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Locally minimal topological groups and their

embeddings into products of o-bounded groups

Taras Banakh

Abstract. It is proven that an infinite-dimensional Banach space (considered as an Abe-
lian topological group) is not topologically isomorphic to a subgroup of a product of
σ-compact (or more generally, o-bounded) topological groups. This answers a question
of M. Tkachenko.

Keywords: ω-bounded group, σ-bounded group, o-bounded group, Weil complete group,
locally minimal group, Lie group

Classification: 22A05, 54H11

In this paper we answer in the negative the following question of M. Tkachenko
posed in [Tk, Problem 3.1]: Does every second countable topological group embed
into a product of σ-compact groups? Namely, we show that an infinite-dimensional
Banach space (considered as an Abelian topological group) admits no such an
embedding. In fact, we prove a bit more: no infinite-dimensional Banach space
admits an embedding into a product of o-bounded groups.
Let us recall some definitions, see [Tk]. All topological groups considered in

this note are Hausdorff. A subset B of a topological group G is defined to be
totally bounded if for every neighborhood U of the origin in G there exists a finite
set F ⊂ G such that B ⊂ (F · U) ∩ (U · F ). A topological group G is defined to
be σ-bounded if G is a countable union G =

⋃
∞
n=1Bn of totally bounded subsets.

A topological group G is defined to be ℵ0-bounded if for every neighborhood
U of the origin in G there exists a subset F ⊂ G with |F | ≤ ℵ0 and G = F · U ,
see [Gu]. It is known that each second countable group is ℵ0-bounded and each
ℵ0-bounded group embeds into a product of second countable groups ([Gu]).
A topological group G is called o-bounded if for every sequence (Un)n∈ω of

neighborhoods of the origin in G there exists a sequence (Fn)n∈ω of finite subsets
in G such that G =

⋃
n∈ω Fn · Un, see [Tk, 3.9], [He].

According to [Tk] for a topological group G we have the implications

(σ-bounded)⇒(o-bounded)⇒(ℵ0-bounded),

no of which can be reversed. The considered three classes of groups are closed
with respect to the operations of taking subgroups and continuous homomorphic
images. M. Tkachenko asked in [Tk, Problem 3.1] if every ℵ0-bounded group
embeds isomorphically into a product of σ-bounded groups.
The following theorem answers this question in the negative.
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Main Theorem. An infinite-dimensional Banach space (considered as an Abe-
lian topological group) admits no isomorphic embedding into a product of o-
bounded groups.

As a by-product of the proof we get a characterization of Lie groups in terms of
embeddings into products of o-bounded groups as well as a theorem on equivalence
of o-boundedness and σ-boundedness for groups which are continuous homomor-
phic images of second countable Weil complete groups. A topological group is
called Weil complete if it is complete in its left (equivalently, right) uniformity.

Interplay between o-boundedness and σ-boundedness

The main result of this section is

Equivalence Theorem. Suppose that a topological group G is a continuous
homomorphic image of a second countable Weil complete group. The group G is
o-bounded if and only if it is σ-bounded.

Proof: By hypothesis there exists a surjective continuous group homomorphism
h : H → G, where H is a second countable Weil complete group. Let d be any
left-invariant complete metric on H and B(ε) = {x ∈ H : d(x, e) ≤ ε}, ε > 0,
denote the closed ε-ball around the neutral element e of the group H .
The “if” part of the theorem is trivial. To prove the “only if” part, suppose G

is an o-bounded group. We claim that the image h(U) of some neighborhood U
of the identity in H is left-bounded in H , i.e., for every neighborhood W of the
identity in G there is a finite subset F ⊂ G with h(U) ⊂ F · W .
Assume that it is not so. To get a contradiction, we shall show that the

group G is not o-bounded. For this we shall construct by induction a sequence
(εn)

∞
n=1 ⊂ (0, 1] of real numbers and a sequence (Un)

∞
n=1 of neighborhoods of the

origin in G such that

(1) h(B(εn/2)) 6⊂ F · Un · U−1
n for any finite set F ⊂ G;

(2) h(B(εn+1)) ⊂ Un;
(3) εn ≤ εn−1/2.

Let ε1 = 1 and assume that for some n numbers ε1, . . . , εn and neighborhoods
U1, . . . , Un−1 satisfying the conditions (1)–(3) have been constructed. By our
assumption, the set h(B(εn/2)) is not left bounded in G. Hence, there exists a
neighborhood W ⊂ G of the origin such that h(B(εn/2)) 6⊂ F · W for any finite
set F ⊂ G. Let Un be a neighborhood of the origin in G such that Un ·U−1

n ⊂ W .
Clearly, the condition (1) is satisfied. Finally, using the continuity of h, choose
any εn+1 to satisfy 0 < εn+1 ≤ εn/2 and h(B(εn+1)) ⊂ Un. This finishes the
inductive construction of the sequences (εn)

∞
n=1 and (Un)

∞
n=1.

It rests to verify that
⋃

∞
n=1 Fn · Un 6= G for any sequence (Fn)

∞
n=1 of finite

subsets of G. For this, given such a sequence (Fn), we shall construct inductively
a sequence (xn)

∞
n=1 of points of the group H such that the following conditions

are satisfied for every n ≥ 1:
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(4) h(xn · B(εn)) ∩ Fn−1 · Un−1 = ∅;
(5) xn+1 ∈ xn · B(εn/2).

Let x0 = e and assume that for some n ≥ 0 the points x0, . . . , xn satisfying (4)
and (5) have been defined. It follows from (1) that h(xn ·B(εn/2)) 6⊂ Fn ·Un ·U−1

n

and hence there exists a point xn+1 ∈ xn ·B(εn/2) with h(xn+1) /∈ Fn ·Un ·U−1
n .

Multiplying this by Un, we get h(xn+1) ·Un ∩Fn ·Un = ∅. Then by (2), h(xn+1 ·
B(εn+1)) ∩ Fn · Un = ∅. This finishes the construction of the sequence (xn)

∞
n=1.

It follows from (3) and (5) that the sequence (xn)
∞
n=1 is Cauchy with respect

to the metric d and thus converges to some point x∞ ∈ H . We claim that
x∞ ∈ xn · B(εn) for every n ≥ 1. Indeed, using (5) and (3), we get

d(x∞, xn) ≤
∞∑

i=n

d(xi, xi+1) ≤
∞∑

i=n

εi

2
≤

∞∑

i=n

εn

2 · 2i−n
= εn.

Then by (4), h(x∞) /∈ Fn ·Un for every n ≥ 1 which implies h(x∞) /∈
⋃

∞
n=1 Fn ·Un

and G 6=
⋃

n=1 Fn · Un.
This contradiction shows that the image h(U) of some symmetric neighborhood

U = U−1 of the identity in H is left bounded in G. Then for every points x, y ∈ G
the set x ·h(U) is left bounded while the set x ·h(U)∩h(U) ·y is totally bounded.
Now fix a dense countable subset (dn)n∈ω in H . Then H =

⋃
i,j∈ω(di ·U)∩(U ·dj)

and consequently, G = h(H) =
⋃

i,j∈ω(h(di) ·h(U))∩ (h(U) ·h(dj )) is a countable

union of totally bounded subsets. �

Locally minimal groups

Recall that a topological group G is called minimal if G admits no strictly
weaker Hausdorff group topology.
We define a topological group G to be locally minimal if there exists a neigh-

borhood U of the origin in G such that G admits no strictly weaker Hausdorff
group topology for which U is a neighborhood of the origin.
Clearly, each minimal group is locally minimal. It can be easily shown that

each locally compact group is locally minimal. There are also non-locally compact
locally minimal groups:

Proposition 1. A normed linear space (considered as an Abelian topological
group) is locally minimal.

Proof: Let X be a normed linear space and let B denote the unit open ball in X
with the center at the origin. Suppose τ is a weaker Hausdorff group topology on
X such that B is a neighborhood of the origin in (X, τ). To prove our proposition

it suffices to verify that for every n ∈ N the set 1nB = {x ∈ X : ‖x‖ < 1
n} is

a neighborhood of the origin in (X, τ). Let U ⊂ B be an open neighborhood of
the origin in (X, τ). By the continuity of the group operation on (X, τ), the set

V = {x ∈ X : nx ∈ U} is open (X, τ). We claim that V ⊂ 1
nB. Indeed, assuming
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the converse, we would find x ∈ V with ‖x‖ ≥ 1
n . Then ‖nx‖ ≥ 1, a contradiction

with nx ∈ U ⊂ B. �

We call a topological group G a group without small subgroups if there exists a
neighborhood of the origin in G containing no non-trivial subgroup. It is easy to
see that each normed space is a group without small subgroups. Locally minimal
groups without small subgroups have the following remarkable property.

Proposition 2. Let G ⊂
∏

i∈I Gi be a subgroup of a product of topological

groups. If G is a locally minimal group without small subgroup, then there
exists a finite subset F ⊂ I such that the projection prF : G →

∏
i∈F Gi is an

isomorphic embedding.

Proof: Let U be a neighborhood of the origin in G containing no non-trivial
subgroup and V be a neighborhood of the origin in G such that G admits no
strictly weaker Hausdorff group topology for which V remains a neighborhood
of the origin. By definition of the product topology on

∏
i∈I Gi, there exists a

finite subset F ⊂ I and a neighborhood W of the origin e of the group
∏

i∈F Gi

such that pr−1
F
(W ) ⊂ U ∩ V . We claim that the projection prF : G →

∏
i∈F Gi

is an isomorphic embedding. Observe that pr−1
F
(e) ⊂ U is a trivial subgroup

of G (by the choice of U) and thus the map prF : G →
∏

i∈F Gi is injective.

Then τ = {pr−1
F
(O) : O is an open subset in

∏
i∈F Gi} is a weaker Hausdorff

group topology on G. Since V is a neighborhood of the origin in (G, τ), the
topology τ coincides with the original topology of the group G and thus the map
prF : G →

∏
i∈F Gi is an isomorphic embedding. �

Problem. Investigate the class of locally minimal groups.

A characterization of Lie groups

Characterization Theorem. A second countable group G is a Lie group if and
only if the following conditions are satisfied:

(1) G is a locally minimal Weil complete group without small subgroups;
(2) G embeds isomorphically into a product of o-bounded groups.

Proof: The “only if” part of the theorem is trivial. To prove the “if” part,
suppose that a second countable group G satisfies the conditions (1)–(2). By
Proposition 2, the group G embeds isomorphically into a finite product G1×· · ·×
Gn of o-bounded groups. Since subgroups of o-bounded groups are o-bounded,
we may assume that the projection of G on each Gi coincides with Gi. Then
according to Equivalence Theorem, each Gi, being a continuous homomorphic
image of a Weil complete group G, is σ-bounded. Consequently, the product
G1 × · · · × Gn as well as its subgroup G is σ-bounded. Now Weil completeness
of G implies that G is σ-compact and hence, being second countable, must be
locally compact. Since G has no small subgroups, G is a Lie group according to
the well known Gleason-Montgomery-Zippin Theorem ([Gl], [MZ]). �
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Question. Is Characterization Theorem valid for Răıkov complete groups, i.e.,

groups complete with respect to the two-sided uniformity?

Proof of Main Theorem

Suppose that an infinite-dimensional Banach space X embeds into a product∏
i∈I Gi of o-bounded groups. The groups Gi, being o-bounded, are ℵ0-bounded.
Then the subgroup X of their product

∏
i∈I Gi is ℵ0-bounded ([Gu]). Next, the

group X , being metrizable and ℵ0-bounded, is second countable. Thus X is a sec-
ond countable Weil complete abelian group without small subgroups (see Propo-
sition 1) which embeds into a product of o-bounded groups. By Characterization
Theorem, X must be a Lie group, a contradiction with the infinite-dimensionality
of X . �
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