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Maximal nowhere dense P-sets in

basically disconnected spaces and F-spaces

A.V. Koldunov, A.I. Veksler

Abstract. In [5] the following question was put: are there any maximal n.d. sets in ω∗?
Already in [9] the negative answer (underMA) to this question was obtained. Moreover,
in [9] it was shown that no P -set can be maximal n.d. In the present paper the notion
of a maximal n.d. P -set is introduced and it is proved that under CH there is no such
a set in ω∗. The main results are Theorem 1.10 and especially Theorem 2.7(ii) (with
Example in Section 3) in which the problem of the existence of maximal n.d. P -sets in
basically disconnected compact spaces with rich families of n.d. P -sets is actually solved.

Keywords: maximal n.d. set, P -set, maximal n.d. P -set, compact space, basically dis-
connected space, F -space

Classification: 54B05, 54G05, 54D30, 54D40

0. Introduction

In [9], the notion of a maximal (closed) nowhere dense set in a topological space
was studied and some results were obtained. These studies were continued in [4],
[12] and others.

Let N(X) denote the family of all (closed) nowhere dense (n.d.) sets in a
topological space X . In N(X) the order is introduced in the following way:
F1 ≺ F2 if F1 ∈ N(F2) (in the induced topology on F2). In [9] it was proved that
in some spaces, particularly without isolated points, there are n.d. sets which are
maximal with respect to this order (but, for example, there is no such a set in a
segment). Such sets are called maximal nowhere dense (m.n.d.), and the family
of all such sets is denoted by M(X). It should be pointed that the notion of the
m.n.d. set appeared in studies of spaces of measurable and summable functions
([9, Section 2]; [12, Theorem 14]).

It seems natural to study M(X) only for compact X . Now we shall deliver
some results on m.n.d. sets from [4], [9], [12] combining them in the following
theorem. We recall that a Θ-set is any n.d. zero-set (the letter Θ will be used
for Θ-sets only). An F -space (quasi-F -space) is a space in which any cozero-
set (correspondingly, any dense cozero-set) is C∗-embedded. A space is called
basically disconnected (b.d.), if the closure of any cozero-set is a clopen set.
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0.1 Theorem. For a compact space X the following statements are true.

(i) If Θ is a non-empty C∗-coembedded Θ-set, then Θ ∈ M(X).
(ii) Therefore, if X is an F -space or a quasi-F -space and Θ 6= ∅ is a Θ-set
in X , then Θ ∈ M(X).

(iii) For b.d. X and F ∈ N(X) it is true that F ∈ M(X) if and only if F
contains a non-empty Θ-set in X . In particular, M(X) 6= ∅ for every
infinite b.d. compact space X .

(iv) (MA). M(ω∗) = ∅.
(v) A P -set is not a m.n.d. set.
(vi) If X contains only a finite number of isolated points, then any m.n.d. set

in X cannot have a countable π-base.
(vii) This implies that, if X is a metric compact space with only a finite number

of isolated points, then M(X) = ∅.
(viii) M(2τ ) =M(Iτ ) = ∅.

Let us pay some more attention to the statement (iv). It is connected with
Hechler’s conjecture which appeared in [1] published in 1978 (i.e., three years
after [9]). S.H. Hechler formulated his conjecture in the following way. Let F ∈
N(ω∗); is it true that there exists a family {Gα : α < 2ω} of disjoint open non-
empty sets in ω∗ such that F ⊂ cl Gα\Gα. He showed that it is true under
MA. In [7] (1990) P. Simon proved that Hechler’s conjecture is equivalent to the
conjecture “(M(ω∗)) = ∅”. The latter conjecture was also introduced in [5] in
the form of Q222. But it is still unknown whether Hechler’s conjecture is true,
though it is proved in other set-theoretical models (see [8]).

Now, let K be some class of (closed) n.d. sets. Let K(X) denote the family
of all sets from this class K in X . We may consider elements of K(X) which are
maximal in K(X) with respect to the order introduced before. For example, the
class P of all non-empty n.d. P -sets and the class P′ of all non-empty n.d. P ′-sets
([10]) may be considered. We recall that a closed set F ⊂ X is called a P -set
(a P ′-set), if F ∩ cl E = ∅ (correspondingly F ∩ int cl E = ∅) for any Fσ-set E
which is disjoint with F .

Let KM(X) denote the family of all maximal elements in K(X). Note that
NM(X) = M(X). In this paper some results on PM(X) will be obtained. Ele-
ments of this family will be called maximal n.d. P -sets (m.n.d. P -sets). Compact
b.d. spaces will mainly be considered since c(X) > ω for a b.d. compact space
X implies P(X) 6= ∅. Any other natural large classes of compact spaces with
P(X) 6= ∅ for any spaces X from this class are unknown for us. Besides for a b.d.
compact space P(X) = P′(X), and therefore P′

M
(X) = PM(X). But in the case

of X = ω∗ the situation is different since P′(ω∗) = N(ω∗). So the conjectures
“M(ω∗) = ∅” and “P′

M
(ω∗) = ∅” are equivalent. Note also that in the general

case the equality M(X) ∩ P′(X) = ∅ is not a theorem in ZFC (see [10]).

In Section 1 we consider classes of compact spaces (usually b.d., but not always)
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having m.n.d. P -sets; besides conditions for a P -point to be a m.n.d. P -set are
discussed. In Section 2 classes of compact spaces with P(X) 6= ∅ and PM(X) = ∅
are studied. The existence of such b.d. compact spaces is due to Theorem 2.7(ii).
It should be noted that it is much more complicated to find compact spaces of
this kind than to find compact spaces with non-empty PM(X); in Section 3 the
desired example is constructed. In Section 2 compact F -spaces are considered,
which form a wider class than b.d. compact spaces. In particular, in Corollary 2.3
it is proved (CH) that PM(ω

∗) = ∅. Maximal n.d. weak P ′-sets could be studied
here, but we put them off until somewhere later. Section 4 is devoted to unsolved
problems.
We recall that in any b.d. compact space (compact F -space) the closure of the

union of any family (correspondingly, of a sequence) of P -sets is a P -set.
Let M ⊂ X and E ⊂ M be a closed (open, n.d. . . . ) set in M in the induced

topology on M ; then E is called a closed (open, n.d. . . . ) subset of M . If M
is a clopen set in X , then E ∈ P(M) (E ∈ PM(M)) if and only if E ∈ P(X)
(correspondingly, E ∈ PM(X)). The letterX will be used only to denote compact
spaces which are b.d., if the converse is not stated. The letter F will be used for
closed sets, and G will be used for open ones. The family of all cozero-sets in X
is denoted by Cz(X). The notation of the type of ∪Eα will be used sometimes
for ∪{Eα : α ∈ A}.
In Section 2 we shall consider the notion of the sequential absolute asX of

a compact space X , which was introduced in [3] using a different term (other
terms: the smallest quasi-F -preimage; quasi-F -cover, sequential cover; see [2],
[6], [14]). The space asX may be defined as the smallest irreducible compact
quasi-F -preimage of X . We shall present those results on the space asX , which
will be used in our arguments. Let τ denote a canonical surjection: asX → X .

0.2 Theorem. Let X be any compact space and Y = asX be its sequential

absolute. The following statements are true.

(i) For any V ∈ Cz(Y ) there is W ∈ Cz(X) such that τ−1W ⊂ V ⊂
cl τ−1W .

(ii) For any h ∈ C(Y ) and any ε > 0 there are a Θ-set Θ in X and g ∈
C∗(X\Θ) such that |g ◦ τ − h| < ε on Y \τ−1Θ.

(iii) A quasi-F -space Y is an F -space if and only if for any disjoint V1, V2 ∈
Cz(X) there is a Θ-set Θ such that cl V1 ∩ cl V2 ⊂ Θ.

(iv) A quasi-F -space Y is b.d., i.e., Y is the smallest irreducible compact b.d.
preimage of X (or σ-absolute of X ; see [3], [13], [15]) if and only if for
any V ∈ Cz(X) there is V ′ ∈ Cz(X) such that V ∩ V ′ = ∅ and V ∪ V ′ is
dense in X .

1. Spaces with maximal nowhere dense P -sets

First we find conditions on a (closed) n.d. set in a b.d. compact space to be a
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m.n.d. P -set.

1.1 Definition. An ideal I of clopen sets in a b.d. compact space X is called a
σ-ideal if Un ∈ I (n < ω) implies cl ∪Un ∈ I.

1.2 Lemma. If I is a σ-ideal of clopen sets in a b.d. compact space X , then
FI = X\∪I is a P -set. Conversely, if F is a P -set, then the family I of all clopen
sets disjoint with F is a σ-ideal and F = FI .

Proof: Suppose that an Fσ-set E is disjoint with F . Then E = ∪Fn, where Fn

are closed in X . Find clopen Un ⊃ Fn such that Un ∩ F = ∅. So E ⊂ cl ∪Fn ⊂
cl ∪Un ∈ I since I is a σ-ideal. The remaining part is proved likewise. �

Note that a nonempty FI belongs to P(X) if and only if ∪I is dense in X .

1.3 Definition. Any family of disjoint non-empty clopen sets in an arbitrary
topological space X , whose union is dense, is called a sieve. If each member of a
sieve is disjoint with a given set F ∈ N(X), then this sieve is called an F -sieve.

1.4 Definition. Let ∆ be an uncountable sieve in a b.d. compact space X . Let
I = I∆ be the smallest σ-ideal containing ∆. In this case a n.d. P -set FI (see
Lemma 1.2) is called a standard n.d. P -set and is denoted by F∆.
Evidently, if c(X) > ω, then there exist standard n.d. P -sets in X .
Note that if ∆′ is a F∆-sieve, then ∆

′ is uncountable (since a non-empty P -set
F∆ cannot be contained in a Θ-set) and F∆′ ⊃ F∆. Besides, if non-empty clopen
U ⊂ X and ∆′ is a trace of the sieve ∆ on U , then F∆′ = F∆ ∩ U .

1.5 Lemma. The following statements hold.

(i) If F ∈ P(X), then there is a sieve ∆ such that F ⊂ F∆.
(ii) If F ∈ PM(X), then there is a sieve ∆ such that ∅ 6= F∆ ⊂ F .

Proof: (i) Let F ∈ P(X). By Lemma 1.2, we may take any F -sieve ∆ for the
given set F .

(ii) Now let F ∈ PM(X). Take F∆ from (i). Then F∈N(F∆). It means that
there is a clopen set U such that ∅ 6= U ∩ F = U ∩ F∆. Let ∆ = {Uα : α ∈ A}.
Put ∆′ = {Uα ∩ U : α ∈ A, Uα ∩ U 6= ∅} ∪ {X\U}. Evidently, F∆′ = F∆ ∩ U =
F ∩ U ⊂ F . �

Lemma 1.5 shows that for b.d. X , PM(X) 6= ∅ if and only if there is F∆ ∈
PM(X). That is why we shall pay some more attention to standard n.d. P -sets.

1.6 Lemma. Let ∆ = {Uα : α ∈ A} be an uncountable sieve in a b.d. compact
space X . The following statements are true.

(i) There is no non-empty P -set F ⊂ (X\ ∪∆)\F∆.
(ii) If F∆ ⊂ F ∈ P(X), then F = cl ∪(F ∩ Uα) ∪ F∆.
(iii) F∆ is the largest P -set in X disjoint with each member of ∆.
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Proof: (i) Suppose that ∅ 6= F ⊂ (X\ ∪∆)\F∆. Then there are αn ∈ A such
that F ∩ cl ∪{Uαn : n < ω} 6= ∅. So F is not a P -set.

(ii) Suppose there is x ∈ F such that x∈ cl ∪(F ∩Uα) ∪ F∆. Find a clopen set
U containing x and disjoint with cl ∪(F ∩ Uα) ∪ F∆. Then x ∈ F ∩ U ∈ P(X)
and F ∩ U ⊂ (X\ ∪∆)\F∆. But this contradicts (i).

(iii) follows from (ii). �

Now some conditions for the given set F∆ to be a m.n.d. P -set will be obtained.

1.7 Proposition. Let ∆ = {Uα : α ∈ A} be an uncountable sieve in a b.d.
compact space X . The following statements hold.

(i) F∆ ∈ PM(X) if and only if for any family {Fα : α ∈ A} of n.d. P -sets with
Fα ⊂ Uα (some Fα can be empty, but the set of others is uncountable)
there are a uncountable set A0 ⊂ A and points xα ∈ Uα(α ∈ A0) such
that cl{xα : α ∈ A0} ∩ cl ∪{Fα : α ∈ A} = ∅.

(ii) If cl ∪Uα is C∗-embedded in X , then F∆ ∈ PM(X).

Proof: (i) Necessity. Let F∆ ∈ PM(X), Fα ∈ P(X) and Fα ⊂ Uα (α ∈ A).
Then the set F = (cl ∪Fα) ∪ F∆ ∈ P(X). Since F∆ ∈ PM(X), then there
is x ∈ F∆ such that x∈ cl(F\F∆) = cl ∪Fα. Find clopen U with x ∈ U and
U ∩ cl ∪Fα = ∅. Obviously, U = cl ∪{U ∩ Uα : α ∈ A}. Thus, the set A0 =
{α : U ∩ Uα 6= ∅} is uncountable. Indeed, otherwise U ∩ F∆ = ∅ because F∆ is
a P -set. Take any xα ∈ U ∩ Uα (α ∈ A0). Since cl{xα : α ∈ A0} ⊂ U we get
cl{xα : α ∈ A0} ∩ cl ∪{Fα : α ∈ A} = ∅.

Sufficiency. Let F∆ ⊂ F ∈ P(X) and Fα = F ∩ Uα. Evidently, each Fα is
an n.d. P -set in X . Let uncountable A0 ⊂ A and cl{xα : α ∈ A0} ∩ cl ∪{Fα :
α ∈ A} = ∅. Since A0 is uncountable, there is x ∈ (cl{xα : α ∈ A0}) ∩ F∆. By
Lemma 1.6(ii), we get cl(F\F∆) ⊂ cl ∪{Fα : α ∈ A}. So x∈ cl(F\F∆). This
implies F∆∈N(F ). So F∆ ∈ PM(X).

(ii) If Fα ⊂ Uα and Fα is a n.d. P -set, then there is xα ∈ Uα\Fα. We can
separate xα and Fα in Uα by zero-sets. Then the sets ∪{xα : α ∈ A} and
∪{Fα : α ∈ A} are separated in ∪Uα by zero-sets. Since ∪Uα is C∗-embedded in
X , we get cl{xα : α ∈ A0} ∩ (cl ∪Fα) = ∅. Now use (i). �

1.8 Remark. Let X be an arbitrary compact space with a uncountable sieve
∆ = {Uα : α ∈ A} of clopen sets and let ∪Uα be C∗-embedded; let F∆ = X\ ∪
{cl ∪n<ωUαn : (αn) ⊂ A}. In this case it also may be proved that F∆ ∈ PM(X).

Now we shall find b.d. compact spaces having m.n.d. P -sets.

1.9 Definition. Let X be a b.d. compact space. This space is called ω1-extre-
mally disconnected (ω1-e.d.), if a closure of the union of any family of ω1 clopen
sets is clopen. If in a b.d. space Y the closure of the union of any family of ω1
disjoint clopen non-empty sets is not open, then we call Y a anti-ω1-b.d. space.
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Evidently, the class of all ω1-b.d. compact spaces coincides with the class of
Stone spaces of all ω2-complete Boolean algebras.

1.10 Theorem. Let X be a ω1-b.d. compact space. The following statements
are true.

(i) Any standard n.d. P -set F∆ is a maximal n.d. P -set.
(ii) A n.d. P -set is a maximal n.d. P -set if and only if it contains some standard
n.d. P -set. Any maximal n.d. P -set is contained in some standard n.d.
P -set.

(iii) Any non-empty clopen subset F ′ of a standard set F∆ is a maximal n.d.
P -set.

Proof: (i) Let ∆ = {Uα : α ∈ A} be an uncountable sieve. In general ∪Uα

need not be C∗-embedded in X . But still this obstacle can be avoided. Let
{U ′γ : γ < ω1} ⊂ ∆ and F∆ ∩ U ′ 6= ∅, where U ′ = cl ∪U ′γ is clopen (since X

is ω1-e.d.). Then ∆
′ = {U ′γ : γ < ω1} ∪ {X\U ′} is an uncountable sieve and

F∆′ = F∆ ∩ U ′ 6= ∅.
The sieve ∆′ has the C∗-embedded union in X . Indeed, if F1 and F2 are

disjoint closed subsets in ∪∆′, then their intersections with each member of the
sieve may be separated by clopen subsets which are clopen in X as well. The
unions of these clopen sets have the clopen closures since X is ω1-e.d. Therefore
these closures are disjoint, i.e., cl F1∩cl F2 = ∅. Thus, ∪∆′ is C∗-embedded in X .
By Proposition 1.7(ii), F∆′ ∈ PM(X). Hence F∆ ∈ PM(X).

(ii) The first part follows from Lemma 1.5(ii), and the second one follows from
Lemma 1.5(i).

(iii) As it was obtained in the proof of Lemma 1.5(ii), there is a clopen set U
in X such that F ′ = F ∩ U = F∆ ∩ U = F∆′ for some sieve ∆′. Now use (i). �

Now we consider conditions on b.d. compact spaces, under which there exists
the largest (by inclusion) n.d. P -set. Obviously, spaces with such a property exist.
The space X = βω1 with a n.d. P -set F = uω1 presents a simple example of this
kind. Now, we identify this P -set F at a point y0. This point is the unique (and
largest) n.d. P -set in a new compact space Y . This simple consideration shows
that there may be some relation between the question which we are discussing
and the following question: under what conditions a P -point is a maximal n.d. set
or the largest one. The remaining part of Section 1 will be devoted to these two
questions in b.d. compact spaces. To study them we need one definition more.
But before introducing it we note that the image of uω1 ⊂ X remains to be the
largest n.d. P -set under any identification. In some cases the image of X may
not be an F -space, in other cases it may be an F -space but not a b.d. space.
However, if the point y0 ∈ Y is identified with a nonisolated point of Y , then we
obtain a compact F -space without n.d. P -sets, although this space does not have
the Suslin property.



Maximal nowhere dense P -set in F -spaces 369

1.11 Definition. An arbitrary space X is said to have a local Suslin property if
in X there is a π-base of open sets each having the Suslin property. If X is b.d.,
then the local Suslin property is equivalent to the existence of a sieve ∆ of clopen
sets each with the Suslin property. If X does not have the Suslin property, then
the non-empty set F∆ will be denoted by Fccc(X) or simply Fccc.

1.12 Lemma. The set Fccc(X) does not depend on the choice of the sieve con-
sisting of clopen sets having the Suslin property.

Proof: Let ∆1 = {Uα : α ∈ A} and ∆2 be two such sieves and U ∈ ∆2. Then
∪{Uα ∩ U : Uα ∩ U 6= ∅} is dense in U . As U has the Suslin property, this union
can be presented as ∪{Uαn ∩ U : n < ω}, where the sequence (αn) ⊂ A. Since
I∆1 is a σ-ideal, then U = cl ∪(Uαn ∩U) ∈ I∆1 . Thus, F∆1 ⊂ F∆2 . Analogously,
F∆2 ⊂ F∆1 . �

1.13 Proposition. Let X be a b.d. compact space without the Suslin property
(this provides that P(X) 6= ∅). The following statements are true.

(i) There is the largest (by inclusion) n.d. P -set in X if and only if X has
the local Suslin property. In this case the required set is Fccc.

(ii) A P -point x is a maximal n.d. P -set if and only if in X there is a clopen
set U with the local Suslin property and such that Fccc(U) = {x}.

(iii) There is the unique maximal n.d. P -set in X if and only if X has the local
Suslin property and Fccc is a singleton (this point is the unique non-empty
P -set in X).

(iv) If X is an ω1-e.d. space, then X does not contain maximal n.d. one-point
P -sets.

Proof: (i) Sufficiency. Let us take a Fccc-sieve ∆ = {Uα : α ∈ A}. Obviously,
Fccc = F∆. There are no non-empty P -sets in Uα since c(Uα) ≤ ω. By Proposition
1.7(i) and Lemma 1.6(iii), F∆ is the largest n.d. P -set in X .

Necessity. Let F ∈ P(X) and ∆ = {Uα : α ∈ A} be some F -sieve. If X does
not have the local Suslin property, then c(Uα0) > ω for some α0 ∈ A. In this case
there exists F ′ ∈ P(X) in Uα0 . Then F ∪ F ′ 6= F .

(ii) Let {x} ∈ PM(X) and let ∆ = {Uα : α ∈ A} be some x-sieve. Since F∆
is a n.d. P -set, x ∈ F∆, and {x} ∈ PM(X), then x is an isolated point in F∆.
There is a clopen set U0 in X separating x from closed F∆\{x}. Let the sieve ∆

′

contain all non-empty sets Uα ∩U0 and X\U0. Denote the members of this sieve
by U ′γ (γ ∈ Γ).

Let Γ1 = {γ ∈ Γ : c(U ′γ) > ω} and Γ2 = Γ\Γ1. We shall check that Γ1 is
at most countable. Suppose that the opposite statement is true. In this case
x ∈ cl{U ′γ : γ ∈ Γ1}. Since c(U ′γ) > ω for any γ ∈ Γ1, there is Fγ ⊂ U ′γ such that

Fγ ∈ P(X). Then F = cl ∪Fγ is a n.d. P -set in a b.d. compact space X . Finally,
x ∈ F and {x} ∈ N(F ), a contradiction.
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Thus, Γ1 is at most countable. So x∈W = cl ∪{U ′γ : γ ∈ Γ1}. Let ∆
′′ = {U ′γ :

γ ∈ Γ2} ∪ {X\(U0\W )}. Obviously, {x} = F∆′′ = Fccc(U0\W ). Finally, put
U = U0\W . Necessity is proved.

Sufficiency follows from (i). Of course, {x} = Fccc(U).

(iii) follows from (i) and (ii) and Theorem 1.10(iii).

(iv) Let {x} ∈ PM(X). As it was established in the proof of (ii), {x} =
Fccc(U) for some clopen U . So without a loss of generality we may assume that
{x} = Fccc(X) = F∆, where ∆ = {Uα : α ∈ A}. It is clear that card A ≥ ω1. Let
A1 ⊂ A, A2 = A\A1, card A1 = ω1, and card A2 ≥ ω1. Since X is ω1-e.d., the set
W = cl ∪{Uα : α ∈ A1} is clopen. Therefore, X\W = cl ∪{Uα : α ∈ A2} is clopen
too. But the sets ∪{Uα : α ∈ Ai} (i = 1, 2) are not closed. So x ∈ W∩(X\W ) = ∅,
a contradiction. �

1.14 Remark. A compact space X with the following properties can be con-
structed: X has a dense set of nonisolated P -points, and finite and only finite
P -sets are maximal n.d. P -sets. Evidently, this compact space cannot be b.d.
This example will be presented in Section 3.

2. On spaces with non-empty nowhere dense P -sets and without
maximal nowhere dense P -sets

It appears to be more difficult to find compact spaces X with P(X) 6= ∅ and
PM(X) = ∅ than to find compact spaces with non-empty PM(X).

2.1 Definition. An arbitrary compact space X without isolated points is said
to have a rich family of n.d. P -sets , if for every open G 6= ∅ there is non-empty
F ∈ P(X) in G. If X is b.d., then X has a rich family of n.d. P -sets if and only
if c(G) > ω for any open G 6= ∅.

2.2 Proposition. Let X be a compact F -space without isolated points, and
X has a rich family of n.d. P -sets. Let two following conditions hold for some
F ∈ P(X).

(a) There is a family {Hα : α < ω1} of closed neighborhoods of F such that
Hα2 ⊂ int Hα1 for α2 > α1, and H = ∩{Hα : α < ω1} is n.d. in X .

(b) There is a family {Gα : α < ω1} of open sets such that F ∩ Gα 6= ∅ and
if G ∩ F 6= ∅ for some open G, then Gα ⊂ G for some α < ω1.

In this case there is F ′ ∈ P(X) with F ′ ≻ F .

Proof: Evidently, H ∈ P(X). By induction, we choose non-empty n.d. P -sets
Fα ⊂ (( int Hα ∩Gα)\∪ {Fα′ : α′ < α})\H . This can be done because cl ∪{Fα′ :
α′ < α} is a P -set in an F -space X (since card{α′ : α′ < α} ≤ ω). Besides
cl ∪{Fα′ : α′ < α} is n.d. as all n.d. P -sets Fα′ are disjoint. Denote F ′ =
H ∪ cl ∪{Fα : α < ω1}. First, we check that F ′ ∈ N(X).



Maximal nowhere dense P -set in F -spaces 371

Suppose that it is not so. Then there are open sets G and G′ such that
∅ 6= G′ ⊂ cl G′ ⊂ G\H ⊂ G ⊂ F ′. The open set G′ is contained in X\Hα for
some α < ω1. Therefore, ∅ 6= G′ ⊂ cl ∪{Fα′ : α′ < α} ∈ N(X). The contradiction
shows that F ′ is n.d.
Now we are to prove that F ′ is a P -set. Let V ∈ Cz(X) and V ∩ F ′ = ∅. We

are to check that cl V ∩ F ′ = ∅. We have cl V ∩ H = ∅ as H is a P -set. Then
cl V ∩ Hα0 = ∅ for some α0 < ω1. This implies cl V ∩ cl ∪{Fα : α ≥ α0} = ∅.
Finally,

∅ = (cl V ∩H)∪(cl V ∩cl ∪{Fα : α ≥ α0})∪(cl V ∩cl ∪{Fα : α < α0}) = cl V ∩F ′.

At last, we obtain that F ′ ≻ F . Since (∪Fα) ∩ F = ∅, it is sufficient to prove
F ⊂ cl ∪Fα. Suppose that it is not so. Then find an open set G such that
G ∩ F 6= ∅ and cl G ∩ cl ∪Fα = ∅. By condition (b), we get Gα0 ⊂ G for some
α0 < ω1. Thus, ∅ 6= Fα0 ⊂ Gα0 ⊂ G, which contradicts the choice of G. �

2.3 Corollary. (i) (CH) PM(ω
∗) = ∅ though ω∗ has a rich family of n.d.

P -sets.
(ii) (CH) Also PM(aσω∗) = ∅ for the σ-absolute of the compact ω∗ though

aσω∗ has a rich family of n.d. P -sets.

Proof: In the both cases we have w(X) = c(X) = 2ω = ω1. It allows to apply
Proposition 2.2 and to construct families {Hα : α < ω1} and {Gα : α < ω1}. In
particular, we may take all sets from the base of open sets intersecting with F as
a second family. �

2.4 Remark. Note that for any infinite compact F -space X we have w(X) ≥ c.
It means that it is difficult (if possible at all) to use Proposition 2.2 to prove
Corollary 2.3 without some set-theoretical conjectures.

The existence of compact F -spaces and b.d. compact spaces with a rich family
of n.d. P -sets but without maximal n.d. P -sets will follow from Theorem 2.7
in which Proposition 2.2 is applied not to the given space but to its sequential
absolute.

2.5 Lemma. Let X be an arbitrary compact space without isolated points. Let
for any non-empty open G there exists F ∈ P′(X) such that F ⊂ G, and for any
V ∈ Cz(X) there exists a Θ-set Θ such that (V ∩ F = ∅) =⇒ cl V ∩ F ⊂ Θ. In
this case the sequential absolute Y = asX has a rich family of n.d. P -sets.

Proof: Let τ : Y → X . For a set F from the condition of Lemma, we denote

F ′ = τ−1F\ ∪ {V ∈ Cz(Y ) : V ∩ τ−1F ⊂ Θ′ for some Θ-set in Y }.

We are to prove that ∅ 6= F ′ ∈ P(Y ). First, we check that τF ′ = F (therefore
F ′ 6= ∅).
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Suppose F\τF ′ 6= ∅. There is open G ⊂ X such that G∩F 6= ∅ and cl G∩τF ′ =
∅. Then cl τ−1G ∩ F ′ = ∅. Hence, if y ∈ cl τ−1G ∩ τ−1F , then y∈F ′. By
definition of the set F ′, we find a cozero-set Vy and a Θ-set Θy such that y ∈ Vy

and Vy ∩ τ−1F ⊂ Θy. We choose a finite subcovering {Vy1 , . . . Vyn} of a compact

set cl τ−1G ∩ τ−1F . In this case

cl τ−1G ∩ τ−1F ⊂ ∪{Vyi ∩ τ−1F ∩ cl τ−1G : i = 1, 2, . . . n} ⊂ ∪Θyi = Θ
′.

By Theorem 0.2, there is a Θ-set Θ in X such that Θ′ ⊂ τ−1Θ. It implies
∅ 6= F ∩ G ⊂ Θ. So Θ contains a non-empty open subset F ∩ G of the n.d. P -set
F . But this contradicts properties of P ′-sets([10]). The contradiction shows that
τF ′ = F .

Now it remains to prove that F ′ is a P -set. Let V ∈ Cz(Y ) and V ∩ F ′ = ∅.
We must obtain that cl V ∩F ′ = ∅. By Theorem 0.2(i), there is W ∈ Cz(X) such
that τ−1W ⊂ V ⊂ cl τ−1W . Since τ−1W ∩ F ′ ⊂ V ∩ F ′ = ∅, we get W ∩ F = ∅.
Indeed, we have W ∩ τF ′ = ∅; but we have already proved that τF ′ = F .

Further, by the assumption of Lemma, there is a Θ-set Θ ⊃ clW ∩ F . It
implies cl V ∩ τ−1F ⊂ τ−1Θ. So (cl V \τ−1Θ) ∩ (τ−1F\τ−1Θ) = ∅. Now we
shall prove that cl V ∩ F ′ ⊂ cl(τ−1F\τ−1Θ). Suppose it is not so. Then there
is y ∈ cl V ∩ F ′ such that y∈ cl(τ−1F\τ−1Θ). We find V ′ ∈ Cz(Y ) such that
y ∈ V ′ and V ′ ∩ (τ−1F\τ−1Θ) = ∅. Then y ∈ V ′ ∩ F ′ ⊂ V ′ ∩ τ−1F ⊂ τ−1Θ. By
definition of the set F ′, we have y∈F ′. A contradiction proves the desired result.
Thus, we obtain a new inclusion cl V ∩ F ′ ⊂ cl(cl V \τ−1Θ) ∩ cl(τ−1F\τ−1Θ).

To prove that F ′ is a P -set we shall check that the right part of this inclusion
is empty. We recall that Y = asX is a quasi-F -space. So the Θ-set τ−1Θ
is C∗-coembedded. As the sets cl V \τ−1Θ and τ−1F\τ−1Θ are disjoint closed
subsets of the normal space Y \τ−1Θ, these closures in X are disjoint too. �

2.6 Remark. Obviously, if X has a rich family of P -sets, then the conditions of
Lemma 2.5 are satisfied. But it is easy to prove that any irreducible preimage of
a compact space X with a rich family of n.d. P -sets also has a rich family of n.d.
P -sets. Indeed, a preimage of a P -set is a P -set.

2.7 Theorem. Let X be a compact space with a weight ω1 and without isolated
points. Then the following statements are true.

(i) Let conditions of Lemma 2.5 hold for X , and besides for disjoint cozero-
sets V1, V2 there exists a Θ-set Θ ⊃ cl V1 ∩ cl V2. Then Y = asX is a
compact F -space with a rich family of n.d. P -sets, but PM(Y ) = ∅.

(ii) Let any open set in X have not the Suslin property, and for any cozero-set
V there exists a cozero-set V ′ such that V ∩ V ′ = ∅ and V ∪ V ′ is dense
in X . In this case Y = asX is a b.d. compact space (and therefore is the
σ-absolute of X) with a rich family of n.d. P -sets, but PM(X) = ∅.
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Proof: (i) By Theorem 0.2(iii), Y is an F -space. By Lemma 2.5, Y has a rich
family of n.d. P -sets. Let F ∈ P(Y ). We shall check that conditions (a) and (b)
from Proposition 2.2 are true for F .
Let {Wγ : γ < ω1} be a base of open sets in X , which we may assume to

be additive and multiplicative. Then it is easy to see that the base of closed
neighborhoods of the set τF is contained in the family of all sets Eγ = X\Wγ.
Since τF is a P ′-set, then this base is uncountable and may be presented as
{Eα : α < ω1}. Obviously, ∩{τ

−1Eα : α < ω1} = τ−1τF ⊃ F . Then (in a
standard way) we construct a family {Hα : α < ω1} of closed neighborhoods of a
P -set F such that Hα ⊂ ∩{ int Hα′ : α′ < α} and Hα ⊂ ∩{τ−1Eα′ : α′ ≤ α}. So
F ⊂ H = ∩{Hα : α < ω1} ⊂ τ−1τF . Thus, condition (a) holds.

Now we consider the family of all open sets τ−1Wγ intersecting F and present
it as {Gα : α < ω1}. We are to prove that this family satisfies condition (b).
Let G be open in Y and G ∩ F 6= ∅. We shall find Gα ⊂ G. Let y ∈ G ∩ F .

There is a function h ∈ C∗(Y ) such that 0 ≤ h ≤ 1, h(y) = 1, and h(Y \G) = 0.
Let ε < 1/3. By Theorem 0.2(ii), there exist a Θ-set Θ in X and g ∈ C∗(X\Θ)
such that 0 ≤ g ≤ 1, |g ◦ τ − h| < ε on Y \τ−1Θ. Since τ−1Θ is C∗-coembedded
in an F -space Y , there is a continuous extension f = g ◦ τ of the function g ◦ τ
on Y such that |f − h| ≤ ε. It implies f(Y ) ≥ 1 − ε and f(Y \G) ≤ ε. Since
F ∩τ−1Θ is a closed n.d. subset of a P -set F , there is a point y′ ∈ (F\τ−1Θ)∩f−1

(1/2, 1]. It means that f(y′) = g(τy′) > 1/2. The function g is continuous in the
point τy′, and therefore there is Wγ such that τy′ ∈ Wγ , clWγ ∩ Θ = ∅, and
g(Wγ) > 1/2 (here we use the multiplicativity of the base {Wγ : γ < ω1}). Hence

y′ ∈ τ−1Wγ ∩ F , and τ−1Wγ ∩ F 6= ∅. It remains to prove that τ−1Wγ ⊂ G

because this inclusion implies that τ−1Wγ = Gα for some α < ω1.

Suppose that there is y0 ∈ τ−1Wγ\G. Then y0 ∈ (Y \τ−1Θ)\G, and thus
(g ◦ τ)(y0) = f(y0) ≤ ε. But on the other hand, τy0 ∈ Wγ and g(Wγ) ≥ 1/2. So
(g◦τ)(y0) ≥ 1/2. The contradiction shows that condition (b) from Proposition 2.2
holds. So we may use this Proposition.

(ii) By Theorem 0.2(iv), the compact space Y = asX is b.d. In (i) it was
proved that PM(Y ) = ∅. Since any non-empty open set in X does not have the
Suslin property, then the same is true for Y . So Y has a rich family of n.d. P -sets.

�

There is another way to get b.d. compact spaces with a rich family of n.d.
P -sets but without m.n.d. P -sets.

2.8 Remark. In Theorem 2.7(ii) one cannot weaken the condition “every non-
empty set in X does not have the Suslin property” to the condition “X does not
have the Suslin property”. At least, under CH it is easy to present a correspond-
ing b.d. compact space with a unique non-empty n.d. P -set (which is, of course,
P -point).
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2.9 Proposition. Let X be a b.d. anti-ω1-e.d. compact space with w(X) = ω2
and without isolated points. Besides, we assume that any non-empty open set

G ⊂ X does not have the Suslin property. Then PM(X) = ∅ though X has a
rich family of n.d. P -sets.

Proof: Note that c(X) = ω2. Let {Gγ : γ < ω2} be a base of clopen sets in
X and F ∈ P(X). We are to check that F∈PM(X). By Lemma 1.5(i), we may
assume that F = F∆ is a standard P -set. The sieve ∆ cannot be countable since
F∆ is a P -set. ∆ cannot have cardinality of ω1 since X is anti-ω1-e.d. and so no
ω1-family of disjoint sets can be dense in X . Thus, the sieve ∆ has cardinality of
ω2. Let ∆ = {Uα : α < ω2}.
Denote Γ = {γ < ω2 : Gγ ∩ F∆ 6= ∅}. For any γ ∈ Γ let Aγ = {α < ω2 :

Uα∩Gγ 6= ∅}. Obviously, cardAγ = ω2 (since F∆ ∈ P(X) and X is anti-ω1-e.d.).
Denote αγ = min[Aγ\{αγ′ : γ′ < γ, γ′ ∈ Γ}] for any γ ∈ Γ. By the construction,
we have αγ1 6= αγ2 for γ1 6= γ2.

The clopen set Gγ ∩ Uαγ does not have the Suslin property. Then there is

Fγ ∈ P(X) in Gγ ∩ Uαγ . Let F ′ = cl ∪{Fγ : γ ∈ Γ}. Then F ′ is a n.d. P -set
since X is b.d. To prove that F∆∈PM(X) we shall obtain cl ∪Fγ ⊃ F∆, which
implies F∆ ≺ F ′.

Let Gγ ∩ F∆ 6= ∅, i.e., γ ∈ Γ. By the construction, Fγ ⊂ (Gγ ∩ F ′)\F∆.
Moreover (F ′\F∆) ∩ Gγ 6= ∅. Thus, cl ∪Fγ ⊃ F∆. �

2.10 Corollary (2ω1 = ω2). The space uω1 of all uniform ultrafilters in ω1
contains no maximal n.d. P -sets though it has a rich family of n.d. P -sets.

3. Example

In this section a compact space X without isolated points and with the following
properties will be constructed.

(1) w(X) = ω1.
(2) In X no non-empty open set has the Suslin property.
(3) For any G ∈ Cz(X) there exists G′ ∈ Cz(X) such that G ∩ G′ = ∅ and

G ∪ G′ is dense in X .
(4) Any point in X is either a P -point or a Gδ-point.
(5) The set of all P -points is dense in X .
(6) A n.d. set in X is a P -set if and only if it is the union of a finite family of

P -points. In particular, PM(X) = P(X).

By Theorem 2.7(ii), the σ-absolute of this space is a b.d. compact space with
a rich family of n.d. P -sets but without maximal n.d. P -sets.

The desired compact space X is constructed as a limit of the inverse spectrum
lim
←−

{Yα, πα
δ , ω1} of metric compact spaces (here ω1 is considered as a linearly

ordered set of smaller ordinals).
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3.1. In this subsection a special functor T will be presented. We consider a class
of all metric compact spaces without isolated points and with a fixed (for every
such a compact space Y ) dense sequence E = {en : n < ω} with a fixed order
on E. In this class a functor T is presented in the following way. A compact metric
space T (Y ) is a closed subspace of the product Y × [0, 1], which is the union of a
horizontal H = Y × {0} and all verticals Vn = {en} × (0, 1/n]. A closed vertical
{en} × [0, 1/n] is denoted by V n. Any point of the horizontal is called a lower
point , and any point (en, 1/n) is called an upper point in T (Y ). Let π denote a
natural projection of T (Y ) on the horizontal H . So π is a continuous surjection
on Y : π(y, r) = y. Finally, we choose a dense sequence in T (Y ) in the following
way: ET (Y ) = {(en, rm) : rm ∈ Q ∩ (0, 1/n], n < ω}. Some rule of numeration is
fixed in ET (Y ).

Here some properties of the given construction are presented.

(a) Obviously, H is n.d. in T (Y ), and each vertical Vn is open in T (Y ).
(b) If y∈E, then π−1y is a lower point in T (Y ).
(c) If y ∈ E, then π−1y = V n for the corresponding number n < ω.
(d) If M ⊂ Y , then π−1M is the union of some family of closed verticals V n

and some subset of n.d. H .

3.2. In this subsection we construct a family of compact metric spaces {Yα :
α < ω1} with dense sequences Eα ⊂ Yα and surjective (continuous) mappings

πα
δ : Yα → Yδ such that πα

δ = πλ
δ ◦πα

λ (0 ≤ δ < λ < α < ω1) and also πα
δ Eα = Eδ.

Let Y0 = [0, 1], E0 = Q ∩ [0, 1], Y1 = T (Y0), E1 = ET (Y0). Then E1 is

dense in Y1. Now we suppose that Yδ, πα
δ , πδ

λ and countable dense sets Eδ are

constructed for all δ ≤ α. In this case we put Yα+1 = T (Yα), π
α+1
δ
= πα

δ ◦ πα+1
α ,

where πα+1
α = π is a natural projection on the horizontal H = Hα+1 ≈ Yα. We

take ET (Yα) as a set Eα+1.

Now let µ < ω1 be some limit ordinal, and assume that for any δ < µ compact
metric spaces Yδ with countable dense sets Eδ and with corresponding mappings
πδ

λ are constructed. In this case we put Yµ = lim
←−
(Yδ, π

δ
λ, µ), where µ is considered

as a linearly ordered set of all smaller ordinals. Evidently, w(Yµ) = ω since Yµ

is a compact metric space (without isolated points). Any element y(µ) ∈ Yµ is a

µ-thread (y(α) : α < µ), where y(α) ∈ Yα and y(δ) = πα
δ y(α). The canonical

mapping π
µ
α : Yµ → Yα is generated by the corresponding mapping y(µ) → y(α).

To introduce the set Eµ we take the family of all the µ-threads (y(α) : α < µ)
such that for each of them there exists non-limit δ < µ with the following property:

y(α) is an upper point in Yα for any non-limit ordinal α ≥ δ. Now we shall prove

that any µ-thread (y(α) : α < µ) from Eµ may contain only a finite number of

non-upper members y(α) for non-limit α. Indeed, if it is not so for some µ-thread,
we find a increasing sequence of non-limit ordinals (αn) such that αn < µ and
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y(αn) is not an upper point. Let λ = supαn ≤ µ. If λ = µ, then by definition

this µ-thread does not belong to Eµ. If λ < µ, then λ + 1 < µ and y(λ+1) is a

lower point in Yλ+1. Therefore by property (b) of the functor T , y(δ) is a lower
point for any non-limit δ such that λ + 1 ≤ δ < µ. So again this µ-thread does
not belong to Eµ. Using this property and the fact that both {δ : δ < µ} and Eδ

are countable we get that Eµ is countable too.
Now we shall prove that Eµ is dense in Yµ. It is easy to see that in this case

the base of open sets in Yµ may be presented by all sets of the type of (π
µ
α)
−1Gα,

where α < µ and Gα is a base open set in Yα (if open bases are chosen so that,

if Gα is a base set, then (π
λ
α)
−1Gα is a base set too).

In each Gα there is some y(α) ∈ Eα. By property (c) of the functor T , there

exists a unique µ-thread y(µ) such that y(δ) is an upper point in Yδ for every

non-limit δ ≥ α+ 1. Thus y(µ) ∈ (πµ
α)
−1Gα.

3.3. In this subsection we construct the required compact space X . We assume
that each countable dense Eµ is ordered in some manner. Then we put

X = lim
←−
(Yα, πα

δ , ω1).

By the definition, the space X consists of ω1-threads (y
(α) : α < ω1). We note

that if α is a limit ordinal, then y(α) is defined by the α-thread (y(δ) : δ < α). So

any ω1-thread is well defined by all y
(δ), where δ is non-limit ordinal less than ω1.

So one can assume that any point x of the space X is a thread (y(α) : α ∈ ω′1),
where ω′1 is the set of all non-limit α < ω1. Now we define τα : X → Yα, where

τα(x) = y(α)(α ∈ ω′1).

Show that for any thread (y(α) : α < ω′1) there can be only two cases. In

the first case all y(α) ∈ Eα and all but a finite numbers y(α) are upper points in

Yα. In the second case there is δ ∈ ω′1 such that y(α) is a lower point in Yα for
any α ≥ δ, α ∈ ω′1. One can prove this by repeating the arguments which were
used when introducing the set Eµ (see 3.2). The points described in the first case
will be called upper , and the family of all such points will be denoted by XU .
Likewise, the points from the second case will be called lower , and the set of all
these points will be denoted by XL.

3.4. In this subsection we check the properties (1)–(6) for X .

Let x ∈ XL. Then y(α) is a lower point for some α ∈ ω′1, and y(α) is a Gδ-point

in a metric space Yα, i.e., y
(α) = ∩{Gn : n < ω}, where Gn are open in Yα. By

property (b), we have τ−1α y(α) = ∩(τ−1α Gn) = x. Therefore, x is a Gδ-point in X .

For the given M ⊂ X we denote M (α) = ταM . Then the set τ−1α M (α) de-

creases as the index α increases, and M = ∩τ−1α M (α). Now if F is closed in X

and x = {y(α) : α ∈ ω′1}∈F , then y(α)∈F (α) for some α ∈ ω′1 ( here we used a
compactness of X). Now we can prove that, if x ∈ XU , then x is a P -point in X .
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Let Fk be closed in X and x∈Fk (k < ω). We must prove that x∈ cl ∪Fk.
For each k by the result of the preceding paragraph, there exists αk ∈ ω′1 such

that y(αk)∈F
(αk)
k
. Let α ∈ ω′1 and α > sup{αk : k < ω}. Since F

(α+1)
k

⊂

(πα+1
α )−1Fα

k we use property (d) of the functor T and get that F
(α+1)
k

is con-
tained in the union of some verticals in Yα+1 = T (Yα) and of the horizontal

H = Hα+1. Besides, y(α+1) ∈ Vn0 (see property (c) of the functor T ). Hence

∪{F
(α+1)
k : k < ω} ∩ V n0 = ∅. By property (a) of the functor T , we have

cl ∪F
(α+1)
k

∩ Vn0 = ∅. It means that x∈ cl ∪Fk. So property (4) is proved.

As X has nonisolated P -points, w(X) ≥ ω1. The base of open sets in X =
lim
←−
(Yα, πα

δ , ω1) consists of all sets τ−1α Gα, where Gα belongs to the base of open

sets in the space Yα(α ∈ ω′1). Thus, w(X) ≤ ω1. Finally, w(X) = ω1, i.e.,
property (1) holds.

We can apply the arguments used in the proof of the density of Eµ in Yµ

(see 3.2) to the set XU and get that this set is dense in X . So properties (5)
and (2) hold in X . Since no P -set can contain Gδ-points we get that each P -set
F in X is a compact P -space in induced topology. Thus, F is the union of a
finite set of P -points. Therefore, each such a set is a maximal n.d. P -set. So
property (6) holds too.

It remains to check property (3). Let G be some cozero-set in X . Then G is
an Fσ-set; besides X is a compact space. Hence G = ∪{τ−1αk

Gk : k < ω}, where
each Gk is a base open set in Yαk

. Fix α > sup{αk : k < ω} and replace each
Gk by (π

α
αk
)−1Gk with the same preimage in X . Thus, G = ∪{τ−1α Gk : k <

ω} = τ−1α (∪{Gk : k < ω}), where all Gk are open sets in one space Yα. Let

Wk = (π
α+1
α )−1Gk. Then G can be represented as τ−1α+1 ∪ {Wk : k < ω}. By

property (d), the set ∪Wk is the union of some set of verticals Vn ⊂ Yα+1 and
a set from the horizontal H = Hα+1. Let a set W ′ be the union of all other
verticals from Yα+1. Evidently, W ′ is a cozero-set and W ′ ∩ (∪Wk) = ∅. Put

G′ = τ−1α+1(W
′). Then G′ ∈ Cz(X) and G ∩ G′ = ∅. Moreover, X\(G ∪ G′) ⊂

τ−1α+1H ⊂ XL. Thus, the closed set X\(G ∪ G′) does not intersect the set XU

which is dense in X . Hence, G ∪ G′ is dense in X . �

4. Unsolved problems

4.1 Question. Is it true in ZFC that PM(asω
∗) = PM(uω1) = ∅?

4.2 Question. Under what set-theoretical conjectures which are weaker than CH
does the identity PM(ω

∗) = ∅ hold?
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