
Commentationes Mathematicae Universitatis Carolinae

Lianying Cao; Ting Fu Wang
Criteria for kM < ∞ in Musielak-Orlicz spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 42 (2001), No. 2, 259--266

Persistent URL: http://dml.cz/dmlcz/119241

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2001

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/119241
http://project.dml.cz


Comment.Math.Univ.Carolin. 42,2 (2001)259–266 259

Criteria for kM < ∞ in Musielak-Orlicz spaces

Lianying Cao, Tingfu Wang

Abstract. In this paper, some necessary and sufficient conditions for sup{kx : ‖x‖0 =
1} < ∞ in Musielak-Orlicz function spaces as well as in Musielak-Orlicz sequence spaces
are given.
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In Orlicz spaces endowed with the Orlicz norm, denote

kM = sup
‖x‖0

M
=1

{

k > 0 : ‖x‖0 =
1

k
(1 + ρM (kx))

}

.

Since the study of many geometric properties in Orlicz spaces is related to whether
kM < ∞ is true, the criterion for kM < ∞ has been discussed extensively. In
1986 S. Chen obtained a concise result in classical Orlicz spaces:

kM < ∞ ⇐⇒ M ∈ ∇2 (i.e. N ∈ ∆2).

But because of the fact that the Musielak-Orlicz functions and condition ∆ are
more complicated, the corresponding problem in Musielak-Orlicz spaces has not
been solved. And it has become to be an obstacle for the study of many geometric
properties in these spaces. In this paper, we shall generalize the result of S. Chen
to Musielak-Orlicz function and sequence spaces.

The triple (T,Σ, µ) stands for a finite nonatomic measurable space. A mapping
M : T × [0,∞)→ [0,∞] is said to be Musielak-Orlicz function if it satisfies:

(*) for each u ∈ [0,∞), M(t, u) is a µ-measurable function of t on T ;
(**) for t ∈ T (a.e.), M(t, u) is convex and left-continuous with respect to u;
(***) for t ∈ T (a.e.), M(t, 0) = 0, limu→∞ M(t, u) =∞ and M(t, u′) < ∞ for

some u′ > 0.

The subject supported by NSFC (19871020).
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We denote by N(t, v) the complementary function of M(t, u), where

N(t, v) = sup
u≥0

{uv − M(t, u)} (t ∈ T, v ≥ 0).

It is easy to see that N is also a Musielak-Orlicz function.
Let x(t) : T → (−∞,∞) be a µ-measurable function. The linear set

{x(t); ∃λ > 0 such that ρM (λx) =

∫

T
M(t, λx(t)) dµ < ∞}

equipped with Orlicz norm

‖x‖0 = sup
ρX(y)≤1

∫

T
x(t)y(t) dµ = inf

k>0

1

k
(1 + ρM (kx))

forms a Banach space denoted by L0M . It is called the Musielak-Orlicz function

space. For 0 6= x ∈ L0M , ‖x‖
0 = 1

k
(1 + ρM (kx)) iff k ∈ k(x) = [k∗x, k∗∗x ], where

k∗x = inf
{

k > 0 : ρN (ρ(k|x|)) =

∫

T
N(t, p(t, k|x(t)|)) dµ ≥ 1

}

,

k∗∗x = sup
{

k > 0 : ρN (ρ(k|x|)) =

∫

T
N(t, p(t, k|x(t)|)) dµ ≤ 1

}

.

We say that M(t, u) satisfies condition ∆ (M ∈ ∆ for short) if there exist λ > 1
and a measurable nonnegative function δ defined on T with

∫

T δ(t) dµ < ∞ such
that

M(t, 2u) ≤ λM(t, u) + δ(t) (t ∈ T a.e., −∞ < u < +∞).

The right derivative of M(t, u) (N(t, v)) at u (v) is denoted by p(t, u) (q(t, v),
respectively).
We start with the following lemmas.

Lemma 1. The following statements are equivalent:

(1) N ∈ ∆, i.e. there exist λ > 1 and 0 ≤ δ(t) ∈ L1 such that

N(t, 2v) ≤ λN(t, v) + δ(t) (t ∈ T a.e., v ∈ R);

(2) for any ε > 0 there exist λ > 1 and 0 ≤ δ(t) ∈ L1 such that

N(t,
v

ε
) ≤ λN(t, v) + δ(t) (t ∈ T a.e., v ∈ R);

(3) for any ε ∈ (0, 1) there exist θ ∈ (0, 1) and 0 ≤ δ(t) ∈ L1 such that

M(t, εu) ≤ θεM(t, u) + δ(t) (t ∈ T a.e., v ∈ R);

(4) there exist ε, θ ∈ (0, 1) and 0 ≤ δ(t) ∈ L1 such that

M(t, εu) ≤ θεM(t, u) + δ(t) (t ∈ T a.e., v ∈ R).

Proof: See Theorem 1.13 in [2]. �
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Lemma 2. For any 0 6= x ∈ L0M , if
∫

{t∈T :x(t)6=0} N(t, B(t)) dµ > 1 then K(x) 6=

∅, where B(t) = sup{v ≥ 0 : N(t, v) < ∞}.

Proof: See Theorem 1.35 in [2]. �

In the following, we always denote

kM = sup
‖x‖0=1

{

k > 0 : ‖x‖0 =
1

k
(1 + ρM (kx))

}

.

Theorem 1. The necessary and sufficient condition for kM < ∞ is N ∈ ∆.

Proof: Necessity. Suppose that N /∈ ∆. For any ε > 0, define

δ(t) = sup
{

u ≥ 0 :M(t, εu) >
ε

1 + ε
M(t, u)

}

.

Then
∫

T
M(t, δ(t)) dµ =∞.

(Otherwise

M(t, εu) ≤
ε

1 + ε
M(t, u) +M(t, δ(t)) (t ∈ T a.e., u ∈ R).

This shows that N ∈ ∆.)
Thus we can take u(t) ≥ 0 satisfying

M(t, εu(t)) >
ε

1 + ε
M(t, u(t))

and
∫

T
M(t, u(t)) dµ >

1 + ε

ε
.

Then
∫

T
M(t, εu(t)) dµ > 1.

So ‖εu‖0 > 1. And recalling M(t, εu(t)) < ∞ (t ∈ T a.e.), it is easy to check that
there exists Ω ⊂ T such that ‖εu |Ω‖

0 = 1. Take k ∈ K(εu |Ω), i.e.

1 = ‖εu |Ω‖
0 =
1

k
(1 + ρM (kεu |Ω)).
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Then

1

k
+ ρM (εu |Ω) ≤

1

k
(1 + ρM (kεu |Ω)) = ‖εu |Ω‖

0

≤ ε(1 + ρM (
1

ε
· εu |Ω)) = ε(1 + ρM (u |Ω))

≤ ε(1 +
1 + ε

ε

∫

Ω
M(t, εu(t)) dµ)

= ε+ (1 + ε)ρM (εu |Ω).

So 1k ≤ ε + ερM (εu |Ω) ≤ 2ε. By the arbitrariness of ε > 0, we obtain the
contradiction kM =∞.

Sufficiency. Since N ∈ ∆, according to Lemma 1, there exist η > 0 and 0 ≤
δ(t) ∈ L1 such that

M(t, 2u) ≥ 2(1 + 2η)M(t, u)− δ(t) (t ∈ T a.e., v ∈ R).

So for u satisfying M(t, u) >
δ(t)
2η , we have

(1) M(t, 2u) ≥ 2(1 + η)M(t, u).

Take D > 0 such that D− 1− 1
2η

∫

T δ(t) dµ ≥ 1. For any x ∈ L0M with ‖x‖
0 = 1,

denote

Hx =
{

t ∈ T :M(t, D|x(t)|) >
δ(t)

2η

}

.

Since 1 = ‖x‖0 ≤ 1
D (1 + ρM (Dx)), we get

ρM (Dx) ≥ D − 1.

It follows that

(2)

∫

Hx

M(t, Dx(t)) dµ = ρM (Dx)−

∫

T\Hx

M(t, Dx(t)) dµ

≥ D − 1−
1

2η

∫

T\Hx

δ(t) dµ

≥ D − 1−
1

2η

∫

T
δ(t) dµ ≥ 1.

By N ∈ ∆, we get B(t) = ∞ (a.e.). Consequently, by virtue of Lemma 2, for
any x ∈ L0M with ‖x‖0 = 1, K(x) 6= ∅. If k ∈ K(x), then k ≤ D or k > D. If
k > D there exists j ≥ 1 such that

2j−1D < k ≤ 2jD.
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From (1) and (2), we have

2jD ≥ k = 1 + ρM (kx) >

∫

Hx

M(t, kx(t)) dµ

≥

∫

Hx

M(t, 2j−1D|x(t)|) dµ

≥ 2j−1(1 + η)j−1
∫

Hx

M(t, D|x(t)|) dµ

≥ (1 + η)j−12j−1.

It implies that j − 1 ≤ log1+η 2D. Thus k ≤ D · 2log1+η 2D+1. This shows that
kM < ∞.

Next we present the criterion for kM < ∞ in the Musielak-Orlicz sequence spa-
ce l0M . Let M = {Mi}

∞
i=1 be a sequence of functions. For each i, Mi(u) is convex

and left continuous with respect to u, and satisfiesMi(0) = 0, limu→∞ Mi(u) =∞
andMi(u

′) < ∞ for some u′ > 0. We denote byNi(v) the complementary function
ofMi(u), where Ni(v) = Supu≥0{uv−Mi(u)}. pi(u) and qi(v) denote their right

derivatives, respectively. p−i (u) denotes the left derivative of Mi(u). We say that
M satisfies condition δ if there exist λ > 1, i0, ci ≥ 0 (i > i0) with

∑

i>i0
ci < ∞,

and a > 0 such that

Mi(2u) ≤ λMi(u) + ci (i ≥ i0, Mi(u) ≤ a).
�

In what follows, denote by x = (x(i))∞i=1 a real sequence, and define a modular
of x with respect to M by

ρM (x) =

∞
∑

i=1

Mi(|x(i)|).

The linear set
{

x : ∃ c > 0, ρM

(x

c

)

< ∞
}

equipped with the Orlicz norm

‖x‖0 = inf
k>0

1

k
(1 + ρM (kx)) = sup

ρN (y)≤1

∞
∑

i=1

x(i)y(i)

forms a Banach space denoted by l0M and called the Musielak-Orlicz sequence

space. For any 0 6= x ∈ l0M we define K(x), k∗x, k
∗∗
x and kM in the same way as

in the function case. For each i, denote

bi = sup{v ≥ 0 : Ni(v) < ∞}.

We obtain the following theorem.
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Theorem 2. kM < ∞ if and only if

(1) N ∈ δ;
(2) for any a > 0 there exists λ > 1 such that if Ni(pi(u)) ≥ a then

Ni(pi(λu)) > 1 (i = 1, 2, . . . ).

Proof: Necessity. The necessity of (1) can be verified analogously to Theorem 1.
If (2) does not hold, there exist a > 0, un > 0 and in such that

Nin(pin(un)) ≥ a, Nin(pin(nun)) ≤ 1, (n = 1, 2, . . . ).

Let xn : xn(in) = un, xn(i) = 0 (i 6= in) (n = 1, 2, . . . ). Then xn ∈ l0M and

‖x‖0 ≥ unpin(un) ≥ Nin(pin(un)) ≥ a.

Since

ρN (p(nxn)) = Nin(pin(nun)) ≤ 1,

by the definition of k∗∗xn
we have k∗∗xn

≥ n. Consequently

k∗∗xn
‖xn‖0

= ‖xn‖
0k∗∗xn

≥ na.

This shows that kM =∞.

Sufficiency. Since N ∈ δ, there exist λ′ > 1, i′0, ci ≥ 0 (i > i′0) with
∑

i>i′
0
ci < ∞, and a′ > 0 such that

Ni(2v) ≤ λ′Ni(v) + ci (i > i′0, Ni(v) ≤ a′).

Take i0 > i′0 satisfying
∑

i>i0
ci < 1 and a < a′ satisfying

Mi(qi(N
−1
i (a))) ≤

1

i0
(i = 1, 2, . . . i0).

Next take λ > λ′ such that

(3) Ni(pi(u)) ≥ a =⇒ Ni(pi(λu)) > 1 (i − 1, 2, . . . ).

It is easy to prove that

(4) Ni(2v) ≤ λNi(v) + ci (i > i0, Ni(v) ≤ a).
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Notice that 1λNi(2v) and
1
λMi(

λ
2u) are complementary to each other. So for

i > i0, Ni(pi(u)) ≤ a, we have

Mi(u) +Ni(p(u)) = upi(u) ≤
1

λ
Mi

(

λu

2

)

+
1

λ
Ni(2pi(u))

≤
1

λ
Mi

(

λu

2

)

+Ni(pi(u)) +
ci

λ

≤
1

2λ
Mi(λu) +Ni(pi(u)) +

ci

λ
.

Then

(5) Mi(λu) ≥ 2λMi(u)− 2ci (i > i0, Ni(pi(u)) ≤ a).

Condition (2) implies Ni(bi) > 1 (i = 1, 2, . . . ). Applying Theorem 1 in [3], for
any x ∈ l0M with ‖x‖0 = 1, we get K(x) 6= ∅. Then for any given k ∈ K(x), we
have k ≤ 5λ or k > 5λ. If k > 5λ, then

Ni(pi(5λ|x(i)|)) ≤ ρN (p(5λ|x|)) ≤ ρN (p
−(kx)) ≤ 1 (i = 1, 2, . . . ).

Applying (3) we have

Ni(pi(5|x(i)|)) < a (i = 1, 2, . . . ),

i.e.
5|x(i)| ≤ qi(N

−1
i (a)) (i = 1, 2, . . . ).

Consequently
i0

∑

i=1

Mi(5|x(i)|) ≤
i0

∑

i=1

Mi(qi(N
−1
i (a))) ≤ 1.

From 1 = ‖x‖0 ≤ 1
5 (1 + ρM (5x)), we deduce that ρM (5x) ≥ 4. So

(6)
∑

i>i0

Mi(5|x(i)|) ≥ 3.

Take j ≥ 1 such that 5λj < k < 5λj+1. Combining (3) with

Ni(pi(λ5λ
j−1|x(i)|)) ≤ ρN (p(5λ

j |x|)) ≤ 1,

we obtain
Ni(pi(5λ

j−1|x(i)|)) < a (i = 1, 2, . . . ).
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From (5) and (6), we conclude that

5λj+1 > k = 1 + ρM (kx) >
∑

i>i0

Mi(k|x(i)|)

≥
∑

i>i0

Mi(5λ
j |x(i)|)

≥
∑

i>i0

{

(2λ)jMi(5|x(i)|)− (2λ)
j−1(2ci)− (2λ)

j−2(2ci)− · · · − 2ci

}

=
∑

i>i0

(2λ)j
{

Mi(5|x(i)|)−
( 1

2λ
+

1

(2λ)2
+ · · ·+

1

(2λ)j

)

· 2ci

}

≥ (2λ)j
∑

i>i0

{

Mi(5|x(i)|)− 2ci

}

≥ (2λ)j .

Thus j ≤ log2 5λ, i.e. k ≤ 5λlog2 5λ+1. Hence kM < ∞. �
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