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A note on copies of c0 in spaces

of weak* measurable functions

J.C. Ferrando

Abstract. If (Ω,Σ, µ) is a finite measure space and X a Banach space, in this note we

show that L1
w∗ (µ, X∗), the Banach space of all classes of weak* equivalent X∗-valued

weak* measurable functions f defined on Ω such that ‖f(ω)‖ ≤ g(ω) a.e. for some
g ∈ L1(µ) equipped with its usual norm, contains a copy of c0 if and only if X∗ contains
a copy of c0.
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1. Preliminaries

Throughout this paper (Ω,Σ, µ) will be a complete finite measure space and
X a real or complex Banach space. We denote by Lp

w∗(µ,X∗), 1 ≤ p ≤ ∞, the
linear space over K of all weak* measurable functions f : Ω → X∗ for which
there exists a scalar function g ∈ Lp(µ) such that ‖f (ω)‖ ≤ g (ω) for µ-almost

all ω ∈ Ω, whereas Lp
w∗(µ,X∗) stands for the quotient space of Lp

w∗(µ,X∗) via
the equivalence relation ∼∗ defined by f1 ∼∗ f2 whenever f1 ( ) x ∼ f2 ( )x for
each x ∈ X (here ∼ designs the usual equivalence relation in Lp(µ)). The space

Lp
w∗(µ,X∗) is a Banach space when equipped with the norm

∥∥∥f̂
∥∥∥

p
= inf ‖g‖Lp(µ),

the infimum taken over all those functions g ∈ Lp(µ) for which there is some f ∈ f̂
such that ‖f (ω)‖ ≤ g (ω) for µ-almost all ω ∈ Ω. It can be shown that there is

always some h ∈ f̂ such that ‖h ( )‖ ∈ Lp(µ) and
∥∥∥f̂

∥∥∥
p
= ‖‖h ( )‖‖Lp(µ). We

identify Lp(µ,X)
∗ with Lq

w∗(µ,X∗), where 1 ≤ p < ∞ and 1p +
1
q = 1, by

means of the linear isometry T : L
q
w∗(µ,X∗) → Lp(µ,X)

∗ defined by
(
T f̂

)
g =

∫
Ω 〈f (ω) , g (ω)〉 dµ (ω) for every f ∈ f̂ . A study of L

p
w∗(µ,X∗) can be found in [2,

Section 1.5] and [6, Section 3]. When X is separable, Lp
w∗(µ,X∗) coincides with

the space of all weak* measurable functions f : Ω→ X∗ such that ‖f ( )‖ ∈ Lp(µ).

In this case Lp
w∗(µ,X∗) is the quotient of Lp

w∗(µ,X∗) via the usual equivalence

relation, so
∥∥∥f̂

∥∥∥
p
= ‖‖f ( )‖‖Lp(µ) for each f ∈ f̂ . We denote by cabv (Σ, X∗)

the Banach space of all X∗-valued countably additive measures F of bounded
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variation defined in Σ, equipped with the variation norm |F | = |F | (Ω). A result of
Kwapień [7] answering a question of Hoffmann-Jørgensen [5] shows that Lp(µ,X),
1 ≤ p < ∞, contains a copy of c0 if and only if X does. Since (as Mendoza has
proved [8]) Lp(µ,X), 1 < p <∞, contains a complemented copy of ℓ1 if and only
if X contains a complemented copy of ℓ1, then L

p
w∗(µ,X∗), 1 < p <∞, contains

a copy of c0 if and only if X
∗ does. In this note we show that this is also true for

p = 1, i.e., that L1w∗(µ,X∗) contains a copy of c0 if and only if X
∗ does.

2. Copies of c0 in L
1
w∗(µ,X∗)

If X is a separable Banach space, our statement is an easy consequence of an
averaging theorem for c0-sequences due to Bourgain [1] (see also [2, Lemma 2.1.2]).
The general case will be derived from Theorem 2.2 below, otherwise well known.

Theorem 2.1. Assume that X is a separable Banach space. If L1w∗(µ,X∗)
contains a copy of c0, then X

∗ contains a copy of c0.

Proof: Let
{
f̂n

}
be a normalized basic sequence in L1w∗(µ,X∗) equivalent to

the unit vector basis of c0. Then
∫
Ω ‖fn (ω)‖ dµ (ω) = 1 for each n ∈ N and there

is K > 0 such that

(2.1) sup
n∈N

∫

Ω

∥∥∥∥∥

n∑

i=1

εifi (ω)

∥∥∥∥∥ dµ (ω) < K

for each fi ∈ f̂i, εi ∈ {−1, 1} and i ∈ N. Setting

A1 =
{
ω ∈ Ω : limn→∞ ‖fn (ω)‖ > 0

}
,

we claim that µ (A1) > 0. Otherwise, limn→∞ ‖fn (ω)‖ = 0 for almost all ω ∈
Ω and since the sequence {‖fn ( )‖} is uniformly integrable (this is essentially
contained in the proof of [2, Theorem 2.1.1]), it follows from Vitali’s lemma [4,
IV.10.9] that limn→∞

∫
Ω ‖fn (ω)‖ dµ (ω) = 0, a contradiction.

Denoting by ∆ the product space {−1, 1}N, Γ the σ-algebra of subsets of ∆
generated by the n-cylinders of ∆, n = 1, 2, . . . , and ν the probability measure

⊗∞
i=1νi on Γ, where νi : 2

{−1,1} → [0, 1] satisfies that νi (∅) = 0, νi ({−1}) =
νi ({1}) = 1/2 and νi ({−1, 1}) = 1 for each i ∈ N, we may consider the µ-
measurable map hn : Ω → R defined by hn (ω) =

∫
∆ ‖

∑n
i=1 εifi (ω)‖ dν (ε)

for n = 1, 2, . . . . Since {hn} is a monotone increasing sequence of non nega-
tive functions, (2.1) and Fubini’s theorem yield supn∈N

∫
Ω hn (ω) dµ (ω) ≤ K.

Hence, by the monotone convergence theorem there exists a µ-null set A2 ∈
Σ such that supn∈N hn (ω) < ∞ for each ω ∈ Ω − A2. Considering the set
A := A1 ∩ (Ω−A2), it is obvious that µ (A) > 0, hence A 6= ∅. Moreover,
limn→∞ ‖fn (ω)‖ > 0 and supn∈N

∫
∆ ‖

∑n
i=1 εifi (ω)‖ dν (ε) <∞ for each ω ∈ A.

Choose ω0 ∈ A and a strictly increasing sequence of positive integers {ni} such
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that infi∈N ‖fni
(ω0)‖ > 0. Setting x

∗
i := fni

(ω0) for each i ∈ N and using the

properties of the measure space we conclude that supn∈N

∫
∆

∥∥∑n
i=1 εix

∗
i

∥∥ dν (ε) <
∞. According to the aforementioned theorem of Bourgain, there is a subsequence
{z∗n} of {x

∗
n} which is a basic sequence in X

∗ equivalent to the unit vector basis
of c0. �

Theorem 2.2. If X is an arbitrary Banach space, then L1w∗(µ,X∗) is linearly
isometric to a subspace of cabv (Σ, X∗).

Proof: Consider the natural map T : L1w∗(µ,X∗) → cabv (Σ, X∗) defined by

T f̂ = F , where

F (A)x =

∫

A
f (ω)xdµ (ω)

for each A ∈ Σ and x ∈ X . It is easy to check that F is anX∗-valued µ-continuous

countably additive measure, since if f ∈ f̂ verifies that ‖f (ω)‖ ≤ g (ω) for µ-
almost all ω ∈ Ω and some g ∈ L1 (µ), then ‖F (A)‖ ≤ ‖χAg‖L1(µ)

for each

A ∈ Σ. If π (A) designs the class of all finite partitions of A ∈ Σ by elements of Σ,
then

∑

E∈π(A)

‖F (E)‖ ≤
∑

E∈π(A)

∫

E
g (ω) dµ (ω) = ‖χAg‖L1(µ)

≤ ‖g‖L1(µ)

which proves that F ∈ cabv (Σ, X∗) and |F | ≤
∥∥∥f̂

∥∥∥
1
.

According to [2, Theorem 1.5.3] there exists a weak* measurable function ψ :
Ω → X∗ satisfying that (ω → ‖ψ (ω)‖) ∈ L1 (µ), F (A)x =

∫
A ψ (ω)xdµ (ω) for

all A ∈ Σ and x ∈ X , and |F | (A) =
∫
A ‖ψ (ω)‖ dµ (ω). Clearly ψ ∈ L1w∗(µ,X∗)

and ψ ∼∗ f . Consequently,

∥∥∥f̂
∥∥∥
1
≤

∫

Ω
‖ψ (ω)‖ dµ (ω) = |F | .

This shows that
∣∣∣T f̂

∣∣∣ =
∥∥∥f̂

∥∥∥
1
, which concludes the proof. �

Corollary 2.3. If L1w∗(µ,X∗) contains a copy of c0, then X
∗ contains a copy

of c0.

Proof: If L1w∗(µ,X∗) contains a copy of c0, by the previous theorem c0 embeds
into cabv (Σ, X∗). So X∗ contains a copy of c0 by virtue of E. and P. Saab’s
theorem [9] ([2, Theorem 3.1.3]). �
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