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A class of pairs of weights related to the

boundedness of the Fractional Integral

Operator between L
p and Lipschitz spaces

Gladis Pradolini

Abstract. In [P] we characterize the pairs of weights for which the fractional integral
operator Iγ of order γ from a weighted Lebesgue space into a suitable weighted BMO
and Lipschitz integral space is bounded.
In this paper we consider other weighted Lipschitz integral spaces that contain those

defined in [P], and we obtain results on pairs of weights related to the boundedness of Iγ

acting from weighted Lebesgue spaces into these spaces. Also, we study the properties
of those classes of weights and compare them with the classes given in [P]. Then, under
additional assumptions on the weights, we obtain necessary and sufficient conditions for
the boundedness of Iγ between BMO and Lipschitz integral spaces. For the boundedness
between Lipschitz integral spaces we obtain sufficient conditions.

Keywords: two-weighted inequalities, fractional integral, weighted Lebesgue spaces,
weighted Lipschitz spaces, weighted BMO spaces.

Classification: Primary 42B25

1. Introduction and preliminary notation

In harmonic analysis, a question of considerable interest that arises in connec-
tion with the theory of partial differential equations, is to determine the classes of
weights related to the boundedness of certain operators between weighted spaces.
This type of problem was studied by several authors, see [CF], [HL], [MW1],
[MW2], [S], [SWe] and others. For example, in [MW1], B. Muckenhoupt and
R. Wheeden proved that the fractional integral of order γ, 0 < γ < n, defined by

(1.1) Iγf(x) =

∫

Rn

f(y)|x − y|γ−n dy

satisfies the inequality

(1.2) ‖v−1χB‖∞
1

|B|

∫

B

∣

∣Iγf(x)− mB

(

Iγf
)∣

∣ dx ≤ C‖f/v‖n/γ,

The author was supported by Consejo Nacional de Investigaciones Cient́ıficas y Técnicas de
la República Argentina.
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if and only if v(n/γ)′ ∈ A1, where mBf = (1/|B|)
∫

B f . This inequality may be

viewed as the boundedness of Iγ from L
n/γ
v into a weighted version of the space

of functions with bounded mean oscillation.
In the unweighted case, it is well known that Iγ is a bounded linear operator

from BMO, the space of the function with bounded mean oscillation, into the
classical Lipschitz spaces Λ(γ/n). See for example [Pe].
In 1997, Harboure, Salinas and Viviani in [HSV], gave necessary and sufficient

conditions on the weights for the boundedness of the fractional integral operator
Iγ from weighted strong and weak Lp spaces within the range p ≥ n/γ into
weighted versions of BMO and Lipschitz integral spaces. Under an additional
assumption on the weight, they also obtain necessary and sufficient conditions for
the boundedness between weighted Lipschitz spaces.
An extension to the case of two weights can be found in [P], where the author

characterizes the pairs of weights for which Iγ is bounded from weighted Lebesgue

spaces Lp
v into a weighted version of BMO and Lipschitz integral spaces of pa-

rameter δ, with a weight w, called Lw(δ) spaces, defined as the locally integrable
functions f such that for every ball B ⊂ R

n the inequality

(1.3)
‖(1/w)χB‖∞

|B|1+δ/n

∫

B

|f(x)− mBf | dx ≤ C

holds. For δ = 0, this space coincides with that one of the weighted bounded
mean oscillation spaces introduced in [MW2]. The case w = 1 gives the known
Lipschitz integral spaces for 0 < δ < 1, and the Morrey spaces given in [Pe], for
−n < δ < 0. The work includes a study of the properties of the classes of weights
that arise in connection with the boundedness of Iγ .

Our aim in this work is to give a two weighted characterization for the bound-
edness of the fractional integral operator Iγ , 0 < γ < n, generalizing the one-
weighted results obtained in [HSV]. More precisely, we characterize the pairs of
weights for which Iγ is bounded from weighted Lebesgue spaces L

p
v into a weighted

version of Lipschitz integral spaces that contain those defined in [P]. Then, we give
necessary and sufficient conditions for the boundedness of Iγ between weighted
BMO and Lipschitz integral spaces. For the boundedness between Lipschitz
spaces we obtain sufficient conditions. We also deal with the classes of pairs of
weights that arise from these conditions and we determine their properties.
We shall give the basic notation used through this paper. As usual, we say

that w is a weight if it is a nonnegative locally integrable function defined on R
n.

We also say that w satisfies the doubling condition if there exists a constant C
such that the inequality

0 < w(2B) ≤ Cw(B) < ∞

holds for every ball B ⊂ R
n. For a measurable set E ⊂ R

n, we denote w(E) =
∫

E w(x) dx. The open ball centered at xB with radius R will be denoted by
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B(xB , R) and θB will meanB(xB , θR). By Lp we mean the usual strong Lebesgue
space on R

n, and we denote by ‖ · ‖p, the corresponding norm, that is

‖f‖p =

(
∫

Rn

|f(x)|p dx

)1/p

.

Finally, we denote by Lp
w the class of functions f such that f/w ∈ Lp.

Section 2 of this paper contains the basic properties of the spaces that we
are going to consider and the relations to those defined in [P]. In Section 3 we
introduce the classes of pairs of weights related to the boundedness of Iγ between
weighted Lebesgue spaces and the spaces given in Section 2. The properties of
such classes of weights are given in Section 5. The proofs of the main results of
this paper can be found in Section 4.

2. On the weighted Lipschitz integral spaces Lw(δ)

In this section we shall introduce the Lipschitz integral spaces that we are going
to consider in our work.

2.1 Definition. Let w be a weight and δ ∈ R. We say that a locally integrable

function f belongs to Lw(δ) if there exists a constant C such that the inequality

(2.2)
1

w(B) |B|δ/n

∫

B

|f(x)− mBf | dx ≤ C

holds for every ball B ⊂ R
n. The least constant C with this property will be

denoted by |||f |||Lw(δ).

It can be seen that, for each δ, γ and p, the space Lw(δ) defined in [P] as the
set of locally integrable functions f such that for every ball B ⊂ R

n the inequality

(2.3)
‖(1/w)χB‖∞

|B|1+δ/n

∫

B

|f(x)− mBf | dx ≤ C

holds, is contained in Lw(δ). Moreover, if δ = 0, the space Lw(δ) coincides (as
Lw(δ)) with one of the weighted bounded mean oscillation spaces, introduced by
Muckenhoupt and Wheeden in [MW2], and for −n < δ < 1, this definition agrees
with one of the versions given in [HSV]. For the case w = 1, Lw(δ) is the known
Lipschitz integral space for 0 < δ < 1, and the Morrey space for −n < δ < 0.

Now we shall establish the relation between Lw(δ), the space Lw(δ) defined in
[P] and certain pointwise version of Lipschitz spaces.
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2.4 Proposition. Let δ ∈ R and let w be a weight, then

(2.5) The space Lw(δ) is contained in the space Lw(δ). Moreover, if w ∈ A1,
then both spaces coincide.

(2.6) Let δ > 0. If w satisfies the doubling condition, then the space Lw(δ)
coincides with the pointwise version ∆w(δ) consisting of all the functions f such
that there exists a constant C satisfying

(2.7) |f (x)− f (y)| ≤ C

(
∫

B(x,2|x−y|)

w(z)

|z − x|n−δ
dz +

∫

B(y,2|x−y|)

w(z)

|z − y|n−δ
dz

)

for almost every x and y in R
n.

Proof: Let us show first (2.5). From the inequality

inf
B

w ≤
w (B)

|B|

it is clear that Lw(δ) ⊂ Lw(δ). The other inclusion is also immediate by our
assumption that w ∈ A1.

In order to prove (2.6), we first check (2.7) for f ∈ Lw(δ). Given x and y in
R

n Lebesgue points of f , x 6= y, take B = B (x, |x − y|) and B′ = B (y, |x − y|).
Then

|f (x) − f (y)| ≤ |f (x)− mBf |+ |f (y)− mB′f |+ |mB′f − mBf | .

We estimate only the first term of the right side. The estimates for the other
terms are similar. Letting Bi = 2

−iB, i ≥ 0, we get from the assumption

|f (x)− mBf | ≤ lim
k→∞

(

∣

∣f (x)− mBk
f
∣

∣+

k−1
∑

i=0

∣

∣mBi+1
f − mBi

f
∣

∣

)

≤ C

∞
∑

i=0

|Bi|
−1

∫

Bi

∣

∣f(z)− mBi
f
∣

∣ dz

≤ C |||f |||
Lw(δ)

∞
∑

i=0

|Bi|
δ/n−1 w (Bi)

≤ C |||f |||
Lw(δ)

∞
∑

i=0

∫

Bi−Bi+1

w(z)

|z − x|n−δ
dz

≤ C |||f |||
Lw(δ)

∫

B(x,2ρ)

w(z)

|z − x|n−δ
dz

for almost all x ∈ R
n. Then (2.7) follows.

Conversely, integrating (2.7) over a ball B with respect to both variables, x
and y, and changing the order of integration, we obtain that f belongs to Lw(δ).
Thus (2.6) is proved. �
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3. Statement of the main results

First, we introduce the classes of pairs of weights that we are going to consider.

3.1 Definition. Let 0 < γ < n, δ ∈ R and 1 < p ≤ ∞. We say that a pair of
weights (w, v) belongs to H(p, γ, δ), if there exists a constant C such that

(3.2)
|B|1+(1−δ)/n

w (B)

(
∫

Rn

vp′ (y)
(

|B|1/n + |xB − y|
)p′(n−γ+1)

dy

)1/p′

≤ C

holds for every ball B ⊂ R
n, where xB is the center of B. In the case p = 1, (3.2)

should be understood as

|B|1+(1−δ)/n

w (B)

∥

∥

∥

∥

∥

v
(

|B|1/n + |xB − ·|
)(n−γ+1)

∥

∥

∥

∥

∥

∞

≤ C.

3.3 Remark. Keeping in mind that

‖(1/w)χB‖∞ =
1

inf
x∈B

w
≥

|B|

w (B)

it is easy to check that the classes H(p, γ, δ) defined in [P] are contained in the
classes H(p, γ, δ) given in the above definition. However, the reciprocal inclusion
is not valid. We postpone the proof of this assertion to Section 5, where we shall
study the properties of the classes H(p, γ, δ).
Also, if w = v and δ = γ−n/p, it can be seen that the classesH(p, γ, δ) coincide

with the classes H(p, γ) defined in [HSV].

Now we state the results on the boundedness of the operator Iγ involving the
spaces Lw(δ) and the corresponding classes H(p, γ, δ).

3.4 Theorem. Let 0 < γ < n, 1 ≤ p ≤ ∞, δ ∈ R and let (w, v) be a pair of
weights. The following statements are equivalent:

(3.5) The operator Iγ is a bounded linear operator from Lp
v into Lw(δ).

(3.6) The pair (w, v) belongs to H(p, γ, δ).

In the following theorems we state results of boundedness of Iγ acting from
suitable BMO and Lipschitz integral spaces into Lipschitz integral spaces. More
precisely, under additional assumption on the weights, we obtain necessary and
sufficient conditions for the boundedness of Iγ between BMO and Lipschitz in-
tegral spaces. On the other hand, we obtain sufficient conditions for the bound-
edness of Iγ between Lipschitz integral spaces. For the one weight case, similar
results have been established in [HSV]. Our results are contained in the following
theorems and the proofs are in Section 4.
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3.7 Theorem. Let 0 < γ < 1 and (w, v) be a pair of weights. Then

(3.8) the condition H(∞, γ, γ) is necessary for the boundedness of the operator
Iγ from Lv(0) into Lw(γ);

(3.9) if w and v satisfy the doubling condition, and (w, v) belongs to H(∞, γ, γ),
then Iγ is a bounded linear operator from Lv(0) into Lw(γ).

3.10 Theorem. Let γ > 0 and δ ≥ 0 be such that 0 < γ+δ < 1, and let (w, v) be
a pair of weights that satisfy the doubling condition and such that (w, v) belongs
to H(∞, γ+δ, γ+δ). Then, the operator Iγ is bounded from Lv(δ) into Lw(γ+δ).

We note that Theorem 3.7 generalizes the classical unweighted results on the
boundedness of Iγ between BMO and Lipschitz spaces Λ(α). For the one weight
case, E. Harboure, O. Salinas and B. Viviani prove that the spaces Lw(δ), 0 <
δ < 1 coincide with the pointwise versions given in Proposition 2.4 because the
weight in the classes they obtain satisfies the doubling condition.

4. Proof of the main results

Now we will restrict our attention to the boundedness of Iγ from BMO and
Lipschitz integral spaces into Lipschitz integral spaces, the proof of Theorem 3.4
follows similar lines as in [P, Theorem 3.5] and we omit it. First, we shall consider
the following expression for the operator Iγ (since the usual definition, i.e. (1.1),
is not good to deal with Lw(δ) spaces because of convergence problems, as can
be seen in related classical results)

(4.1) Iγf (x) =

∫

Rn

(

1

|x0 − y|n−γ −
1

|x − y|n−γ

)

f (y) dy,

where x0 ∈ R
n is chosen adequately. It can be proved that, if both integrals (1.1)

and (4.1) converge, then differ by a constant.

The next lemma was proved in [HSV] and we omit its proof here.

4.2 Lemma. Let α ∈ R
+ and δ ≥ 0 be such that 0 < α + δ < 1. Let v be

a weight satisfying the doubling condition. Then there exists a constant C such
that the inequality

∫

Rn−B

|f(y)− mBf |

|xB − y|n+1−α
dy ≤ C|||f |||Lv(δ)

∫

Rn−B

v(y)

|xB − y|n+1−α−δ
dy

holds for every f ∈ Lv(δ) and every B = B (xB , R) ⊂ R
n.

Now, we prove the finiteness of (4.1) for every f ∈ Lv (δ).
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4.3 Lemma. Given γ > 0 and δ ≥ 0 such that 0 < γ + δ < 1, let (w, v) be
a pair of weights belonging to H (∞, γ + δ, γ + δ), with v satisfying the doubling
condition. If x0 ∈ R

n is a point such that, for all R ∈ R
+

∫

B(x0,R)

v (y)

|x0 − y|n−(γ+δ)
dy < ∞ and

∫

B(x0,R)

w (y)

|x0 − y|n−(γ+δ)
dy < ∞

hold, and f ∈ Lv (δ), then (4.1) is finite for almost every x ∈ R
n.

Proof: Since, for every v ∈ Lloc(R
n), R > 0 and m ∈ N

∫

B(0,m)

(
∫

B(x,R)

v(y)

|x − y|n−(γ+δ)
dy dx

)

≤

∫

B(0,R+m)

v(y)

(
∫

B(0,m)

dx

|x − y|n−(γ+δ)

)

dy

≤ C(m, α)

∫

B(0,R+m)

v(y) dy < ∞,

we can choose x0 and x ∈ R
n, with x 6= x0 as in the hypotheses of the lemma.

Then we take B = B (x0, |x − x0|). Since the expression in parentheses of (4.1)
has zero integral over R

n as a function of y, we have

(4.4)

∫

Rn

(

1

|x0 − y|n−γ −
1

|x − y|n−γ

)

f (y) dy

=

∫

Rn

(

1

|x0 − y|n−γ −
1

|x − y|n−γ

)

(f (y)− mBf) dy

= I1 (x) + I2 (x) ,

where I1 is the integral over the ball B and I2 is the integral over the complement
of B.

Let us first estimate I1. Setting B̃ = B(x, 2|x − x0|), we have

|I1(x)| ≤

∫

B

|f(y)− mBf |

|x0 − y|n−γ dy +

∫

B̃

|f(y)− mBf |

|x − y|n−γ dy

≤

∫

B

|f(y)− mBf |

|x0 − y|n−γ dy +

∫

B̃

∣

∣f(y)− mB̃f
∣

∣

|x − y|n−γ dy

+ |||f |||
Lv(δ) v(B̃) |B|

γ+δ
n

−1 .
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Both integrals can be estimated in the same way, so we do only the first one.
Thus, denoting Bk = 2

−kB, k ∈ N, we get
∫

B

|f(y)− mBf |

|x0 − y|n−γ dy ≤ C |B|
γ
n

∞
∑

k=0

2−kγ |Bk|
−1

∫

Bk−Bk+1

|f (y)− mBf | dy

≤ C |B|
γ
n

∞
∑

k=0

2−kγ
k

∑

j=0

∣

∣Bj

∣

∣

−1
∫

Bj

∣

∣

∣
f (y)− mBj

f
∣

∣

∣
dy

≤ C|||f |||Lv(δ) |B|
γ
n

∞
∑

k=0

2−kγ
k

∑

j=0

∣

∣Bj

∣

∣

δ/n−1
v

(

Bj
)

≤ C|||f |||Lv(δ) |B|
γ+δ

n
−1

∞
∑

j=0

2j(n−δ)v
(

Bj
)

∞
∑

k=j

2−kγ

≤ C|||f |||Lv(δ) |B|
γ+δ

n
−1

∞
∑

j=0

2j(n−γ−δ)v
(

Bj
)

≤ C|||f |||Lv(δ) |B|
γ+δ

n
−1

∞
∑

j=0

2j(n−γ−δ)v
(

Bj − Bj+1
)

≤ C|||f |||Lv(δ)

∫

B

v(y)

|x0 − y|n−γ−δ
dy.

Therefore

(4.5) |I1 (x)| ≤ C|||f |||Lv(δ)

(
∫

B

v(y)

|x0 − y|n−(γ+δ)
dy +

∫

B̃

v(y)

|x − y|n−(γ+δ)
dy

)

.

Next, let us estimate I2. Applying Lemma 4.2 with γ and δ and the fact that
(w, v) ∈ H(∞, γ + δ, γ + δ) we get

(4.6)

|I2 (x)| ≤

∫

Rn−B

∣

∣

∣

∣

1

|x0 − y|n−γ −
1

|x − y|n−γ

∣

∣

∣

∣

|f (y)− mBf | dy

≤ C |B|1/n
∫

Rn−B

|f(y)− mBf |

|x0 − y|n−γ+1
dy

≤ C|||f |||Lv(δ) |B|1/n
∫

Rn−B

v (y)

|x0 − y|n−γ−δ+1
dy

≤ C|||f |||Lv(δ) |B|(γ+δ)/n−1 w (B)

≤ C|||f |||Lv(δ)

∫

B

w (y)

|x0 − y|n−(γ+δ)
dy.
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Then, it follows from the assumptions that I2 is finite almost everywhere. Finally,
combining (4.5) and (4.6) we get the lemma. �

Now, we are going to prove the theorems that involve the boundedness of Iγ

between Lipschitz spaces, that is, Theorems 3.7 and 3.10.

Proof of Theorem 3.7: Let us first see (3.9). In order to prove the boundedness
of Iγ we note that, by Proposition 2.4 it is enough to get a pointwise estimate
as in (2.7) for Iγ instead of f . Given x1 and x2 in R

n with x1 6= x2 let B =
B (x1, |x1 − x2|). Since the kernel of Iγ has zero integral over R

n, we have

∣

∣Iγf (x1)− Iγf (x2)
∣

∣ ≤

∫

Rn

∣

∣

∣

∣

1

|x1 − y|n−γ −
1

|x2 − y|n−γ

∣

∣

∣

∣

|f (y)− mBf | dy

= I1 + I2,

where I1 is the integral over B and I2 is the integral over R
n\B. Thus, with

arguments similar to the one used for (4.5) and (4.6), we get

∣

∣Iγf (x1)− Iγf (x2)
∣

∣

≤ C|||f |||Lv(0)

(
∫

B(x1,2|x1−x2|)

w(z)

|z − x1|
n−δ

dz +

∫

B(x2,2|x1−x2|)

w(z)

|z − x2|
n−δ

dz

)

.

Then, by integrating over a ball with respect to x1 and x2 we obtain the desired
result.

In order to prove (3.8) we observe that, by the assumptions,

1

w(B) |B|γ/n

∫

B

∣

∣Iγf(x)− mBIγf
∣

∣ dx ≤ C|||f |||Lv(0)

holds for every B ⊂ R
n and f ∈ Lv(0), with C independent of f . Following

similar arguments as in the proof of Theorem 3.5 of [P], it can be seen that there
exists a constant C such that the inequality

(4.7)
|B|1+

1−γ
n

w (B)

∫

Rn

f (y)
(

|xB − y|+ |B|1/n
)n−γ+1 dy ≤ C|||f |||Lv(0)

holds for every f ∈ Lv(0). Let us show that v ∈ Lv(0). In fact

|||v|||Lv (0) = sup
B

1

v(B)

∫

B

|v(x) − mBv| dx ≤ 2.



142 G.Pradolini

Then taking f = v in (4.7) we have

∫

Rn

v(y)
(

|B|1/n + |xB − y|
)n−γ+1

dy ≤ C
w(B)

|B|1+
1−γ

n

so we obtain that (w, v) ∈ H(∞, γ, γ). �

Proof of Theorem 3.10: To obtain the boundedness of Iγ we proceed as in
the proof of (3.9). Then we have

∣

∣Iγf (x1)− Iγf (x2)
∣

∣

≤ C|||f |||Lv(δ)

(
∫

B(x1,2|x1−x2|)

w(z)

|z − x1|
n−δ

dz

∫

B(x2,2|x1−x2|)

w(z)

|z − x2|
n−δ

dz

)

.

The desired inequality is obtained by integrating over a ball B(xB , R) with respect
to x1 and x2. �

5. Properties of the classes H(p, γ, δ)

We begin with technical lemmas that establish some properties of the classes
H(p, γ, δ).

5.1 Lemma. Let 0 < γ < n, 1 ≤ p ≤ ∞ and δ ∈ R. The condition H(p, γ, δ) is
equivalent to the existence of a constant C such that the inequalities

(5.2)
|B|(γ−δ)/n

w (B)

(
∫

B

vp′ (y) dy

)
1

p′

≤ C

and

(5.3)
|B|1+(1−δ)/n

w(B)

(
∫

Rn−B

vp′(y)

|xB − y|(n−γ+1)p′
dy

)
1

p′

≤ C

hold simultaneously for every ball B ⊂ R
n, where xB is the center of B.

In [P] it is proved that, when δ < 1, the condition H(p, γ, δ) can be reduced
to a condition over a ball B. This is not possible for the condition H(p, γ, δ). In
fact, we get
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5.4 Lemma. Let p and γ be as in Lemma 5.1. There exist nontrivial pairs of
weights (w, v) that satisfy (5.2) but not (5.3) for δ in the range

δ ≤ min(1, γ − n/p),

excluding the case δ = 1 when γ − n/p = 1.

Proof: Let us first consider δ = 1 < γ − n/p. The pair (w, v) given by

w = 1 and v(x) = |x|n/p−γ+1

satisfies (5.2) for every ball B ⊂ R
n because, if |xB | ≤ R we have

|B|(γ−1)/n

w(B)

(
∫

B

vp′ (y) dy

)
1

p′

≤ CRγ−1−nRn/p−γ+1+n/p′ = C,

and for |xB | ≥ R we get

|B|(γ−1)/n

w(B)

(
∫

B

vp′ (y) dy

)
1

p′

≤ CRγ−1−n |xB |n/p−γ+1Rn/p′

≤ CRγ−1−n+n/p−γ+1+n/p′

= C.

On the other hand, if B = B (0, R), we obtain

|B|

w(B)

(
∫

Rn−B

vp′(y)

|y|(n−γ+1)p′
dy

)
1

p′

≥

(
∫

{|y|>R}

|y|(n/p−γ+1)p′

|y|(n−γ+1)p′
dy

)
1

p′

=

(
∫

{|y|>R}

1

|y|n
dy

)
1

p′

,

where the last integral is infinite and, thus, (w, v) does not satisfy (5.3).
Similar estimates can be obtained for the case δ < 1 ≤ γ − n/p by considering

the pair (w, v) defined by

w (x) = |x|γ−δ−n/p and v ≡ 1.

The same is true for the case δ ≤ γ − n/p < 1 and (w, v) defined by

w (x) = |x|β and v (x) = |x|α

with
α > n/p− γ + 1 and β = α+ γ − δ − n/p.

�

We have proved that H(p, γ, δ) cannot be reduced to (5.2). However, if vp′

satisfies the doubling property then H(p, γ, δ) can be reduced to (5.3). This was
already proved in [HSV] for the case w = v and δ = γ −n/p, where the condition

imposed to vp′ arises naturally.
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5.5 Lemma. Let (w, v) be a pair of weights that satisfy (5.3) such that vp′

satisfies the doubling property for 1 < p ≤ ∞. Then (w, v) satisfy (5.2).

Proof: Since (5.3) holds and vp′ satisfies a doubling property, then, given a ball
B (xB , R), we have

w (B)

|B|
≥ C|B|(1−δ)/n

(
∫

Rn−B

vp′(y)

|xB − y|(n−γ+1)p′
dy

)
1

p′

≥
|B|(1−δ)/n

|B|1+(1−γ)/n

(

vp′ (2B − B)
)1/p′

≥

(

vp′ (2B)
)1/p′

|B|1+(δ−γ)/n
,

and thus (5.2) holds and, in view of Lemma 5.1, we have (w, v) ∈ H(p, γ, δ). �

It is important to note that, as distinguished from the case δ = γ − n/p and

w = v, the doubling property of vp′ does not arise naturally from the condition
H(p, γ, δ). In fact, in Theorem 5.13 of [P] it is proved that the pairs (1, v) with v

any function in Lp′ belong to H(p, γ, γ−n) for 1 < p ≤ ∞. Then, by Remark 3.3,

the same holds for H(p, γ, γ − n) and it is clear that there exist functions in Lp′

that do not satisfy the doubling condition.

Now we shall determine the range of p and δ for which the pairs of weights
that satisfy H(p, γ, δ) are trivial, i.e. v = 0 a.e.

5.6 Theorem. Given γ ∈ (0, n), we have

(5.7) if δ > 1 or δ > γ − n/p, the condition H(p, γ, δ) is satisfied if and only if
v = 0 a.e. x ∈ R

n;

(5.8) the same conclusion holds if δ = γ − n/p = 1.

Proof: Let us first show (5.7). In both cases, δ > 1 and δ > γ − n/p, the proof
follows similar lines as in (5.7) of Theorem 5.6 given in [P], by observing that the
condition H(p, γ, δ) is

(
∫

Rn

vp′ (y)
(

|B|1/n + |xB − y|
)p′(n−γ+1)

dy

)
1

p′

≤ C
w (B)

|B|
|B|(δ−1)/n ,

and from this condition it can be deduced that

(

vp′(B)

|B|

)
1

p′

≤ C
w (B)

|B|
|B|(δ−γ)/n+1/p .
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To prove (5.8) we proceed as in (5.8) of Theorem 5.6 of [P], by observing that
the condition H(p, γ, 1) is given by

(
∫

Rn

vp′(y)
(

|xB − y|+ |B|1/n
)(n−γ+1)p′

dy

)1/p′

≤ C
w (B)

|B|
,

that is, the same inequality used in the proof of that theorem. �

5.9 Remark. In Remark 3.3 we proved that H(p, γ, δ)⊂ H(p, γ, δ). Let us see
that the reciprocal inclusion is not valid. In fact, let us consider

(2(γ − n/p)− 1)+ ≤ α ≤ γ − n/p,

γ − n/p − α < δ < min {γ − n/p, n/p− γ + 1} ,

n/γ < p < n/ (γ − 1)+

and the pair (w, v) defined by

w (x) =

{

|x|α if |x| ≤ 1

|x|α+δ if |x| > 1
and v(x) = |x|δ .

It is easy to check that (w, v) does not belong to H(p, γ, δ). However, we shall
see that (w, v) belongs to H(p, γ, δ). We use Lemma 5.5 to estimate only (5.3).
Letting Bi = 2

iB, we have

(5.10)
|B|1+

1−δ
n

w (B)

(
∫

Rn−B

vp′(y)

|xB − y|(n−γ+1)p′
dy

)
1

p′

≤ C
Rγ−δ

w(B)

∞
∑

i=1

1

2i(n−γ+1)

(
∫

Bi

vp′
)
1

p′

.

Let us first consider |xB | ≤ R. Then, from (5.10) we obtain

(5.11)

|B|1+
1−δ

n

w (B)

(
∫

Rn−B

vp′(y)

|xB − y|(n−γ+1)p′
dy

)
1

p′

≤ C
Rγ+n/p′

w (B)

∞
∑

i=1

1

2i(n/p−δ−γ+1)

≤ C
Rγ+n/p′

w (B)
.

Thus, since w(B) ≥ Cmax{Rα+n, Rα+δ+n} we obtain that (5.3) holds for this
case.
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Let us now suppose that |xB | > R. Then there exists N1 such that 2
N1R ≤

|xB | < 2N1+1R. The right hand side of (5.10) can be divided into S1 and S2
where

(5.12)

S1 = C
Rγ−δ

w (B)

N1
∑

i=1

1

2i(n−γ+1)

(
∫

Bi

vp′
)
1

p′

S2 = C
Rγ−δ

w (B)

∞
∑

i=N1+1

1

2i(n−γ+1)

(
∫

Bi

vp′
)
1

p′

.

Let us first estimate S1. Since i ≤ N1 and n/p− γ + 1 > 0 we have

S1 ≤ C
Rγ−δ+n/p′

w (B)
|xB |δ .

Using that w(B) ≥ C max
{

|xB |α Rn, |xB |α+δ Rn
}

we obtain

S1 ≤ C.

To estimate S2, first we observe that

S2 ≤ C
Rγ+n/p′

w (B)

and then we proceed as in the estimate of S1 to obtain that S2 ≤ C. This
concludes the proof.

Now we give the ranges for which there exist nontrivial pairs of weights that
satisfy H(p, γ, δ).

5.13 Theorem. Given γ ∈ (0, n), there exist pairs of weights with v not iden-
tically equal to zero, that verify the condition H(p, γ, δ) in the range of p and δ
given by

δ ≤ min{1, γ − n/p}

excluding the case δ = 1 when γ − n/p = 1.

Proof: From Remark 3.3 the pairs of weights given in the proof of Theorem 5.13
of [P] satisfy the condition H(p, γ, δ) for γ − n ≤ δ ≤ min{1, γ − n/p} excluding
the case δ = 1 when γ − n/p = 1. However note that both classes H(p, γ, δ) and
H(p, γ, δ) do not coincide even for p and δ in this range.
Now we give examples of pairs of weights for the case δ < γ − n. First, we

consider 1 < p ≤ ∞. We divide the range δ < γ − n in two regions

(i) γ − n − k < δ ≤ min {γ − n/p− k, γ − n − k + 1}, k ∈ N,
(ii) γ − n/p − k − 1 < δ ≤ γ − n − k, k ∈ N0.
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For (i) we consider the pairs (w, v) given by

w(x) = |x|k and v (x) = |x|n/p−γ+δ+k

with
γ − n − k < δ ≤ min{γ − n/p− k, γ − n − k + 1}, k ∈ N.

Since vp′ satisfies the doubling condition, we use Lemma 5.5 to estimate only (5.3).

First we let |xB | ≤ R and Bi = 2
iB. Then

|B|1+
1−δ

n

w (B)

(
∫

Rn−B

vp′(y)

|xB − y|(n−γ+1)p′
dy

)
1

p′

≤
|B|1+

1−δ
n

w (B)

∞
∑

i=1

(
∫

Bi−Bi−1

vp′(y)

|xB − y|(n−γ+1)p′
dty

)

≤ C
Rn+1−δ

Rn+k

∞
∑

i=1

(

2iR
)n/p−γ+δ+k+n/p′

(

2iR
)n−γ+1

= C

∞
∑

i=1

1

2i(1−δ−k)

and since δ + k < γ − n+ 1 < 1, the last sum is finite.

Now let |xB | > R. Then there exists N1 such that
|xB|
R

∼= 2N1 . On the other
hand we have

(5.14)
|B|1+

1−δ
n

w (B)

(
∫

Rn−B

vp′(y)

|xB − y|(n−γ+1)p′
dy

)
1

p′

≤ C
Rγ−δ−n

|xB |k

∞
∑

i=1

1

2(n−γ+1)i

(
∫

Bi

vp′
)1/p′

.

The last term in (5.14) can be divided into S1 and S2 where S1 is the sum up to
the N1-th term and S2 is the sum of the remaining terms. We first estimate S1

S1 ≤ C
Rγ−δ−n

|xB |k

N1
∑

i=1

|xB |n/p−γ+δ+k (

2iR
)n/p′

(

2i
)n−γ+1

≤ CRγ−δ−n
N1
∑

i=1

(

2iR
)n/p−γ+δ+n/p′

(

2i
)n−γ+1

= C

N1
∑

i=1

1

2i(1−δ)
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and the last sum is finite because δ < 1.
For S2 we have

S2 ≤ C
Rγ−δ−n

|xB |k

∞
∑

i=N1+1

(

2iR
)n−γ+δ+k

(

2i
)n−γ+1

= C
Rk

|xB |k

∞
∑

i=N1+1

1
(

2i
)1−δ−k

.

(5.15)

Since δ + k < 1, the last term of (5.15) is less than or equal to C
(

R
|xB|

)k
,

which is bounded by a constant.
Let us now consider (ii). For

γ − n/p − k − 1 < δ ≤ γ − n − k, k ∈ N0

we consider the pair (w, v) defined by

w(x) = |x|α and v(x) = |x|β

with

α = γ − n/p− k − 2δ and β = −k − δ.

Since vp′ satisfies the doubling condition, by Lemma 5.5 we only need to esti-
mate (5.3). Let us take B = B(xB , R) with |xB | ≤ R. Then, if Bi = 2

iB we
have

(5.16)

|B|1+
1−δ

n

w (B)

(
∫

Rn−B

vp′(y)

|xB − y|(n−γ+1)p′
dy

)
1

p′

≤
|B|1+

1−δ
n

w (B)

∞
∑

i=1

1
(

2iR
)n−γ+1

(
∫

Bi

vp′
)
1

p′

= CR1−δ−α+β−n/p+γ−1
∞
∑

i=1

1

2i(n/p−γ+1−β)
.

Noting that

1− δ − α+ β − n/p+ γ − 1 = 0 and n/p − γ + 1 > 0,

it is immediate that the last sum in (5.16) is bounded by a constant independent
of B.
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Let us now consider |xB | > R. As in the case (i), we obtain

(5.17)
|B|1+

1−δ
n

w (B)

(
∫

Rn−B

vp′(y)

|xB − y|(n−γ+1)p′
dy

)
1

p′

≤
Rn+1−δ

|xB |α Rn

∞
∑

i=1

1
(

2iR
)n−γ+1

(
∫

Bi

vp′
)
1

p′

and then we divide the last term of the above inequality into S1 and S2, in similar
way as in that case.
To estimate S1, since i ≤ N1, we have

(5.18)

S1 ≤ C
Rn+1−δ

|xB |α Rn

N1
∑

i=1

1
(

2iR
)n−γ+1

(
∫

Bi

vp′
)1/p′

≤ C
Rn+1−δ

|xB |α Rn

N1
∑

i=1

|xB |β
(

2iR
)n/p′

(

2iR
)n−γ+1

= C
R1−δ

|xB |γ−n/p−δ

N1
∑

i=1

1
(

2iR
)n/p−γ+1

.

Since δ < γ−n/p and |xB | > 2iR we have that the last sum in the above inequality
is bounded by

N1
∑

i=1

1

2i(1−δ)

which is finite since δ < 1.
For S2 we have

S2 ≤
Rn+1−δ

|xB |α Rn

∞
∑

i=N1+1

1
(

2iR
)n−γ+1

(
∫

Bi

vp′
)1/p′

≤ C
R1−δ

|xB |α

∞
∑

i=N1+1

(

2iR
)β+n/p′

(

2iR
)n−γ+1

= C
R1−δ+β−n/p+γ−1

|xB |α

∞
∑

i=N1+1

1
(

2i
)n/p−γ+1−β

.

Now, since 1− δ + β − n/p+ γ − 1 = α and n/p − γ + 1− β > 0 we obtain

S2 ≤ C

(

R

|xB |

)α
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which is bounded because α > 0 and |xB | > R. This concludes the proof of (ii).

For the case p = 1 and δ < γ − n we set

w(x) = |x|−δ and v(x) = |x|n−γ .

We shall see that (w, v) ∈ H(1, γ, δ). From Lemma 5.1, we have to estimate the
first terms of the two inequalities (5.2) and (5.3). Let us first see (5.2). Given
B = B (xB , R), with |xB | ≤ R, we obtain

|B|(γ−δ)/n

w (B)
||χBv||∞ ≤ C

Rγ−δ+n−γ

Rn−δ
= C

and if |xB | > R then

|B|(γ−δ)/n

w (B)
||χBv||∞ ≤ C

Rγ−δ |xB |n−γ

|xB |−δ Rn

= CRγ−δ−n |xB |n−γ+δ ,

which is bounded because γ − δ − n > 0 and |xB | > R.
We shall now estimate (5.3). First we consider |xB | ≤ R. Then

|B|1+
1−δ

n

w (B)

∥

∥

∥

∥

χRn−Bv
(

|B|1/n + |xB − ·|
)(n−γ+1)

∥

∥

∥

∥

∞

≤
|B|1+

1−δ
n

w (B)

∞
∑

i=1

1
(

2iR
)n−γ+1

∥

∥χBi
v
∥

∥

∞

≤ C
Rn+1−δ

Rn−δ

∞
∑

i=1

(

2iR
)n−γ

(

2iR
)n−γ+1

= C

∞
∑

i=1

1

2i
= C.

On the other hand, if |xB | > R we proceed as in the case p > 1 to obtain that
the first term of the above inequality is bounded by S1 and S2 where

S1 = C
R1−δ+n

|xB |−δ Rn

N1
∑

i=1

∥

∥χBk
v
∥

∥

∞
(

2iR
)n−γ+1

,

S2 = C
R1−δ

|xB |−δ

∞
∑

i=N1+1

∥

∥χBk
v
∥

∥

∞
(

2iR
)n−γ+1

.



A class of pairs of weights related to the boundedness of the Fractional Integral Operator . . . 151

To estimate S1, since |xB | > 2iR for i ≤ N1, we have

S1 ≤ C
R1−δ

|xB |−δ

N1
∑

i=1

|xB |n−γ

(

2iR
)n−γ+1

≤ CRγ−δ−n |xB |δ+n−γ ,

which is bounded by a constant.
For S2 we have i > N1 and thus |xB | ≤ 2iR. Then we obtain

S2 ≤ C
R1−δ

|xB |−δ

∞
∑

i=N1+1

(

2iR
)n−γ

(

2iR
)n−γ+1

= C

(

R

|xB |

)−δ ∞
∑

i=2

1

2i
,

and since δ < γ − n < 0 and |xB | > R, the last term is bounded by a constant.
This proves that (w, v) ∈ H(1, γ, δ) and concludes the proof of the theorem. �

In Theorem 5.25 of [P], we prove that δ = γ − n/p is a necessary condition for
the case w = v in condition H(p, γ, δ). The same is true for the classes H(p, γ, δ).
The above assertion is proved in the following theorem.

5.19 Theorem. Let 0 < γ < n and 1 ≤ p ≤ ∞. If (w, v) ∈ H(p, γ, δ) and w = v
then δ = γ − n/p.

Proof: The proof follows by arguments similar to those from Theorem 5.25
of [P], replacing ‖(1/w)χB‖∞ by |B|/w(B), and we omit it. �

In the next theorem we prove that, as in the case of the classes H(p, γ, δ) given
in [P], the classes H(p, γ, δ) are not open in the parameter p.

5.20 Theorem. Given 0 < γ < n, and 1 ≤ p < ∞, there exist pairs of weights
(w, v) belonging to H(p, γ, δ) such that (w, v) does not belong to H((p′r)′, γ, δ)
for any r > 0, with r 6= 1.

Proof: We only need to prove the statement of the theorem for the case p = 1
and δ < γ − n since the other cases are the same as in Theorem (5.27) of [P].
Then, let p = 1 and δ < γ − n, and consider the pair

w(x) = |x|−δ and v(x) = |x|n−γ

given in Theorem 5.13. We proved there that (w, v) belongs to H(1, γ, δ). Let us
see that (w, v) does not belong to H(1 + ǫ, γ, δ) for any ǫ > 0. From Lemma 5.1
it is enough to show that (w, v) does not satisfy condition (5.2) with p = 1 + ǫ.
In fact, if B = B(0, R), we get

|B|(γ−δ)/n

w(B)
‖vχB‖(1+ǫ)′ ≥ Rn/(1+ǫ)′

and the last expression tends to ∞ when R tends to ∞. We are done. �
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