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Smooth, very smooth and strongly smooth

points in Musielak-Orlicz function spaces

equipped with the Luxemburg norm

H. Hudzik, L. Wang, T. Wang

Abstract. First, we extend the criteria for smooth points of S(LM ) from [22] to the
whole class of Musielak-Orlicz spaces. Next, we present criteria for very smooth and
strongly smooth points of S(LM ).
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1. Introduction

Let us start with some notations and definitions. In the whole paper X denotes
a real Banach space and X∗ denotes its dual space. N, R and R+ stand for the set
of natural numbers, the set of reals and positive reals, respectively. By (T,Σ, µ)
we denote a measure space with µ being monotonic and σ-finite. The letter M
stands for a Musielak-Orlicz function, i.e.M is a mapping from T×R into [0,+∞]
satisfying the following conditions:

(i) there is a null set A ∈ Σ such that for any t ∈ T \A, M(t, ·) is an Orlicz
function, i.e.M(t, 0) = 0,M(t, ·) is continuous at zero and left continuous
on (0,∞), M(t, ·) is convex and even on R and M(t, u)→∞ as u→∞,

(ii) for any u ∈ R, M(·, u) is a Σ-measurable function on T .

Let us denote by L0 = L0(T,Σ, µ) the space of all (equivalence classes of)
Σ-measurable functions x : T → R. Given any Musielak-Orlicz function M , we
define on L0 a convex modular ̺M by

̺M (x) =

∫

T
M(t, x(t)) dµ

and a Musielak-Orlicz space LM by

LM = {x ∈ L0 : ̺M (λx) <∞ for some λ > 0}.
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We denote by N the Musielak-Orlicz function complementary to M in the sense
of Young, i.e.

N(t, v) = sup
u≥0
{u|v| −M(t, u)}

for all u ∈ R and t ∈ T \A. We define in LM two norms; the Luxemburg norm

‖x‖M = inf{λ > 0 : ̺M (x/λ) ≤ 1}

and the Amemiya-Orlicz norm

‖x‖oM = inf
k>0

1

k
(1 + ̺M (kx)).

For simplicity, we write LM and L0
M in place of (LM , ‖ · ‖M ) and (LM , ‖ ‖0M ),

respectively. Let us denote by K(x) the set of all k > 0 such that the infimum in
the last formula is attained at k. LM is a Banach space under either of these two
norms (see [2], [15] and in the case of Orlicz spaces also [12], [13], [14] and [17]).
Let p−(t, u) and p(t, u) denote the left and right derivative of M(t, ·) at u,

respectively, and let us denote for t ∈ T :

e(t) = sup{u > 0 :M(t, u) = 0}, b(t) = sup{u > 0 :M(t, u) <∞},

ẽ(t) = sup{v > 0 : N(t, v) = 0}, b̃(t) = sup{v > 0 : N(t, v) <∞},

Sx = {t ∈ T : x(t) 6= 0}, Ox = {t ∈ T : x(t) = 0} for x ∈ L0, and

ξM (x) = inf{c > 0 : ̺M (x/c) <∞} for x ∈ LM .

We say that M satisfies the △2-condition (M ∈ △2 for short) if there are a
null set B ∈ Σ, a constant K ≥ 2 and a nonnegative function h ∈ L0 such that
̺M (h) <∞ and M(t, 2u) ≤ KM(t, u) for all u ≥ h(t) (see [2] and [15]).
It is well known that between various smoothness properties of X and respec-

tive rotundity properties of X∗ there is an one-side duality. Namely, if X∗ is
rotund (weakly locally uniformly rotund) [locally uniformly rotund] then X is
smooth (very smooth) [strongly smooth].
Let us recall these six notions. X is said to be rotund if for any x ∈ S(X)

(= the unit sphere of X) if y, z ∈ S(X) and 2x = y + z, then y = z = x. X is
said to be weakly locally uniformly rotund (locally uniformly rotund) if for any
x ∈ S(X) and (xn) in S(X) such that ‖xn + x‖ → 2 there holds xn → x weakly

(xn
w
−→ x for short), respectively xn → x strongly, i.e. ‖xn − x‖ → 0.

X is said to be smooth if for any x ∈ S(X) there is only one support functional
x∗ at x. Recall that x∗ ∈ X∗ is said to be a support functional at x if ‖x∗‖ = 1
and x∗(x) = ‖x‖. We denote by Grad(x) the set of all support functionals at x.
X is said to be strongly (very) smooth if it is smooth and for any x ∈ S(X) and
(xn) in S(X) the condition ‖xn−x‖ → 0 implies that x∗n → x∗ strongly (weakly),
where {x∗} = Grad(x) and {x∗n} = Grad(xn) for n = 1, 2, . . . .
Smoothness properties of Orlicz spaces and Musielak-Orlicz spaces were con-

sidered in [1], [3]–[5], [7]–[11], [18]–[19] and [22]–[23].
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2. Results

We start with a criterion for smooth points of S(LM ). Analogous criterion has
been obtained in [22] but only for Musielak-Orlicz functions which are smooth at
zero. Note that smoothness of M at zero is equivalent to the fact that ẽ(t) = 0
for µ-a.e. t ∈ T .

Theorem 1. A point x ∈ S(LM ) is a smooth point if and only if:

(a) ξM (x) < 1,
(b) µ{t ∈ Ox : ẽ(t) > 0} = 0,
(c) µ{t ∈ Sx : p−(t, |x(t)|) < p(t, |x(t)|)} = 0.

Proof: Assume without loss of generality that x(t) ≥ 0 for µ-a.e. t ∈ T .
Necessity. The necessity of (a) can be proved in the same way as in [22]. Since

(a) must be true we have that Grad(x) = RGrad(x), where RGrad(x) denotes
the set of all regular, i.e. order continuous functionals. Recall that x∗ ∈ (LM )

∗

is said to be order continuous if x∗(xn) → 0 whenever 0 ≤ xn ց 0 and that
every such functional x∗ is represented by some y ∈ L0

N (see [17]). We will prove

that if y ∈ Grad(x), then k(y) 6= ∅, i.e. ‖y‖0N =
1
k
(1 + ̺N (ky)) for some k > 0.

Otherwise

1 = ‖y‖0N = lim
k→∞

1

k
(1 + ̺N (ky)) =

∫

Sy

y(t)b(t) dµ =

∫

T
x(t)y(t) dµ

=

∫

Sy

x(t)y(t) dµ.

Since x(t) ≤ b(t) µ-a.e. in T , we have x(t) = b(t) µ-a.e. in Sy.
It follows from ξM (x) < 1 that there exists λ > 1 such that ξM (λx) < ∞.

Thus

∞ > ξM (λx) ≥

∫

Sy

M(t, λx(t)) dµ =

∫

Sy

M(t, λb(t)) dµ =∞.

This is a contradiction, which proves that k(y) 6= ∅.
Now, we are ready to prove the necessity of (b). Assume that x is a smooth

point of S(LM ) and (b) is not true. Then T0 = {t ∈ Ox : ẽ(t) > 0} is a set in
Σ with µ(T0) > 0. Assume that y ∈ Grad(x) and ‖y‖0N =

1
k (1 + ̺N (ky)). Take

z ∈ L0 such that z(t) = y(t) for t /∈ T0, kz(t) ≤ ẽ(t) and z(t) 6= y(t) for t ∈ T0.
Then

‖z‖0N ≤
1

k
(1 + ̺N (kz)) =

1

k
(1 +

∫

T\T0

N(t, ky(t)) dµ) ≤
1

k
(1 + ̺N (ky))

= ‖y‖0N = 1

and

〈x, z〉 =

∫

T
x(t)z(t) dµ =

∫

Sx

x(t)z(t) dµ =

∫

Sx

x(t)y(t) dµ = 1.
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So, ‖z‖0N = 1 and z ∈ Grad(x). But z 6= y, whence x is not a smooth point,
a contradiction.
Assume that x ∈ S(LM ) is a smooth point and (c) is not true, then T1 =

{t ∈ Sx : p−(t, x(t)) < p(t, x(t))} has positive measure. We may assume that
0 < µ(T1) < µ(T ). Take y ∈ RGrad(x) with ‖y‖0N =

1
k
(1 + ̺N (ky)) for some

k > 0. It can be proved in the same way as for Orlicz spaces in [2, Theorem 1.78]
that

∫

T
N(t, p−(t, x(t))) dµ ≤

∫

T
N(t, ky(t)) dµ = k − 1 <∞.

Let

y1(t) =

{

p−(t, x(t)) for t ∈ Sx

0 for t ∈ 0x

and y2 be a measurable function with y2(t) = p−(t, x(t)) for t ∈ Sx \ T0 and
y2(t) ∈ (p−(t, x(t)), p(t, x(t))) for t ∈ T0 and satisfying ̺N (y2) < ∞. Then
y1, y2 ∈ L0

N . Let z1 = y1/‖y1‖
0
N and z2 = y1/‖y2‖

0
N . Then z1 6= z2 and

z1, z2 ∈ S(L0
N ). Furthermore

1 ≥ 〈x, z1〉 =
1

‖y1‖
0
N

〈x, y1〉 =
1

‖y1‖
0
N

∫

T
x(t)p−(t, x(t)) dµ

=
1

‖y1‖0N

∫

T
(M(t, x(t)) +N(t, p−(t, x(t)))) dµ

=
1

‖y1‖
0
N

(1 + ̺N (y1)) =
1

‖y1‖
0
N

(1 + ̺N (‖y1‖z1)) ≥ ‖z1‖ = 1,

whence we conclude that ‖z1‖
0
N = 1 = 〈x1, z1〉. So, z1 ∈ Grad(x). Similarly,

z2 ∈ Grad(x), which means that x is not a smooth point, a contradiction.

Sufficiency. Let f = y + φ ∈ Grad(x), where y and φ denote the regular and
the singular part of f , respectively. By condition (a), φ = 0 and 1 = ‖y‖0N =
1
k (1 + ̺N (ky)) for some k > 0 (see the beginning of the proof of the necessity).
It can be proved in the same way as in [4, Theorem 1.5] for Orlicz spaces that

(1) p−(t, x(t)) ≤ ky(t) ≤ p(t, x(t)) for t ∈ Sx.

Moreover, by ‖x‖M = 1 and ξM (x) < 1, we have ̺M (x) = 1. Therefore, the
equality

∫

Ox

x(t)ky(t) dµ =

∫

Ox

(M(t, x(t)) +N(t, ky(t))) dµ

yields that N(t, ky(t)) = 0 for t ∈ Ox. By condition (b), y(t) = 0 for t ∈ Ox and
by condition (c), ky(t) = p(t, x(t)) for t ∈ Sx, i.e. ky is unique. By
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k = ‖ky‖0N = ‖kyχSx
‖0N = ‖p(·, x(·))χSx

‖0N ,

we obtain k = 1
‖p(·,x(·))‖0

N

. Therefore

y(t) =

{

p(t,x(t))
‖p(·,x(·))χSx‖

0

N

for t ∈ Sx

0 for t ∈ 0x,

which means that y is unique and so x is a smooth point, which finishes the proof.
�

Corollary 1. The space LM is smooth if and only if:

(a) M ∈ △2,

(b) ẽ(t) = 0 for µ-a.e. t ∈ T ,
(c) p(t, ·) is continuous function on R for µ-a.e. t ∈ T .

Proof: This result follows from Theorem 1. We need only to show the necessity
of condition (b) because the rest can be proved in the same way as in [22].

Assume that condition (b) is not satisfied, that is, the setA = {t ∈ T : ẽ(t) > 0}
has positive measure. Then we can easily build x ∈ S(LM ) with µ(Ox ∩A) > 0.
By Theorem 1, x is not a smooth point, which finishes the proof of the necessity
of condition (b). �

In the proof of the next theorem the following result will be useful.

Proposition 1. Let M be a Musielak-Orlicz function and N be its comple-

mentary function in the sense of Young. Let N ∈ ∆2, x ∈ S(LM ), yn ∈ L0
N ,

k(yn) 6= ∅, (n = 1, 2, . . . ), and 〈x, yn〉 → 1 as n→∞. Then for every ε > 0 there
is Tε ∈ Σ with µTε <∞ such that supn ̺N (ynχT\Tε

) < ε.

Proof: Take T1 ⊂ T2 ⊂ . . . ⊂ Ti ⊂ Ti+1 ⊂ . . . with µTi < ∞ for each i ∈ N

and
⋃

i Ti = T . We will prove that for any ε > 0 there is iε ∈ N such that
supn ̺N (ynχT\Tiε

) < ε. Otherwise, there is ε > 0 such that for any i ∈ N there

is ni ∈ N such that ̺N (yniχT\Tni
) > ε. We may assume that ni →∞ as i→∞

because (ni) is unbounded by the fact that the assumption N ∈ ∆2 yields that

sup
n∈N0

̺(ynχT\Tni
)→ 0 as i→∞

for any finite subset N0 of N. Choose ki ∈ k(yni). From ξM (x) < 1 it follows that
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there is λ > 1 satisfying ̺M (λx) <∞. This yields that for i→∞ there holds

1← 〈x, yni〉 =
1

ki
〈x, kiyni〉

=
1

ki
(

∫

Ti

x(t)kiyni(t) dµ+

∫

T\Ti

x(t)kiyni(t) dµ)

≤
1

ki
(̺M (xχTi

) + ̺N (kiyniχTi
) +
1

λ
̺M (λxχT\Ti

) +
1

λ
̺N (kiyniχT\Ti

))

≤
1

ki
(̺M (x) + ̺N (kiyni)− (1 −

1

λ
)̺N (kiyniχT\Ti

) +
1

λ
̺M (λxχT\Ti

))

≤
1

ki
(1 + ̺N (kiyni)− (1−

1

λ
)̺N (kiyniχT\Ti

) +
1

λ
̺M (λxχT\Ti

)

≤ ‖yni‖ − (1 −
1

λ
)ε+

1

λ
̺(λxχT\Ti

)→ 1− (1−
1

λ
)ε,

a contradiction finishing the proof. �

Theorem 2. Let x ∈ SLM
. Then the following assertions are equivalent:

(1) x is a strongly smooth point,
(2) x is a very smooth point,
(3) x is a smooth point and N ∈ △2.

Proof: We still assume without loss of generality that x ≥ 0. The implication
(1) ⇒ (2) is obvious. Let us prove that (2) ⇒ (3). We need only to prove
that (2) ⇒ N ∈ △2. Assume that condition (2) holds and N /∈ △2. There is
z ∈ L0

N with ̺N (z) < ∞ and ξN (y −
z
k
) =: A > 0, where y defines the unique

support functional for x and k > 0 satisfies 1 = ‖y‖0N =
1
k
(1 + ̺N (ky)). Indeed,

if ξN (y) = 0, we take z ∈ L0
N \ E0

N ; if ξN (y) > 0, we take z = 0. Divide T into

T1, T
′

1 with µ(T1) = µ(T
′

1) =
µ(T )

2 , T1∩T
′

1 = ∅. Lemma 1.67 from [2] is also true
for Musielak-Orlicz spaces (without any change of the proof). Namely, for any
partition {Ti}

n
i=1 of T and any x ∈ L0

N , ξN (x) = max i ξN (xχTi
). So, we may

assume that ξN (y −
z
k
) = ξN ((y −

z
k
)χT1).

Divide T1 into T2, T
′

2 with µ(T2) = µ(T
′

2) =
µ(T1)

2 , T2 ∩ T
′

2 = ∅. We may
assume that

ξN (y −
z

k
) = ξN ((y −

z

k
)χT1) = ξN ((y −

z

k
)χT2).

Continuing this process by induction one can find a sequence (Tn)
∞
n=1 of measur-

able sets in T such that T ⊃ T1 ⊃ T2 ⊃ · · · ⊃ Tn ⊃ . . . , µ(Tn) =
1

2n µ(T ), and
ξN (y −

z
k ) = ξN ((y −

z
k )χTn

) for n = 1, 2, . . . . Let

yn(t) =

{

z(t)
k

for t ∈ Tn

y(t) for t ∈ T \ Tn

(n = 1, 2, . . . ).
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Then

‖yn‖
0
N ≤

1

k
(1 + ̺N (kyn)) ≤

1

k
(1 + ̺N (ky) +

∫

TN

N(t, z(t)) dµ))→ ‖y‖0N = 1.

On the other hand

〈x, yn〉 =

∫

T\Tn

x(t)y(t) dt+

∫

Tn

x(t)z(t) dt→ 〈x, y〉 = 1.

But

ξN ( min
1<i≤n

|y − yi|) = ξN ((y −
z

k
)χ

Tn
) = ξN (y −

z

k
) = A.

Since Theorem 1.68 from [2] holds also for Musielak-Orlicz spaces, that is if (xn)
is a sequence in L0

N , then 〈xn, ϕ〉 → 0 for any singular functional ϕ ∈ (L0
N )

∗ if
and only if limm→∞ ξN (mini≤m |yi|) = 0 for each subsequence (yi) of (xn), we
conclude from the last condition that yn 6→ y weakly. This contradicts the fact
that x is a very smooth point.

(3) ⇒ (1). Assume that (3) holds. Since x is a smooth point, by Theorem 1
we conclude that ξM (x) < 1 and for y ∈ L0

N determining the unique support

functional at x there is k > 0 such that 1 = ‖y‖0N =
1
k (1 + ̺N (ky)). Moreover,

ky(t) = p(t, x(t)) for t ∈ Sx and y(t) = 0 for t ∈ Ox.
Assume that fn = yn + φn ∈ S(L∗

M ), fn(x) → 1. In order to prove that
‖fn − y‖ → 0, we consider six steps.

I. Assume that ξM (x) < 1− θ < 1. Take z ∈ EM such that ‖x− z‖M < 1− θ.
Then

1← fn(x) =< x, yn > +φn(x) ≤ ‖x‖M‖yn‖
0
N + ‖φn‖‖x− z‖M

≤ ‖yn‖
0
N + ‖φn‖(1− θ) = ‖fn‖ − θ‖φn‖.

Therefore ‖φn‖ → 0, ‖yn‖0N → 1 and 〈x, yn〉 → 1. Without loss of generality

we assume in the following that ‖yn‖0N = 1 for n = 1, 2, . . . and 〈x, yn〉 → 1.

II. Let us prove that k(yn) 6= ∅ for an infinite number of n ∈ N, i.e. there are
kn > 0 such that

‖yn‖
0
N =

1

kn
(1 + ̺N (knyn)).

Otherwise ‖yn‖0N =
∫

T yn(t)b(t) dµ for infinite number of n. Since ξM (x) < 1,

there is λ > 1 such that ̺M (λx) < ∞. Hence 1 = ‖yn‖0N =
∫

T yn(t)b(t) dµ ≥
∫

T yn(t)λx(t) dµ → λ as n→∞, which is a contradiction. So, we may assume in
the following, that k(yn) 6= ∅ for all n ∈ N.
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III. We will prove that

k̃ = sup
n

kn <∞.

Otherwise, we may assume that kn →∞, whence for λ > 1 such that ̺M (λx) <
∞, we get

1←

∫

T
x(t)yn(t) dµ =

1

λ

∫

Syn

λx(t)yn(t) dµ

≤
1

λ

∫

Syn

b(t)yn(t) dµ =
1

λ

∫

Syn

lim
v→∞

q(t, v)yn(t) dµ

=
1

λ

∫

Syn

lim
v→∞

N(t, v)

v
yn(t) dµ =

1

λ
lim

n→∞

1

kn
(1 + ̺N (knyn))

=
1

λ
,

a contradiction. Therefore k̃ <∞.

IV. Let us prove that

(2) lim
µ(E)→0

[

sup
n

∫

E
N(t, knyn(t)) dµ

]

= 0.

Otherwise, there is ε > 0 such that

lim
µE→0

[

sup
n

∫

E
N(t, knyn(t)) dµ

]

> ε.

Given η1 > 0 there is E1 ∈ Σ with µE1 < η1 and n1 ∈ N such that
∫

E1
N(t, kn1yn1(t)) dµ > ε. By the absolute continuity of integral there is Θ1

such that
∫

A
N(t, knyn(t)) dµ < ε

for any A ∈ Σ with µA < Θ1 and n = 1, 2, . . . , n1. Take η2 = min(η1/2,Θ1).
Then there is E2 ∈ Σ with µE2 < η2 and n2 ∈ N such that

∫

E2
N(t, kn2yn2(t)) dµ

> ε. Obviously, n2 > n1. Proceeding like that by induction, we can construct a
sequence (ηi) of positive numbers with η1 > 2η2 > 22η3 > . . . > 2n−1ηn > . . . ,
a sequence (ni) of natural numbers with n1 < n2 < n3 < . . . and a sequence (Ei)
in Σ with µEi < ηi such that

∫

Ei

N(t, kniyni(t)) dµ > ε (i = 1, 2, . . . ).
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Hence

1← 〈x, yni〉 =
1

kni

(

∫

T\Ei

knix(t)yni(t) dµ+
1

λ

∫

Ei

λx(t)kniyni(t) dµ)

≤
1

kni

(̺M (xχT\Ei
) + ̺N (kniyniχT\Ei

) +
1

λ
̺M (λxχEi

)

+
1

λ
̺N (kniyniχEi

))

≤
1

kni

(̺M (x) + ̺N (kniyni)− (1 −
1

λ
)̺N (kniyniχEi

) +
1

λ
̺M (λxχEi

))

≤ ‖yni‖ − (1−
1

λ
)
ε

k̃
+ ̺M (λxχEi

)→ 1− (1−
1

λ
)
ε

k̃
.

This is a contradiction, so equality (2) holds.

V. Now, we will prove that

lim
n→∞

knyn(t) = ky(t) =

{

p(t, x(t)) = p−(t, x(t)) for t ∈ Sx

0 for t ∈ Ox.

From

0← ‖yn‖
0
N− < x, yn >=

1

kn
(1 + ̺N (knyn))−

1

kn
〈x, knyn〉

=
1

kn
(̺M (x) + ̺N (knyn)− 〈x, knyn〉)

≥
1

k̃

∫

T
(M(t, x(t)) +N(t, knyn(t)) − x(t)knyn(t)) dµ

it follows that

(3) M(t, x(t)) +N(t, knyn(t)) − x(t)knyn(t)→ 0 µ-a.e. in T .

Notice that p−(t, x(t)) = p(t, x(t)) for t ∈ Sx. Therefore, by the Young in-
equality, we can easily deduce that knyn(t) → p(t, x(t)) µ-a.e. in Sx. Using
condition (b) in Theorem 1, we conclude that yn → 0 µ-a.e. in T .

VI. Finally, we will show that ‖yn−y‖0N → 0. By Proposition 1, we can assume
that µT < ∞. Take an arbitrary ε > 0. By N ∈ △2 there exist k > 0 and a
nonnegative function δ0 ∈ L1 such that

N(t,
v

2
) ≤ kN(t, v) + δ0(t)

for µ-a.e. t ∈ T . Take η > 0 such that if E ⊂ T and µ(E) < η, then
∫

E δ0(t) dµ <
1
4 ,

∫

E N(t, ky(t)) dµ < 1
4k and

∫

E N(t, knyn(t)) dµ < 1
4k for any n ∈ N (the last

one is possible by (2)).
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Since knyn → ky µ-a.e. in T , there is T0 ⊂ T such that µ(T \ T0) < η and
N(t, knyn(t)− ky(t))→ 0 uniformly in T0. Hence

∫

T0

N(t,
knyn(t)− ky(t)

2ε
) dµ <

1

2

for n large enough. Therefore,

‖knyn − ky‖0N ≤ 2ε(1 +

∫

T
N(t,

knyn(t)− ky(t)

2ε
) dµ)

≤ 2ε(1 +

∫

T0

N(t,
knyn(t)− ky(t)

2ε
) dµ)

+
1

2

∫

T\T0

N(t,
knyn(t)

ε
+N(t,

ky(t)

ε
) dµ)

≤ 2ε(1 +
1

2
+
1

2

∫

T\T0

(kN(t, knyn(t)) dµ

+ δ0(t) + kN(t, y(t)) + δ0(t)) dµ)

≤ 4ε

for n large enough, which means that ‖knyn− ky‖0N → 0 as n→ 0. On the other

hand kn = ‖knyn‖0N → ‖ky‖0N = k as n → ∞. Thus ‖yn − y‖0N → 0 as n → ∞,
which completes the proof. �

Corollary 2. The following are equivalent:

(1) LM is strongly smooth,

(2) LM is very smooth,

(3) LM is smooth and N ∈ △2.

Proof: It is an immediate consequence of Theorem 2. �
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