotopy

Historically, homotopy between loops and quasigroups has been treated geo-
metrically, isotopic quasigroups corresponding to isomorphic nets ([SR99, The-
orem I.4.5]). Gvaramiya and Plotkin ([GP92], [Vo99]) reduced the isotopy of
quasigroups to the isomorphism of heterogeneous algebras or “automata”. It is
now possible to give a purely (homogeneous) algebraic treatment of homotopy, us-
ing the variety of semisymmetric quasigroups ([Sm97]). Recall that a quasigroup
is semisymmetric if it satisfies the identity

(1.1) (yx)y = x.

Each quasigroup (Q, ·, /, \) then has a semisymmetrisation Q∆, a semisymmetric
quasigroup structure on its direct cube Q3 in which the product of elements
(x1, x2, x3) and (y1, y2, y3) is given by

(1.2) (y3/x2, y1 \ x3, x1 · y2).
A homotopy (f1, f2, f3) : (Q, ·, /, \)→ (P, ·, /, \) between quasigroups corresponds
to a homomorphism

(1.3) (f1, f2, f3)∆ : (x1, x2, x3) 7→ (x1f1, x2f2, x3f3)
between their semisymmetrisations, so that two quasigroups are isotopic if and
only if their semisymmetrisations are isomorphic. This observation places new
importance on the variety of semisymmetric quasigroups.
Nets reappear within a duality theory for quasigroups. This duality theory

is based on the so-called Lindenbaum-Tarski duality between sets and complete
atomic Boolean algebras, the duality relating a function f : X → Y between
sets to the inverse image function f−1 : ℘(Y ) → ℘(X);B 7→ f−1(B) between
their power sets ([Jt82, VI.4.6(a)], [RS96, § 7]). On a quasigroup Q, consider the
binary operations of multiplication p3 : Q

2 → Q; (x, y) 7→ x ·y, left projection p2 :
Q2 → Q; (x, y) 7→ x, and right projection p1 : Q

2 → Q; (x, y) 7→ y. Dualising, one

obtains the inverse image functions p−13 : ℘(Q)→ ℘(Q2) given by multiplication,

p−12 : ℘(Q)→ ℘(Q2) given by left projection, and p−11 : ℘(Q) → ℘(Q2) given by
right projection. These homomorphisms of complete atomic Boolean algebras are
specified by their effects on the atoms of their domains, namely on the singleton
subsets of Q:

(1.4)











(1) p−11 : ℘(Q)→ ℘(Q2); {b} 7→ {(x, b) | x ∈ Q};
(2) p−12 : ℘(Q)→ ℘(Q2); {a} 7→ {(a, y) | y ∈ Q};
(3) p−13 : ℘(Q)→ ℘(Q2); {c} 7→ {(x, y) | x · y = c}.

In net terminology, p−11 {b} in (1.4)(1) is just the 1-line labelled by b. Similarly,
p−12 {a} in (1.4)(2) is the 2-line labelled by a, while p−13 {c} in (1.4)(3) is the 3-
line labelled by c. Thus the dual of a quasigroup is a net. The dual object is a
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set that decomposes as the direct product of any two of a set of three (isomor-
phic) images [SR99, p. 88]. This definition of a net is purely categorical, and may
thus be interpreted in the category of topological spaces or other categories of
geometric interest. It offers new approaches to the problem of coordinatising con-
figurations in web geometry that has been studied by Akivis, Goldberg, Shelekov
et al. ([Ak92], [Go88]). In geometric contexts, one should replace the “combina-
torial” Lindenbaum-Tarski duality by a duality appropriate to the context, e.g.
Gelfand duality between compact Hausdorff spaces and C*-algebras ([Jt82, IV.4]),
or the duality between (locally defined) smooth maps and their pullbacks acting
on differential forms ([Ol95, p. 26]).

2. Transversals

Loops, or more generally right loops, appear naturally as algebraic structures
on transversals or sections of a subgroup of a group. This observation, going
back to R. Baer [Ba39], lies at the heart of much current research on loops,
e.g. work of Karzel, Kreuzer, Strambach, Wefelscheid et al. in geometry ([Ka93],
[Kr98], [KW94], [Na94]) or work of Kikkawa, Sabinin, Ungar et al. in differential
geometry and analysis ([CPS, Chapter XII], [Fr94], [Ki98], [Sa72-98], [Un91-94]).
It is also closely related to the question of when or how a given group (action)
arises as the multiplication group (action) of a quasigroup or loop, cf. work of
Drápal, Kepka, Niemenmaa, Phillips et al. ([CPS90, § III.6], [Dr93-94], [Ke93-97],
[Ni95d-97], [NK90-94], [NR92], [NV94], [PS99]).
Let H be a subgroup of a group (G, ·, /, \, 1), and let T be a right transversal

to H in G such that 1 represents H . Thus the group is partitioned as G =
⋃

t∈T
· Ht.

Define a map ε : G→ T ; g 7→ gε by

(2.1) g ∈ Hgε,

so that gε or gε is the unique representative in T for the right coset of H that
contains g. It is also convenient to define a map δ : G→ H ; g 7→ gδ by

(2.2) g = gδgε.

Note that 1δ = 1ε = 1. Moreover hδ = h and hε = 1 for h in H , while tδ = 1 and
tε = t for t in T . Now define a binary multiplication ∗ and a binary right division
‖ on T by

(2.3) t ∗ u = (tu)ε, t‖u = (t/u)ε

for t, u in T , i.e. by tu ∈ H(t ∗ u) and t/u = tu−1 ∈ H(t‖u). Then (T, ∗, ‖, 1) is
a right loop. If this right loop happens to be two-sided, then the transversal T is
called a loop transversal . To within right loop isomorphism, every right loop Q
may be obtained via (2.3) from the transversal T = R(Q) to the stabiliser H of 1
in the right multiplication group G of Q.
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The loop theoretical concept of a loop transversal even has fruitful applications
within abelian groups. In coding theory, the loop transversal (T, ∗) to a linear
code (C,+) within an abelian group channel (G,+) is the set of errors corrected
by the code ([Sm92l], [SR99, I § 4.4]). Using the notation of (2.2): If a word
g is received, it is decoded to the codeword gδ under the assumption that the
transmitted codeword was subjected to the error gε. The most efficient way to
define a code in a good channel is to specify the loop structure (an abelian group)

on the set of errors. For elements t1, t2, . . . of T , define
m
∑

i=1
ti inductively by

0
∑

i=1
ti = 0 and

m
∑

i=1
ti = tm +

m−1
∑

i=1
ti. Define

m
∏

i=1
ti inductively by

0
∏

i=1
ti = 0 and

m
∏

i=1
ti = tm ∗

m−1
∏

i=1
ti.

Principle of Local Duality. Let T be a loop transversal to a linear code C in
a channel G. Suppose that T is a set of generators for G. Then

C = {
m

∑

i=1

ti −
m
∏

i=1

ti
∣

∣ t1, . . . , tm ∈ T }.

Note that the Principle of Local Duality may be used to obtain the code C as
soon as the loop structure (T, ∗) is specified.
Example. Consider the length 3 binary repetition code C = {000, 111}. Inter-
pret G as Z32. The right transversal T = {000, 001, 010, 100} is the set of errors
corrected by C. The abelian group multiplication ∗ on T given by (2.3) has the
table

* 000 001 010 100
000 000 001 010 100
001 001 000 100 010
010 010 100 000 001
100 100 010 001 000 .

Note that the table may be summarised by the specification that the map

(2.4) s : (T, ∗)→ (Z22,+); 001 7→ 01, 010 7→ 10, 100 7→ 11
is an abelian group homomorphism. As an illustration of local duality, the non-
trivial codeword is obtained as 111 = (001 + 010)− (001 ∗ 010). �

In general, the key step in constructing linear codes by the loop transversal
method is to specify the syndrome, a monomorphism such as (2.4) from (T, ∗) to
an abelian group. The simplest approach is to use a greedy algorithm. Record-
breaking codes have been obtained in this way, and the method offers completely
automatic constructions of binary and ternary Golay codes ([HH96], [HS96]).
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3. Octonions, topology, and knots

Probably the most important non-associative loop structures are those given by
multiplication of non-zero octonions (possibly of norm one, possibly split, possibly
over finite fields). The real octonions appear as part of the series: real numbers,
complex numbers, quaternions, octonions. With each doubling of the dimen-
sion, there is a progressive loss of structure: order, commutativity, associativity.
Adams’ work on vector fields on spheres ([Ad60], [Ad62]) showed that while the
seven-sphere supports a vector field of dimension seven (spanned by multiplica-
tion by basic non-identity octonions of norm one), the fifteen-sphere only supports
a vector field of dimension at most eight. This result, showing that there is no
sixteen-dimensional real division algebra, has long been accepted as the final word
on the subject. However, recent work ([Sm95]) has shown that one may obtain a
sixteen-dimensional structure, the sedenions , by relaxing the requirement of right
distributivity. (This structure, which does preserve the Euclidean norm, is not
to be confused with that obtained by applying the Cayley-Dickson process to the
octonions. The latter structure does not preserve the norm.) The underlying
Euclidean space of the sedenions may be realised as the direct sum K ⊕ Kf of
two copies of the octonions, with respective identities 1 and f . The octonions are
embedded in the sedenions by

(3.1) K → K ⊕ Kf ;x 7→ x+ 0f.

For elements z = x+ yf and w = u+ vf of K ⊕ Kf , the product z · w is defined
as

(3.2) if z ∈ K then zu+ vzf else (xy · uy−1 − yv̄) + (yū+ vy−1 · xy)f.
The sedenions of norm one form a left loop on the fifteen-sphere (actually a loop
almost everywhere). In this left loop, the multiplications by f and the seven basic
non-identity octonions of norm one yield a vector field of the maximal dimension
eight allowed by Adams’ theorem. The problem of classifying the finite two-sided
subloops of this left loop remains open, as does the search for the laws satisfied
by the left loop.
Another major interface between topology and the theory of (one-sided) quasi-

groups is provided by knot theory: work of Conway, Fuad, Joyce, Matveev, et al.
([Cw69], [Fu98], [Jy82], [Mt82], [Sm92q]). Recall that a knot (in the narrowest
mathematical sense) may be visualised as a knotted piece of string whose ends
have been joined seamlessly to make an endless knotted loop. A link may be
visualised as a collection of knots, possibly linked by encircling each other. More
precisely, the knot is the image of the circle S1 under a continuous, piecewise
linear embedding into the three-sphere S3, Euclidean space R3 together with an
additional point at infinity. The link is the image of a disjoint union of circles
under such an embedding. Two links are said to be equivalent if there is a homeo-
morphism from S3 to itself taking one link to the other. The links are said to have
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the same type if there is such a homeomorphism that additionally preserves the
orientation of the three-sphere. The basic problem of knot theory is to determine
when two knots are equivalent, or when two oriented links have the same type.
One-sided quasigroups enter knot theory at two levels: at the “local” level a one-
sided quasigroup may be an equivalence invariant associated with a single knot,
while at the “global” level an invariant of a particular kind may be associated
with each link, oriented links of the same type having the same invariant, and
then the set of these invariants (for all possible oriented links) may carry a right
quasigroup structure.

At the local level, an idempotent, right distributive right quasigroup (a quandle
in Joyce’s terminology) forms an invariant determining knots to within equiva-
lence ([Jy82], [Mt82], [Mt91, § 8.2]). Note that quandles constitute a variety in
the sense of universal algebra. To associate a quandle with a knot, consider the
knotted loop of string laid flat on a table in such a way that no two crossings
coincide. Suppose that this knotted loop has been used as the design for the con-
struction of a racetrack, with small bridges corresponding to the crossings. Now
imagine that an earthquake has destroyed all the bridges, leaving only disjoint
stretches of track on the ground. Assign a variable to each such stretch, and then
form the free quandle over the set of variables obtained. The quandle invariant
associated with the knot is a quotient of this free quandle by relations specified
at each former bridge location. If the stretch q at such a location is now blocked
by the stretch r, then the variable assigned to the stretch that used to continue q
over the bridge is identified with the right quasigroup product qr.

At the global level, entropic right quasigroup structures are associated with the
set of all oriented links ([Cw69], [Mt91, § 8.3]). (Recall that an algebra is entropic
if each operation, as a map to the algebra from a direct power of the algebra, is a
homomorphism [SR99, pp. 63, 318].) The topological basis for the association is
a general method for constructing a given oriented link from an (oriented) unlink
Uc with c components, a collection of c unknotted, unlinked, oriented loops. The
method is known as surgery. Mixing metaphors, it will be described using the
racetrack idea introduced above. (In this context, the term “earthmoving” would
be more appropriate than “surgery”.) Suppose that an oriented link, the image
of d copies of S1, is used in place of a knot as the design for a racecourse. This
means that there may be d different races held at once on the course, one on
each of d independent closed tracks that may sweep over and under one another.
Moreover, the orientation of the link determines a fixed direction for each track.
A right-hand crossing is a bridge from which a driver racing on the top track
would see the cars beneath passing from his right to his left. A left-hand crossing
is a bridge from which a driver on the top track would see the cars beneath racing
from her left to her right. An ordered triple (KR,KL,K0) of links constitutes a
surgery triple if the three corresponding racecourses could be obtained from one
another by a construction project limited to the environment of a single bridge.
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In this project, KR would have a right-hand crossing at the bridge. Then KL
would be obtained on replacing the bridge by an underpass, thereby making a
left-hand crossing at the location. The course K0 would be obtained from KR by
removing the bridge altogether. Traffic that formerly approached on the upper
track would be diverted to leave the location on the lower track, while traffic that
formerly approached on the lower track would be diverted to leave the location
on the upper track. Each oriented link K may be obtained from an unlink Kr by
a series

(3.3) Kr 7→ Kr−1 7→ · · · 7→ K1 7→ K0 = K

of such projects, in which each step represents conversion at a certain location
from one to another of the three components of a surgery triple.
A Conway algebra (Q, ·, /, {un | n ∈ Z+}) ([Mt91, Definition 8.5]) is an en-

tropic right quasigroup (Q, ·, /) with a countable set {un | n ∈ Z+} of constants,
satisfying the identities un · un+1 = un/un+1 = un for each positive integer n.
Suppose that an element w(K) of Q is associated with each oriented link K in
such a way that

(3.4) w(Uc) = uc

for each positive integer c, and that

(3.5) w(KR) = w(KL) · w(K0)

for each surgery triple (KR,KL,K0). Then w(K) is a well-defined invariant
of oriented links [Mt91,Th.8.4], readily computed by means of (3.3). The most
famous invariants of this kind are the skein polynomials ([FH85]). For them,
the corresponding Conway algebra appears as a reduct of a pointed quasigroup.
Recall that a pique is a “pointed idempotent quasigroup”, a quasigroup with
an idempotent element selected by a nullary operation ([CPS90, p. 105]). Let
(Q, ·, /, \, e) be the free entropic pique on the singleton {u1}. Define the operation
x%y = y/x, the opposite of right division. Define the constants un inductively
from the generator u1 by un+1 = un · un. Then (Q,%, \, {un | n ∈ Z+}) is a
Conway algebra, and the skein polynomial is defined there by (3.3)–(3.5) ([Sm91]).

4. Representation theory

The representation theory of loops and quasigroups currently comprises three
separate topics: permutation representations, modules, and characters.
The study of quasigroup permutation representations is still in its infancy

([Sm99]). At present, the theory is limited to the construction of transitive per-
mutation representations, analogous to the permutation representation of a group
Q (with subgroup P ) on the homogeneous space

(4.1) P \Q = {Px | x ∈ Q }
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by the actions

(4.2) RP\Q(q) : P \Q→ P \Q ; Px 7→ Pxq

for elements q of Q. Let P be a subquasigroup of a quasigroup Q. Recall that
the relative left multiplication group LMltQP of P in Q is the subgroup of the
multiplication group of Q generated by all the left multiplications by elements
of P . Let P \Q be the set of orbits of the permutation group LMltQP on the set
Q. If Q is a group, and P is nonempty, then this notation is consistent with (4.1).
Let A be the incidence matrix of the membership relation between the set Q
and the set P \ Q of subsets of Q. (In particular, the rows of A are indexed by
elements of Q, while the columns of A are indexed by the orbits of LMltQP .)

Let A+ be the pseudoinverse of the matrix A ([Pe55]). For each element q of
Q, right multiplication in Q by q yields a permutation of Q. Let RQ(q) be the
corresponding permutation matrix. Define a new matrix

(4.3) RP\Q(q) = A
+RQ(q)A.

[In the group case, the matrix (4.3) is just the permutation matrix given by
the permutation (4.2).] Then in the transitive permutation representation of the
quasigroup Q, each quasigroup element q yields a Markov chain on the state
space P \ Q with transition matrix RP\Q(q) given by (4.3). The set of convex

combinations of the states from P \ Q forms a complete metric space, and then
the actions (4.3) of the quasigroup elements form an iterated function system or
IFS in the sense of fractal geometry ([Bn88, p. 82]).
Modules over a quasigroupQ are defined as abelian groups in the slice category

V /Q. Here V is a variety containing the quasigroup Q, and V is construed as a
category whose morphisms are the homomorphisms between the quasigroups in
V ([Sm86], [SR99, III § 2]). If Q is a group and V is the category Gp of groups,
then such an object π : E → Q is just the projection π : Q[M → Q; (q,m) 7→ q
from the split extension Q[M of a module M over the group Q in the traditional
sense.
Modules play a key role in the extension theory and cohomology of loops and

quasigroups (work of Eilenberg, Mac Lane, Johnson, Leedham-Green et al., e.g.
[Dh95], [EM47], [Jh74], [JL90], [LM76], [Sm76, Chapter 6].) An elementary ver-
sion of this extension theory is used in the construction of loops from codes, e.g.
as a step in the construction of the Monster from the binary Golay code (work of
Conway, Griess, Parker et al. [As94]). For an application to relativity theory, see
[SU96].
The character theory for quasigroups is to some extent (but not completely)

located within the theory of association schemes ([BI84]). The action of the mul-
tiplication group MltQ on a finite quasigroup Q of order n is “multiplicity free”.
In other words, extending the action by linearity, the CMltQ-module CQ decom-
poses as a direct sum of mutually inequivalent irreducible submodules. Thus the
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centraliser ring V (MltQ,Q), the ring EndCMltQCQ of CMltQ-endomorphisms of
the module CQ, is a commutative C-algebra. As such, it decomposes as a direct
sum of copies of C. One usually identifies the endomorphisms of CQ that form
the elements of V (MltQ,Q) with their matrices in terms of the basis Q of CQ.
There are then two natural bases for V (MltQ,Q): the set {e1, . . . , es} of orthogo-
nal idempotents yielding the decomposition V (MltQ,Q) = Ce1 ⊕ · · · ⊕ Ces, and
the set {a1, . . . , as} of incidence matrices for the corresponding orbits C1, . . . , Cs

of MltQ in its diagonal action on Q2. Conventionally, one takes e1 to be the
n× n matrix in which each entry is n−1, and one takes a1 to be the n× n iden-
tity matrix, the incidence matrix of the diagonal orbit C1 of MltQ on Q. Set
ni =| Ci | /n and fi =tr(ei) for 1 ≤ i ≤ s. Define the s× s matrix [ξij ] by

(4.4) ai =

s
∑

j=1

ξijej

for 1 ≤ i ≤ s. Then define the s× s matrix Ψ = [ψij ] by

(4.5) ψij =
√

fiξji/nj .

If Q is a group with identity element 1, then Ψ is the ordinary character table of
Q, in the sense that ψij is the value taken by the i-th irreducible character of Q on
each element q of Q such that (1, q) ∈ Cj . In the general case, the matrix Ψ is thus
called the character table of the quasigroup Q. These character tables provide the
foundation for extending ordinary character theory from groups to quasigroups.
Further details are available in [Jh92], [JS84-89x], [JSS90], [Sm86-90q].
Quasigroup characters implement the so-called “fusion rules” of quantum field

theory ([CP94, Definition 5.2.8]). Let Λ be a set equipped with an involution
λ 7→ λ∗ and a distinguished element ω such that ω∗ = ω. Then a set of fusion rules
indexed by Λ is a collection {Nλµ,ν}λ,µ,ν∈Λ of non-negative integers satisfying the
following conditions:

(4.6)







































(1) ∀λ, µ ∈ Λ, Nλµ,ν = 0 except for finitely many ν;

(2) Nλµ,ν = Nµλ,ν ;

(3)
∑

α∈ΛNλα,βNµν,α =
∑

α∈ΛNλµ,αNαν,β ;

(4) Nλω,µ = Nωλ,µ = δλ,µ;

(5) Nλµ,ν = Nµ∗λ∗,ν∗ ;

(6) Nλµ∗,ω = δλ,µ.

In the quasigroup implementation, the set of orbits of MltQ on Q2 is the index
set Λ for the fusion rules, equipped with the involution ∗ given by permutation of
components inQ2, and with the diagonal orbit as the distinguished element ω of Λ.
The set of fusion rules is then the set {cij,k}1≤i,j,k≤s of structure constants for
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the centraliser ring V (MltQ,Q) with respect to the basis {a1, . . . , as} consisting
of the incidence matrices of the orbits.
For a group Q, the dimensions of the (irreducible) characters are integral. For

a more general quasigroup Q, this need no longer be the case. For instance, sup-
pose that Q is the (additively written) cyclic group of order 4, considered as a
quasigroup (Z4,−) under the operation of subtraction. Note that MltQ is the
dihedral group D4 ([SR99, I Example 2.1.2]). Then the dimensions of the charac-

ters of Q are 1, 1,
√
2 ([Sm86, Example 537]). (As in group theory, the order of the

quasigroup is the sum of the squares of the irreducible character dimensions.) It
is significant that this non-integrality is quite typical of statistical dimensions in
quantum field theory. For example, consider the conformal field theory describing
the scaling limit of the Ising model at the critical point ([CP94, Example 5.2.12],
[MS90]). This theory has three physical representations ρ0, ρ1, ρ1/2, with respec-

tive statistical dimensions 1, 1,
√
2 ([CP, Example 11.3.22], [MS90, (1.57)]). Using

the notation of [Sm86, 537], let a1 be the 4× 4 identity matrix, the incidence ma-
trix of the diagonal orbit on Q2. Let a2, a3 be the respective incidence matrices of
the orbits of (0, 2) and (0, 1). Comparing [Sm86, 537] with [CP, Example 5.2.12],
[MS90, Theorem 4], one then sees that the quasigroup (Z4,−) yields the fusion
rules of the conformal field theory under the assignments ρ0 7→ a0, ρ1 7→ a2,
ρ1/2 7→ a3/

√
2.
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[Sm88] Smith J.D.H., Quasigroups, association schemes, and Laplace operators on almost-

periodic functions, in “Algebraic, Extremal and Metric Combinatorics 1986”,
(M.-M. Deza, P. Frankl and I.G. Rosenberg, Eds.), Cambridge University Press,
Cambridge, 1988, pp. 205–218.



Loops and quasigroups: Aspects of current work and prospects for the future 427

[Sm90e] Smith J.D.H., Entropy, character theory and centrality of finite quasigroups, Math.
Proc. Camb. Phil. Soc. 108 (1990), 435–443.

[Sm90q] Smith J.D.H., Combinatorial characters of quasigroups, in “Coding Theory and
Design Theory Part I: Coding Theory”, (ed. D. Ray-Chaudhuri), Springer, New
York, NY, 1990, pp. 163–187.

[Sm91] Smith J.D.H.,Skein polynomials and entropic right quasigroups,Demonstratio Math.
24 (1991), 241–246.

[Sm92l] Smith J.D.H., Loop transversals to linear codes, J. of Comb., Info. and System Sci.
17 (1992), 1–8.

[Sm92q] Smith J.D.H., Quasigroups and quandles, Discrete Mathematics 109 (1992), 277–
282.

[Sm95] Smith J.D.H., A left loop on the 15-sphere, J. Algebra 176 (1995), 128–138.
[Sm97] Smith J.D.H., Homotopy and semisymmetry of quasigroups, Algebra Universalis 38

(1997), 175–184.
[Sm99] Smith J.D.H., Quasigroup actions: Markov chains, pseudoinverses, and linear rep-

resentations, Southeast Asian Bull. Math. 23 (1999), 1–11.
[SR99] Smith J.D.H., Romanowska A.B., Post-Modern Algebra, Wiley, New York, NY,

1999.
[SU96] Smith J.D.H., Ungar A.A., Abstract space-times and their Lorentz groups, J. Math.

Phys. 37 (1996).
[Un91] Ungar A.A., Thomas precession and its associated grouplike structure, Amer. J.

Phys. 50 (1991), 824–834.

[Un94] Ungar A.A., The holomorphic automorphism group of the complex disk, Aeq. Math.
47 (1994), 240–254.

[Vo99] Voutsadakis G., Categorical models and quasigroup homotopies, Elsevier Preprint,
1999.

Department of Mathematics, Iowa State University, Ames, IA 50011, USA

(Received September 29, 1999)


		webmaster@dml.cz
	2012-04-30T19:41:46+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




