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BGG sequences on spheres

Petr Somberg

Abstract. BGG sequences on flat homogeneous spaces are analyzed from the point of
view of decomposition of appropriate representation spaces on irreducible parts with
respect to a maximal compact subgroup, the so called K-types. In particular, the
kernels and images of all standard invariant differential operators (including the higher
spin analogs of the basic twistor operator), i.e. operators appearing in BGG sequences,
are described.

Keywords: BGG sequences, invariant differential operators, branching rules, K-types,
complexes, homogeneous spaces

Classification: 35P15, 43A85, 22E46

1. Introduction

Properties of conformally invariant operators on manifolds with a given conformal
structure are studied in many papers ([21], [14], [12], [17], [18], [26], [1], [2], [24],
[13], [5], [6]). A special subclass of them — so called standard invariant operators,
are coming together in sequences called (generalized) Bernstein-Gelfand-Gelfand
sequences (BGG sequences for a short). A general construction of such sequences
from differential geometry point of view was given recently in [10].
In this paper BGG sequences on the homogeneous model (i.e. on the sphere)

are studied using elementary tools from representation theory. The aim of the
paper is twofold. Firstly, it is shown that any sequence of conformally invariant
operators acting among global sections of the same natural bundles on the sphere
as the BGG sequence does necessarily form a complex. It is a consequence of
representational theoretical properties of the spaces of global sections and no
specific information concerning a form of invariant operators is needed.
Secondly, it is shown that exactness of the sequence on the sphere (up to the

last place) is equivalent to certain spectral properties of corresponding invariant
operators. It opens a possibility that there can be a direct verification of the
mentioned spectral properties of corresponding invariant operators which would
give a simple and elementary proof of the exactness of the BGG resolution on
the sphere. Moreover — in fact this was the original aim of the study — the
equivalence can be used in other direction for explicit computation of a form of
kernels and images of all standard operators on the sphere.

Supported by GAČR 201/99/0675.
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In Section 2 we summarize the representation theoretical tools used in later
computations. Then using exactness property of BGG sequences, we determine
in Section 3 the kernels and images of higher spin twistor operators on sphere. The
language of complexes in Section 4 allow us to formulate conjecture relating spec-
tral properties of standard invariant operators and exactness of BGG sequences.
This conjecture is then proved for the even case in subsection 5.1, and for the odd
case in subsection 5.2.

2. Branching rules and Frobenius reciprocity

Let Vλ be an irreducible H-module with highest weight λ and let Vα be an irre-
ducible G-module with a highest weight α. The nonnegative integer number

(1) dimHomH(Vλ, Vα |H) ∈ N0

is the dimension of H-equivariant homomorphisms of H-modules. The rules de-
scribing possible targets and computing their dimension are called the branching
rules. In the paper [6], branching rules are described in cases which will be needed
in our work. Let G = Spin(n+ 1) and H = Spin(n). Then

(2) dimHomSpin(n)(Vλ, Vα |Spin(n)) ∈ {0, 1},

i.e. either a given irreducible Spin(n)-module Vλ is present in the decomposition
with multiplicity 1 or it is not present at all.
The case dimHomSpin(n)(Vλ, Vα |Spin(n)) = 1 happens iff

• n is odd,n=2l+1

(3) α1 − λ1 ∈ Z ∧ α1 ≥ λ1 ≥ α2 ≥ · · · ≥ λl ≥ |αl+1|;

• n is even,n=2l

(4) α1 − λ1 ∈ Z ∧ α1 ≥ λ1 ≥ α2 ≥ · · · ≥ λl−1 ≥ αl ≥ |λl|.

We shall use the notation α ր λ or λ ց α if the highest weights λ and α
are related through (3) or (4). These rules are also the basic ingredient for the
decomposition of induced representations.

Theorem 2.1 (Frobenius reciprocity theorem). Let λ, α be the highest weight
of Spin(n), Spin(n+ 1), respectively. Then there is a bijection between the set
of homomorphisms of Spin-modules,

(5) HomSpin(n+1)(Vα, Ind
Spin(n+1)
Spin(n)

Vλ)≃HomSpin(n)(Vα |Spin(n), Vλ).

The symbol Ind
Spin(n+1)
Spin(n)

Vλ denotes the representation induced by Vλ. In

terms of associated vector bundles, the induced representation is the space of
Spin(n + 1)-finite sections of associated Spin(n) vector bundle Vλ on the n-
dimensional sphere Sn ≃ Spin(n + 1)/Spin(n). Using the bijection (5), the
space ⊕α∈Spin(n+1)Vαցλ decomposes to Spin(n+ 1)-modules Vα via branching

rules (3) or (4) (depending on the parity of the dimension considered).
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3. Higher twistor operators on spheres

In this section we shall investigate higher spin analogs of the basic twistor ope-
rator. We shall divide the discussion into two cases, distinguished by the parity of
dimension. For the representation theoretical notation of parabolic subalgebras
and corresponding Dynkin diagrams, see [21], [9], [19], [24].

Notation 3.1. In our case, the homogeneous space will be Sn≃ G/P ≃ G/MAN ,
where G = Spin(n+1, 1, R) and P is the maximal parabolic subgroup with Lang-
lands decomposition corresponding to M = Spin(n, R). The maximal compact
subgroup of G is K = Spin(n+ 1, R).

The property of exactness of BGG sequence (in much more wider context of
curved analogs of flat homogeneous models) is discussed in [10]. The pictures of
BGG sequences look as follows:

• n = 2l

• //•
i

//•
D0

// . . . •
Dl−1

//•
Dl

//•
Dl+1

// . . .

0 C−1 C0 Cl−1 C+
l

⊕ C−
l

Cl+1

•
π

//• //•

C2l C2l+1 0

• n = 2l+ 1

• //•
i

//•
D0

// . . . •
Dl−1

//•
Dl

//•
Dl+1

// . . .

0 C−1 C0 Cl−1 Cl Cl+1

•
π

//• //•

C2l+1 C2l+2 0
The meaning of particular symbols on these pictures is summarized in the
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following exposition:

n = 2l :

Cv , 0 ≤ v ≤ 2l , Dv , 0 ≤ v ≤ 2l − 1 ,

C−1 ≡ V(λ1+k−1,λ1,...,λl)G ,

C0 ≡ Γ(V(λ1,...,λl)M
) ,

C1 ≡ Γ(V((λ1+k)
1
,λ2,...,λl)M ) ,

D0 ≡ D(λ1,...,λl)M ,e1,k ,

Cv−1 ≡ Γ(V(λ1+k,λ1+1,λ2+1,...,(λv−2+1)v−1,λv,...,λl)M
) ,

Dv−1 ≡ D(λ1+k,λ1+1,...,(λv−2+1)v−1,λv,...,λl)M ,ev,(λv−1−λv+1) ,(6)

C+
l

≡ Γ(V(λ1+k,λ1+1,λ2+1,...,(λl−2+1)l−1,(λl−1+1)l)M ) ,

C−
l

≡ Γ(V(λ1+k,λ1+1,λ2+1,...,(λl−2+1)l−1,−(λl−1+1)l)M
) ,

Cl ≡ C+l ⊕ C−
l ;

n = 2l+ 1 :

Cv , 0 ≤ v ≤ 2l+ 1 , Dv , 0 ≤ v ≤ 2l ,

Cl ≃ Cl+1 .

Dl ≡ D(λ1+k,λ1+1,...,λl+1)M ,0,2λl+1 .

The previous notation comes from [9]. The algebra G is |1|-graded, G ≃ G−1 ⊕
G0⊕G1. The commutative subalgebra G1 is a G

s
0-module, where G

s
0 is the semisim-

ple part of reductive subgroup G0, and the corresponding extremal weights are
denoted by ei. The positive natural number k is the order of invariant differential
operator.

We add a few remarks useful in later computations.

Remark 3.2. The BGG-sequence in the even case n = 2l and G = Spin(2l +

1, 1, R)-module λ = (2k−12 1,
1
22, . . . ,

1
2 l+1)G is fully characterized by the values of

λ + δ inscribed over the nodes of the first crossed Dynkin diagram (compare to
[21]):

b = k , d1 = 1 , . . . , dl−1 = 1 , a = 2 , c = 1.

Remark 3.3. The BGG-sequence in the odd case n = 2l+1 and G = Spin(2l+

2, 1, R)-module λ = (2k−12 1,
1
22, . . . ,

1
2 l+1)G is fully characterized by the values of

λ+ δ inscribed over the nodes of the first crossed Dynkin diagram (compare [21]):

b = k , d1 = 1 , . . . , dl−1 = 1 , a = 2.
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Remark 3.4. We use in all computations the spaces of K-finite sections ΓK(Vλ).
The spaces of all sections Γ(Vλ) are then completions of ΓK(Vλ) with respect to
any scalar product, so ΓK(Vλ) are dense subspaces of Γ(Vλ), see [20]. From the
representational theoretic point of view, these spaces have the same content and

so we use the unified notation Γ(Vλ).

In this section, we shall exclusively specialize to the case λM ≡ (λ1, . . . , λl)M =

(12 , . . . ,
1
2 )M . Note that in the even case n = 2l, the discussion and the results

concerning the highest weight (12 , . . . ,
1
2 ,−

1
2 )M of the second half Spin(n)-module

are the same as in the case of (12 , . . . ,
1
2 )M and we shall not repeat it.

Lemma 3.5. Let n = 2l and let λM = (
1
2 , . . . ,

1
2 )M . The kernel of k-th order

invariant differential operator D0 (corresponding to k-th spin twistor operator),

(7) D0 : C0 → C1,

is given by a sum of irreducible K = Spin(2l+ 1)-modules:

(8) KerD0 ≃ ⊕k
m=1(

2m − 1

2 1
,
1

22
, . . . ,

1

2 l
)K .

The image of this higher twistor operator is

(9) ImD0 ≃ ⊕∞
m=k(

2m+ 1

2 1
,
1

22
, . . . ,

1

2 l
)K .

Proof: First of all, we decompose the source and target spaces ofM = Spin(n)-
valued sections over Sn ≃ K/M on K = Spin(n+1)-types. The use of Frobenius
reciprocity and branching rules for n = 2l (4) gives the possible target Spin(n+1)-
irreducible modules:

C0 ≃ ⊕∞
m=0(

2m+ 1

2 1
,
1

22
, . . . ,

1

2 l
)K ,(10)

C1 ≃ ⊕k
p=0 ⊕

∞
m=k {(

2m+ 1

2 1
,
2p+ 1

2 2
,
1

23
, . . . ,

1

2 l
)K}.(11)

Rewriting the definition of D0 in terms of homomorphism of irreducible K =
Spin(n+ 1)-modules,

(12) ⊕∞
m=0 (

2m+ 1

2 1
,
1

22
, . . . ,

1

2 l
)K

D0−−→ ⊕k
p=0

⊕∞
m=k {(

2m+ 1

2 1
,
2p+ 1

2 2
,
1

23
, . . . ,

1

2 l
)K},

we see that the Spin(n+ 1)-modules (2m+12 1,
1
22, . . . ,

1
2 l
)K , m ∈ {0, . . . , k − 1},

are present in the source space of K-types, but they are missing in the target
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space of D0. These irreducible modules are hence necessarily in the kernel of
D0. The operator D0 acts by Schur Lemma as a multiple of the identity map
between the irreducible K-modules which appear on both sides of (12). However,
we do not know whether a multiplication constant on a given irreducible K-
module appearing on both sides of (12) is zero or not. This information can be
extracted from the BGG-sequence for a suitable G = Spin(n + 1, 1, R)-module
(for information on BGG sequence, see [21]).
The first three terms of the BGG-resolution for the representation ofG = Spin(n+

1, 1, R) with the dominant weight (2k−12 1,
1
22, . . . ,

1
2 l+1)G in even dimensions n =

2l are:

V
( 2k−1
2 1

, 1
2 2

..., 1
2 l+1

)G
i

//•
D0

//•
D1

// . . .

C0 C1

The operator i denotes an embedding of the G-module (2k−12 1,
1
2 2, . . . ,

1
2 l+1)G

into the space of P ≡ {(121,
1
22, . . . ,

1
2 l
)M , k− 12}P -valued sections over the homo-

geneous space G/P . From the exactness of the BGG sequence it follows that

(13) KerD0 ≃ Im i

is an irreducible G-module with highest weight (2k−12 1,
1
22, . . . ,

1
2 l+1)G. Applying

repeatedly the odd case of branching rules (3) for the even case, n = 2l, to
the couple (G, K) = (Spin(2l + 2, R), Spin(2l + 1, R)) and the dominant weight

(2k−12 1,
1
22, . . . ,

1
2 l+1)G, we get the inequality for possible highest weights λK

of K,

(14) (
2k − 1

2
− λ1) ∈ Z ∧

2k − 1

2
≥ λ1 ≥

1

2
· · · ≥ λl ≥

1

2
.

This implies the appearance of k irreducible K-types λm = (
2m−1
2 1, . . . ,

1
2 l
)K ,

m ∈ {1, . . . , k}, in the decomposition of (2k−12 1,
1
22, . . . ,

1
2 l+1)G on K-types,

(15) (
2k − 1

2 1
,
1

22
, . . . ,

1

2 l+1
)G

GցK
−−−−→ ⊕k

m=1(
2m − 1

2 1
,
1

22
, . . . ,

1

2 l
)K ,

and this finally proves the assertion of the lemma. �
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Lemma 3.6. Let n = 2l + 1 and let λM = (
1
2 , . . . ,

1
2 )M . The kernel of the k-th

order invariant differential operator D0 (corresponding to the k-th spin twistor
operator),

(16) D0 : C0 → C1,

is given by the collection of irreducible K = Spin(2l+ 2)-modules:
(17)

KerD0 ≃ ⊕k
m=1{(

2m− 1

2 1
,
1

22
, . . . ,

1

2 l+1
)K ⊕ (

2m − 1

2 1
,
1

22
, . . . ,

1

2 l
,−
1

2 l+1
)K}.

Similarly, the image of D0 is

(18) ImD0 ≃ ⊕j∈{−1,1} ⊕
∞
m=k {(

2m+ 1

2 1
,
1

22
, . . . ,

1

2 l
,
j

2 l+1
)K}.

Proof: The structure of the proof is the same as in the even case n = 2l. We
have

(19)

C0 ≃ ⊕j∈{−1,1} ⊕
∞
m=0 {(

2m+ 1

2 1
,
1

22
, . . . ,

1

2 l
,
j

2 l+1
)K},

C1 ≃ ⊕j∈{−1,1} ⊕
k
p=0 ⊕

∞
m=k{(

2m+ 1

2 1
,
2p+ 1

2 2
,
1

23
, . . . ,

1

2 l−1
,
j

2 l
)K}.

The Spin(n + 1)-modules (2m+12 1,
1
22, . . . ,

1
2 l−1,

j
2 l
)K , m ∈ {0, . . . , k − 1}, j ∈

{−1, 1}, are the only K-modules present in the source space of K-types but
missing in the target space ofK-types. The first three terms of the BGG sequence
for fundamental spinor representation of Spin(2l+1) can be represented by similar
picture to the one in the previous even case. In the odd case, n = 2l+1, we use the
even case of branching rules (4) on the couple (G, K) = (Spin(2l+3, R), Spin(2l+

2, R)) and irreducible G-module with highest weight (2k−12 1,
1
22, . . . ,

1
2 l+1)G, and

we get

(20) (
2k − 1

2 1
,
1

22
, . . . ,

1

2 l+1
)G

GցK
−−−−→

⊕k
m=1 {(

2m − 1

2 1
,
1

22
, . . . ,

1

2 l+1
)K

⊕ (
2m − 1

2 1
,
1

22
, . . . ,

1

2 l
,−
1

2 l+1
)K}.

�

The results of presented computations can be summarized in the following
assertion.
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Theorem 3.7. Let D (without any subscript) be a higher spin twistor operator.
Then it holds (we shall refer to this property as the ⋆-property):
(⋆) If a given K-type appears both in the source space and in the target space of
higher twistor operator D, then D is injective on this K-type.

The property proved in Theorem 3.7 makes it possible to find Ker and Im of an
invariant differential operator D. Moreover, the only crucial property of a BGG
sequence, used to derive it, is its exactness. It is also easy to check this property
is, in fact, equivalent to exactness of the BGG resolution in the first place. It is
then natural to make the following conjecture, saying, that the relation between
exactness of the BGG sequence and the property (⋆) proved in Theorem 3.7,
can be true for all standard invariant differential operators appearing in BGG
sequence.

Conjecture 3.8. The statements (1) and (2) are equivalent:

(1) BGG resolution is exact sequence;
(2) Theorem 3.7 holds true for all standard invariant differential operators.

This implies that the information concerning the behavior of homomorphisms
of P -modules inside a BGG sequence of a given G-module — expressed for exam-
ple in terms of properties of invariant differential operators on K-types — is an
alternative way how to prove exactness of a resolvent of P -modules with standard
invariant differential operators acting among them.

4. BGG resolutions and complexes

We shall consider here sequences of linear maps Di acting between vector spaces
Ci,

(21) . . .
Di−2
−−−→ Ci−1

Di−1
−−−→ Ci

Di−−→ Ci+1
Di+1
−−−→ . . . .

They will usually be complexes, i.e. the composition of any two successive homo-
morphisms is zero,

(22) Di+1 ◦ Di = 0 , ∀ i.

In our case, the vector spaces Ci will be direct sums of irreducible K-modules (K-
finite sections of associated homogeneous vector bundles over homogeneous space
G/P ), and the operators acting between any two neighboring vector spaces will
be invariant differential operators. In particular, let us consider a BGG sequence
(see [21], [10]). Let i = 0, . . . , 2l−1, with exception in the even case n = 2l, i 6= l.

Definition 4.1. We denote

(23) Ci
i, i+1 := ⊕λ∈AVλ , Vλ ∈ Ci ,
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(24) Ci+1
i, i+1 := ⊕λ∈AVλ , Vλ ∈ Ci+1,

where A is the set of all K-types appearing both in the spaces Ci and Ci+1 and

lying in the space Ci, Ci+1, respectively.

The structure of the middle part of a BGG sequence is different from the
remaining part. Let us first consider the even case n = 2l.

Definition 4.2. The set of K-types Cl
l−1, l respectively Cl

l, l+1 is defined by the

following two conditions:

1. ImDl−1 ⊂ Cl
l−1, l ⊂ KerDl;

2. Cl
l−1, l ≃ ⊕KαK , such that every K-type appearing in this decomposition

has multiplicity 1.

The space Cl
l, l+1 is defined as the complement of the set of K-types Cl

l−1, l in

Cl, i.e. Cl ≃ Cl
l−1, l ⊕ Cl

l, l+1. In particular, every K-type appearing in its

decomposition has also multiplicity one.

The middle part of the odd case n = 2l + 1 also requires a more careful treat-
ment.

Definition 4.3. The sets of K-types Cl
l−1, l respectively Cl+1

l, l+1 are defined by:

1. Cl
l−1, l ⊂ Ker Dl;

2. Im Dl ⊂ Cl+1
l, l+1.

In the following theorems we shall discuss the distribution of K-types inside
particular terms of a BGG sequence.

Theorem 4.4. It holds true

(25)
Ci \ Ci

i,i+1 ⊂ KerDi,

ImDi ⊂ Ci+1
i,i+1.

Proof: Any K-type, which is present in the source space Ci but is not present
in the target space Ci+1, must lie in the kernel of the operator Di acting between
them. On the other hand, the image of Di must be included in the union of
K-types belonging both to Ci and Ci+1. �

The assertion of the previous theorem is rather trivial. But it is much more
less obvious, whether the previous inclusions are proper or not. A key property
of the sequences studied is stated in the following theorem.

Theorem 4.5. It holds true for all i,

(26) Ci = Ci
i−1,i ⊕ Ci

i,i+1.
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The proof of this theorem is the heart of this section, it will be given in next
sections. The assertion of this theorem is illustrated by the figure:

KerDi

ImDi
Di

// KerDi+1

Ci ImDi+1
Di+1

// KerDi+2

Ci+1 ImDi+2

Ci+2

This theorem has several direct consequences.

Corollary 4.6. The following three conditions hold true.

1.
ImDi ⊂ Ci+1

i,i+1 ⊂ KerDi+1, ∀ i.

2. The BGG sequence is a complex.
3. There is a set of equivalent conditions:

KerDi = Ci
i−1,i ⇐⇒ ImDi = Ci+1

i,i+1 ⇐⇒ (⋆) of 3.7 holds true for i.

Proof: 1. From Theorem 4.5 we know that Ci+1
i,i+1 = Ci+1 \ Ci+1

i+1,i+2, and from

Theorem 4.4 it follows Ci+1 \ Ci+1
i+1,i+2 ⊂ KerDi+1. Putting this together,

(28) Ci+1
i,i+1 ⊂ KerDi+1.

The second inclusion is the content of Theorem 4.4.

2. It is an immediate consequence of the first condition, because from ImDi ⊂
KerDi+1 (for all i) it follows that the composition of two consecutive operators is
an identically zero operator.

3. Using the first part, i.e. Theorems 4.4 and 4.5, one can see that KerDi = Ci
i−1,i

holds true if KerDi ∩Ci
i,i+1 = 0 and this is equivalent to condition (⋆) of 3.7, and

moreover this is also equivalent to ImDi = Ci+1
i,i+1. �
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Theorem 4.7. The property (⋆) of Theorem 3.7 is true for all operators Di ⇐⇒

∀ i, KerDi = Ci
i−1,i ⇐⇒ ∀ i, ImDi = Ci+1

i,i+1.

Proof: The proof follows from the third assertion of Corollary 4.6. �

Theorem 4.8. A BGG sequence is an exact sequence iff the property (⋆) holds
true for all i.

Proof: The proof follows from the first and the third assertion of Corollary 4.6.
�

5. BGG sequences on spheres Sn

The assertion of Theorem 4.5 will be proved now. We shall divide the discussion
into two separate parts — the even case n = 2l and the odd case n = 2l+1. In both
cases, we shall use the BGG sequence slightly different from the one presented in
[21], in the sense that we add at the beginning of the resolvent the kernel of the
first invariant differential operator, and we add at the end the cokernel of the last
invariant differential operator.

5.1 BGG sequences on even dimensional spheres.

The situation in the even case n = 2l is described in the following picture:

• //•
i

//•
D0

// . . . •
Dl−1

//•
Dl

//•
Dl+1

// . . .

0 C−1 C0 Cl−1 C+
l

⊕ C−
l

Cl+1

•
π

//• //•

C2l C2l+1 0

Theorem 5.1. Let n = 2l and v ∈ Z be an integer fulfilling 0 ≤ v ≤ 2l. Then
there holds true the direct sum decomposition of the Cv-th term of the BGG

sequence:

(29) Cv ≃ Cv
v−1, v ⊕ Cv

v, v+1.

The definition of the middle, respectively terminal parts, i.e. Cl, respectively C−1

and C2l+1, has been given in the previous section. Note that the mapping i in
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the last picture denotes the embedding of the G-module C−1 into C0; similarly
the map π denotes the projection with kernel ImD2l−1.

Proof: Let us consider the Cv-th term of the BGG sequence, 0 ≤ v ≤ (l − 1)
or l + 1 ≤ v ≤ 2l. The space Cv is the space of sections of the vector bundle
associated to theM -module with highest weight (λ1+k, λ1+1, λ2+1, . . . , (λv−1+
1)v, λv+1, . . . , λl)M . In order to decompose Cv into K = Spin(2l + 1)-types, we
use the branching rules for even case n = 2l (4),

α1 − λ1 ∈ Z ∧ α1 ≥ λ1 + k ≥ α2 ≥ λ1 + 1 ≥ α3 ≥ λ2 + 1 · · · ≥ αv ≥ λv−1 + 1

≥ αv+1 ≥ λv+1 ≥ αv+2 · · · ≥ λl−1 ≥ αl ≥ |λl|,

with the result:

(30)

Cv ≃ ⊕∞
α1=λ1+k , α1−λ1∈Z

⊕λ1+k
α2=λ1+1 , α2−λ2∈Z

⊕λ1+1
α3=λ2+1 , α3−λ3∈Z

· · · ⊕
λv−2+1
αv=λv−1+1 , αv−λv∈Z

⊕
λv−1+1
αv+1=λv+1 , αv+1−λv+1∈Z

⊕
λv+1

αv+2=λv+2 , αv+2−λv+2∈Z
· · · ⊕

λl−2

αl−1=λl−1 , αl−1−λl−1∈Z

⊕
λl−1

αl=sgn(λl)λl , αl−λl∈Z
(α1, . . . , αl)K .

Similar decomposition can be done immediately for Cv−1 respectively for Cv+1.
The sets of K-types common with Cv are
(31)

Cv
v−1,v ≃ ⊕∞

α1=λ1+k , α1−λ1∈Z
⊕λ1+k

α2=λ1+1 , α2−λ2∈Z
⊕λ1+1

α3=λ2+1 , α3−λ3∈Z
. . .

⊕
λv−3+1
αv−1=λv−2+1 , αv−1−λv−1∈Z

⊕
λv−2+1
αv=λv−1+1 , αv−λv∈Z

⊕λv

αv+1=λv+1 , αv+1−λv+1∈Z

· · · ⊕
λl−2

αl−1=λl−1 , αl−1−λl−1∈Z
⊕

λl−1

αl=sgn(λl)λl , αl−λl∈Z
(α1, . . . , αl)K ,

and
(32)

Cv
v,v+1 ≃ ⊕∞

α1=λ1+k , α1−λ1∈Z
⊕λ1+k

α2=λ1+1 , α2−λ2∈Z
⊕λ1+1

α3=λ2+1 , α3−λ3∈Z
. . .

⊕
λv−2+1
αv=λv−1+1 , αv−λv∈Z

⊕
λv−1+1
αv+1=λv+1 , αv+1−λv+1∈Z

⊕
λv+1

αv+2=λv+2 , αv+2−λv+2∈Z

· · · ⊕
λl−2

αl−1=λl−1 , αl−1−λl−1∈Z
⊕

λl−1

αl=sgn(λl)λl , αl−λl∈Z
(α1, . . . , αl)K .

The comparison with (30) then implies

(33) Cv ≃ Cv
v−1,v ⊕ Cv

v,v+1,

which proves the assertion of the theorem for the specified region of index v.

Let us discuss now the middle part of the BGG sequence. The space of sections
of the vector bundle associated to the reducible M -module with highest weight
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(λ1 + k, λ1 + 1, . . . , (λl−2 + 1)l−1, (λl−1 + 1)l)M ⊕ (λ1 + k, λ1 + 1, . . . , (λl−2 +

1)l−1,−(λl−1 + 1)l)M , which appears in the middle term Cl ≃ C+
l
⊕C−

l
, can be

also decomposed into K-types

Cl ≃ C+
l

⊕ C−
l

≃ 2{⊕∞
α1=λ1+k , α1−λ1∈Z

⊕λ1+k
α2=λ1+1 , α2−λ2∈Z

. . .(34)

· · · ⊕
λl−3+1
αl−1=λl−2+1 , αl−1−λl−1∈Z

⊕
λl−2+1
αl=sgn(λl−1+1)(λl−1+1) , αl−λl∈Z

(α1, . . . , αl)K},

with the result that every K-type appearing in the decomposition (34) has mul-

tiplicity 2. Note that due to 4.2, it follows that the spaces Cl
l−1, l and Cl

l, l+1 ≃

Cl/Cl
l−1, l are isomorphic as K-modules,

(35)

Cl
l, l+1 ≃ Cl

l−1, l ≃ ⊕∞
α1=λ1+k , α1−λ1∈Z

⊕λ1+k
α2=λ1+1 , α2−λ2∈Z

⊕λ1+1
α3=λ2+1 , α3−λ3∈Z

· · ·⊕
λl−4+1
αl−2=λl−3+1 , αl−2−λl−2∈Z

⊕
λl−3+1
αl−1=λl−2+1 , αl−1−λl−1∈Z

⊕
λl−2+1
αl=λl−1+1 , αl−λl∈Z

(α1, . . . , αl)K ,

so that

(36) Cl ≃ Cl
l−1, l ⊕ Cl

l, l+1.

Note that in comparison with the BGG sequence introduced in [21], we have
included in it the kernel of the first homomorphism D0 corresponding to the
injection of K-modules coming from the decomposition of G-module (λ1 + k −
1, λ1, . . . , λl)G on K-types, and we also added the last projection correspond-
ing to the cokernel of the homomorphism D2l−1 (equal to the quotient space of
C2l/ImD2l−1). The corresponding injection respectively projection were denoted
i respectively π in the introductory picture of this subsection. This completes the
proof. �

Remark 5.2. If we work with the BGG sequence as formulated in [21], then the

finite dimensional set of K-types C2l \ C2l2l−1, 2l is an obstruction for the BGG

sequence to be an exact sequence on 2l-th term. The presence of this set of K-
types in C2l which are not in the image of D2l−1 demonstrates the well-known
fact, that the only one (co)homologically nontrivial dimension of the base space
Sn (except for degree zero) is n.

Corollary 5.3. As an immediate consequence of the previous decomposition

Theorem 5.1 we get a description of the kernel and the image of homomorphism
Dv−1,

(37) Dv−1 : Cv−1 → Cv , v = 1, . . . , l,
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(38)

KerDv−1 ≃ ⊕∞
α1=λ1+k , α1−λ1∈Z

⊕λ1+k
α2=λ1+1 , α2−λ2∈Z

⊕λ1+1
α3=λ2+1 , α3−λ3∈Z

. . .

⊕
λv−3+1
αv−1=λv−2+1 , αv−1−λv−1∈Z

⊕
λv−1

αv=λv , αv−λv∈Z
⊕λv

αv+1=λv+1 , αv+1−λv+1∈Z

· · · ⊕
λl−2

αl−1=λl−1 , αl−1−λl−1∈Z
⊕

λl−1

αl=sgn(λl)λl , αl−λl∈Z
(α1, . . . , αl)K ,

(39)

ImDv−1 ≃ ⊕∞
α1=λ1+k , α1−λ1∈Z

⊕λ1+k
α2=λ1+1 , α2−λ2∈Z

⊕λ1+1
α3=λ2+1 , α3−λ3∈Z

. . .

⊕
λv−3+1
αv−1=λv−2+1 , αv−1−λv−1∈Z

⊕
λv−2+1
αv=λv−1+1 , αv−λv∈Z

⊕λv

αv+1=λv+1 , αv+1−λv+1∈Z

· · · ⊕
λl−2

αl−1=λl−1 , αl−1−λl−1∈Z
⊕

λl−1

αl=sgn(λl)λl , αl−λl∈Z
(α1, . . . , αl)K ,

i.e. there is an identification

(40)
KerDv−1 ≃ Cv−1

v−2, v−1,

ImDv−1 ≃ Cv−1
v−1, v.

For 0 ≤ v ≤ (l − 1), there is an isomorphism (substitute D−1 := i and D2l := π):

(41) KerDv ≃ ImDv−1 ≃ KerD2l−v+1 ≃ ImD2l−v.

Concerning the middle part of the sequence, the kernel and image of Dl have

the form

(42)

ImDl ≃ ⊕∞
α1=λ1+k , α1−λ1∈Z

⊕λ1+k
α2=λ1+1 , α2−λ2∈Z

⊕λ1+1
α3=λ2+1 , α3−λ3∈Z

. . .

· · · ⊕
λl−4+1
αl−2=λl−3+1 , αl−2−λl−2∈Z

⊕
λl−3+1
αl−1=λl−2+1 , αl−1−λl−1∈Z

⊕
λl−2+1
αl=λl−1+1 , αl−λl∈Z

(α1, . . . , αl)K ,

and

(43)

KerDl ≃ ⊕∞
α1=λ1+k , α1−λ1∈Z

⊕λ1+k
α2=λ1+1 , α2−λ2∈Z

⊕λ1+1
α3=λ2+1 , α3−λ3∈Z

. . .

· · · ⊕
λl−4+1
αl−2=λl−3+1 , αl−2−λl−2∈Z

⊕
λl−3+1
αl−1=λl−2+1 , αl−1−λl−1∈Z

⊕
λl−2+1
αl=λl−1+1 , αl−λl∈Z

(α1, . . . , αl)K .

In this case, one has the isomorphism of K-modules:

(44) Cl
l, l+1 ≃ KerDl ≃ ImDl−1 ≃ Cl

l−1, l.

Proof: It is a consequence of Theorems 5.1 and 4.8. �
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5.2 BGG sequence on odd dimensional sphere.

The odd dimensional BGG sequence (n = 2l + 1) has the following simple form:

• //•
i

//•
D0

// . . . •
Dl−1

//•
Dl

//•
Dl+1

// . . .

0 C−1 C0 Cl−1 Cl Cl+1

•
π

//• //•

C2l+1 C2l+2 0

Theorem 5.4. Let n = 2l+1 and v ∈ Z be an integer fulfilling 0 ≤ v ≤ (2l+1).
Then the term of the BGG sequence corresponding to Cv decomposes as follows:

(45) Cv ≃ Cv
v−1, v ⊕ Cv

v, v+1.

The definition of the middle, respectively terminal parts, i.e. Cl, respectively

C−1 and C2l+2, has been explained in the previous section. The meaning of the
mappings i and π is the same as in the even dimensional case (see 5.1).

Proof: The underlyingM -module structure of Cv corresponds to highest weight
(λ1+k, λ1+1, λ2+1, . . . , (λv−1+1)v, λv+1, . . . , λl)M . In order to decompose Cv

on K = Spin(2l+2)-types, we use the branching rules for the odd case n = 2l+1
(3),

α1 − λ1 ∈ Z ∧ α1 ≥ λ1 + k ≥ α2 ≥ λ1 + 1 ≥ α3 ≥ λ2 + 1 · · · ≥ αv ≥ λv−1 + 1

≥ αv+1 ≥ λv+1 ≥ αv+2 ≥ · · · ≥ λl−1 ≥ αl ≥ λl ≥ |αl+1|,

and we get:

Cv ≃ ⊕∞
α1=λ1+k , α1−λ1∈Z

⊕λ1+k
α2=λ1+1 , α2−λ2∈Z

(46)

⊕λ1+1
α3=λ2+1 , α3−λ3∈Z

· · · ⊕
λv−2+1
αv=λv−1+1 , αv−λv∈Z

⊕
λv−1+1
αv+1=λv+1 , αv+1−λv+1∈Z

⊕
λv+1

αv+2=λv+2 , αv+2−λv+2∈Z
· · · ⊕

λl−2

αl−1=λl−1 , αl−1−λl−1∈Z
⊕

λl−1

αl=λl , αl−λl∈Z

⊕λl

αl+1=−λl , αl−λl∈Z
(α1, . . . , αl+1)K .

In the same way, one can decompose also the terms Cv−1 and Cv+1. The set of



524 P. Somberg

K-types common with Cv is

Cv
v,v+1 ≃ ⊕∞

α1=λ1+k , α1−λ1∈Z
⊕λ1+k

α2=λ1+1 , α2−λ2∈Z
(47)

⊕λ1+1
α3=λ2+1 , α3−λ3∈Z

· · · ⊕
λv−2+1
αv=λv−1+1 , αv−λv∈Z

⊕
λv−1+1
αv+1=λv+1 , αv+1−λv+1∈Z

⊕
λv+1

αv+2=λv+2 , αv+2−λv+2∈Z
· · ·⊕

λl−1

αl=λl , αl−λl∈Z

⊕λl

αl+1=−λl , αl+1−λl∈Z
(α1, . . . , αl+1)K ,

and

Cv
v−1,v ≃ ⊕∞

α1=λ1+k , α1−λ1∈Z
⊕λ1+k

α2=λ1+1 , α2−λ2∈Z
(48)

⊕λ1+1
α3=λ2+1 , α3−λ3∈Z

· · · ⊕
λv−3+1
αv−1=λv−2+1 , αv−1−λv−1∈Z

⊕
λv−2+1
αv=λv−1+1 , αv−λv∈Z

⊕λv

αv+1=λv+1 , αv+1−λv+1∈Z
· · · ⊕

λl−1

αl=λl , αl−λl∈Z

⊕λl

αl+1=−λl , αl+1−λl∈Z
(α1, . . . , αl+1)K .

It is then easy to verify the direct sum decomposition

(49) Cv ≃ Cv
v−1, v ⊕ Cv

v, v+1,

which finally proves the assertion of the theorem. We shall work out in details
the case of the middle operator Dl. The decomposition of Cl ≃ Cl+1 gives

Cl ≃ Cl+1 ≃ ⊕∞
α1=λ1+k , α1−λ1∈Z

⊕λ1+k
α2=λ1+1 , α2−λ2∈Z

(50)

⊕λ1+1
α3=λ2+1 , α3−λ3∈Z

· · · ⊕
λv−2+1
αv=λv−1+1 , αv−λv∈Z

· · ·⊕
λl−3+1
αl−1=λl−2+1 , αl−1−λl−1∈Z

⊕
λl−2+1
αl=λl−1+1 , αl−λl∈Z

⊕
λl−1+1
αl+1=−(λl−1+1) , αl+1−λl∈Z

(α1, . . . , αl+1)K .

Definition 4.3 allows us to conclude

(51)

Cl+1
l+1, l+2 ≃ Cl

l−1, l ≃ ⊕∞
α1=λ1+k , α1−λ1∈Z

⊕λ1+k
α2=λ1+1 , α2−λ2∈Z

⊕λ1+1
α3=λ2+1 , α3−λ3∈Z

· · · ⊕
λl−3+1
αl−1=λl−2+1 , αl−1−λl−2∈Z

⊕
λl−2+1
αl=λl−1+1 , αl−λl∈Z

⊕λl

αl+1=−λl , αl+1−λl∈Z
(α1, . . . , αl+1)K ,

and

(52)

Cl
l, l+1 ≃ Cl+1

l, l+1 ≃ ⊕∞
α1=λ1+k , α1−λ1∈Z

⊕λ1+k
α2=λ1+1 , α2−λ2∈Z

⊕λ1+1
α3=λ2+1 , α3−λ3∈Z

· · · ⊕
λl−3+1
αl−1=λl−2+1 , αl−1−λl−2∈Z

⊕
λl−2+1
αl=λl−1+1 , αl−λl∈Z

{⊕
λl−1+1
αl+1=(λl+1) , αl+1−λl∈Z

⊕
−(λl+1)
αl+1=−(λl−1+1) , αl+1−λl∈Z

}(α1, . . . , αl+1)K ,
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so that

(53)
Cl ≃ Cl

l−1, l ⊕ Cl
l, l+1 ,

Cl+1 ≃ Cl+1
l, l+1 ⊕ Cl+1

l+1, l+2.

It is remarkable to note that we have an isomorphism of K-modules

(54) Cl+1
l+1, l+2 ≃ Cl

l−1, l,

and so the homomorphismDl acts by ‘flipping’ ofK-modules isomorphic to Cl
l−1, l

and Cl
l, l+1 with respect to the decomposition of homomorphismDl+1 on Cl+1

l+1, l+2

and Cl+1
l, l+1 (see the picture below):

Cl
l−1, l Cl+1

l, l+1

Im Dl−1

CC
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
Cl+1

l, l+1

Im Dl

BB
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Cl+1
l+1, l+2

Im Dl+1

BB
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

Cl−1 Cl Cl+1 Cl+2

The last term of the BGG sequence C2l+2 has the content of K-types

C2l+2 ≃ C2l+1 \ C2l+12l, 2l+1 ≃ ⊕λ1+k−1
ω1=λ1 , ω1−λ1∈Z

⊕λ1
ω2=λ2 , ω2−λ2∈Z

. . .(55)

· · · ⊕
λi−1

ωi=λi , ωi−λi∈Z
· · · ⊕

λl−1

ωl=λl , ωl−λl∈Z
⊕λl

ωl+1=−λl , ωl+1−λl∈Z
(ω1, . . . , ωl+1)K .

�

Remark 5.5. Note that the same remark as 5.2 in the even case holds true for
n = 2l+ 1.
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Corollary 5.6. Let 0 ≤ v ≤ (l − 1) or (l + 1) ≤ v ≤ (2l + 1). Then

KerDv ≃ ⊕∞
α1=λ1+k,α1−λ1∈Z

⊕λ1+k
α2=λ1+1, α2−λ2∈Z

⊕λ1+1
α3=λ2+1, α3−λ3∈Z

. . .(56)

· · · ⊕
λv−2+1
αv=λv−1+1, αv−λv∈Z

⊕λv

αv+1=λv+1, αv+1−λv+1∈Z
⊕

λv+1

αv+2=λv+2, αv+2−λv+2∈Z
. . .

· · · ⊕
λl−1

αl=λl, αl−λl∈Z
⊕λl

αl+1=−λl, αl+1−λl∈Z
(α1, . . . , αl+1)K ,

ImDv ≃ ⊕∞
α1=λ1+k,α1−λ1∈Z

⊕λ1+k
α2=λ1+1, α2−λ2∈Z

⊕λ1+1
α3=λ2+1, α3−λ3∈Z

. . .(57)

· · · ⊕
λv−2+1
αv=λv−1+1, αv−λv∈Z

⊕
λv−1+1
αv+1=λv+1, αv+1−λv+1∈Z

⊕
λv+1

αv+2=λv+2, αv+2−λv+2∈Z
. . .

· · · ⊕
λl−1

αl=λl, αl−λl∈Z
⊕λl

αl+1=−λl, αl+1−λl∈Z
(α1, . . . , αl+1)K ,

and we have the isomorphisms

(58)
KerDv ≃ Cv

v−1, v ,

ImDv ≃ Cv
v, v+1.

There is also the set of isomorphisms, allowing the identification of kernels and

images of homomorphisms before and beyond the middle part of the BGG se-

quence:

(59) KerDl+v+1 ≃ ImDl+v ≃ ImDl−v ≃ KerDl−v+1 , 1 ≤ v ≤ l.

The only exception from this scheme occurs in the middle part of the sequence for

homomorphism Dl : Cl → Cl+1, where we work with abelian group Cl ≃ Cl+1:

(60)

KerDl ≃ ImDl−1 ≃ Cl
l−1, l ≃ Cl−1

l−1, l ≃ ⊕∞
α1=λ1+k , α1−λ1∈Z

⊕λ1+k
α2=λ1+1 , α2−λ2∈Z

⊕λ1+1
α3=λ2+1 , α3−λ3∈Z

· · · ⊕
λl−3+1
αl−1=λl−2+1 , αl−1−λl−2∈Z

⊕
λl−2+1
αl=λl−1+1 , αl−λl∈Z

⊕λl

αl+1=−λl , αl+1−λl∈Z
(α1, . . . , αl+1)K ,

and the image of Dl is equal to

(61)

Cl+1
l, l+1 ≃ Cl

l, l+1 ≃ ImDl ≃ ⊕∞
α1=λ1+k , α1−λ1∈Z

⊕λ1+k
α2=λ1+1 , α2−λ2∈Z

⊕λ1+1
α3=λ2+1 , α3−λ3∈Z

· · · ⊕
λl−3+1
αl−1=λl−2+1 , αl−1−λl−2∈Z

⊕
λl−2+1
αl=λl−1+1 , αl−λl∈Z

{⊕
λl−1+1
αl+1=(λl+1) , αl+1−λl∈Z

⊕
−(λl+1)
αl+1=−(λl−1+1) , αl+1−λl∈Z

}(α1, . . . , αl+1)K .

The identifications in the middle part can be summarized as

(62) Cl+1
l+1, l+2 ≃ KerDl+2 ≃ ImDl+1 ≃ ImDl−1 ≃ KerDl ≃ Cl

l−1, l,

and

(63) Cl ≃ Cl
l−1, l ⊕ Cl

l, l+1 , Cl+1 ≃ Cl+1
l, l+1 ⊕ Cl+1

l+1, l+2,

where Cl
l−1, l ≃ Cl+1

l+1, l+2.

Proof: It is a consequence of Theorems 5.4 and 4.8. �
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[9] Čap A., Slovák J., Souček V., Invariant operators with almost hermitean symmetric struc-
tures, III. Standard operators, to be published.
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