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An answer to a question of Arhangel’skii

Henryk Michalewski

Abstract. We prove that there exists an example of a metrizable non-discrete space X,
such that Cp(X × ω) ≈l Cp(X) but Cp(X × S) 6≈l Cp(X) where S = ({0} ∪ { 1

n+1
:

n ∈ ω}) and Cp(X) is the space of all continuous functions from X into reals equipped
with the topology of pointwise convergence. It answers a question of Arhangel’skii ([2,
Problem 4]).

Keywords: topology of pointwise convergence

Classification: Primary 54C35

1. Introduction

All spaces under consideration are completely regular (T3 1
2

). Symbol R stands

for the real numbers. For a space X define Cp(X) as the space of all continuous
functions from X to R equipped with the topology inherited from the Tychonoff
product R

X . We say that a space X has the Baire property, if the intersection
of a countable family of open dense sets in X is dense in X . For spaces X and
Y the symbol Cp(X) ≈l Cp(Y ) means that there exists a linear homeomorphism
between the spaces Cp(X) and Cp(Y ).
In his paper [2] Arhangel’skii investigates spaces X with the properties that

Cp(X) ≈l Cp(X × ω) or Cp(X) ≈l Cp(X × S), where S = ({0} ∪ { 1
n+1 : n ∈ ω}).

He asks a question ([2, Problem 4]) whether the first of these properties implies
the second. In other words: does there exist a non-discrete space X such that
Cp(X) ≈l Cp(X×ω) but Cp(X) 6≈l Cp(X×S)? In this note we give two examples
of such spaces X .

2. A non-metrizable example

First, we give a relatively simple example of a non-metrizable X with the
property. The example has even a stronger property that Cp(X) ≈l Cp(X × ω)
but Cp(X) and Cp(X × S) are not homeomorphic. Its construction is based on a
result of Lutzer and McCoy ([5]) and it appeared in other context in a paper by
W. Marciszewski and J. van Mill ([6]).
According to Theorem 1.3.4 of [1], if a space Y contains an infinite compact

subspace, then Cp(Y ) does not have the Baire property. It implies in particular
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that for any space X the function space Cp(X × S) does not have the Baire
property.
In the paper by Lutzer and McCoy ([5]) a countable, non-metrizable space Y

with one non-isolated point is constructed such that Cp(Y ) has the Baire property.
The space Cp(Y ) is separable and metrizable as a subspace of the countable
Tychonoff product of the real line.
Let us define X = ω × Y . Space Cp(X) has the Baire property, because it is

linearly homeomorphic to Cp(Y )
ω and the Baire property is preserved under the

countable Tychonoff products of metrizable separable spaces ([7]).
The spaceX×ω is homeomorphic toX and, in particular, Cp(X) ≈l Cp(X×ω).

Since Cp(X) has the Baire property and Cp(X × S) does not have it, there is no
homeomorphism between Cp(X) and Cp(X × S). This finishes the presentation
of the non-metrizable example.

3. The main example

The rest of the paper is devoted to the description of a non-discrete metrizable
space X such that Cp(X) 6≈l Cp(X×S) but Cp(X) ≈l Cp(X×ω). Arhangel’skii’s
paper [2] concerns mainly metrizable spaces and it seems that it is more natural
and important to answers his question by giving a metrizable example.
A map x 7→ S(x) which assigns to points in X nonempty subsets of Y is called

lower-semicontinuous , if for each point y ∈ S(x) and its neighborhood U there
exists a neighborhood V of x such that S(z) ∩ U 6= ∅ for all z ∈ V .
We shall call a set C ⊂ ω1 closed and unbounded if it is closed in the sense of

ordinal topology on ω1 and unbounded in ω1 in the sense of natural order on ω1.
Countably intersection of closed and unbounded sets is closed and unbounded ([4,
Lemma 7.4]).
A subset A ⊂ ω1 is stationary if A intersects all closed and unbounded subsets

of ω1. A subset A ⊂ ω1 is non-stationary if there exists a closed and unbounded
C ⊂ ω1 such that C ∩ A = ∅.
Let A be a subset of ω1. A function f : A → ω1 is called regressive if for

every 0 6= ξ ∈ A it holds f(ξ) < ξ. Pressing Down Lemma ([4, Theorem 22]) says
that for every stationary set A and regressive function f : A → ω1 there exists a
stationary set B ⊂ A such that f is constant on B.
Let Φ : Cp(X) → Cp(Y ) be a linear surjection between the function spaces

on metrizable spaces X and Y . Then we may associate (Chapter 1.4 of [3])
with each y ∈ Y a nonempty finite set supp(y) ⊂ X and non-zero real num-
bers {ax}x∈supp(y) such that for every function f ∈ Cp(X) it holds Φ(f)(y) =∑

x∈supp(y) axf(x). We call supp(y) the support of the point y; for every A ⊂ Y

symbol supp(A) denotes the union of supports of points in A.

The map y 7→ supp(y) has the following properties:

• it is lower semicontinuous and, in particular, if A ⊂ Y and y ∈ clY (A)
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then (Proposition 1.4.4 of [3])

(1) supp(y) ⊂ clX (supp(A));

• if S ⊂ Y is a compact subset then (Lemma 1.5.6 of [3])

(2) clX(supp(S)) is a compact subset of X ;

• if Φ is a linear homeomorphism and x 7→ supp(x) is the map associated
with the inverse Φ−1, then (Proposition 1.4.3 of [3]) for all y ∈ Y

(3) y ∈ supp(supp(y)).

For every limit countable ordinal α < ω1 we fix an increasing sequence (x
α
n)n∈ω,

such that xα
n < α and supn∈ω xα

n = α. We define the Stone space (comp. Chap-
ter 5.1 of [10]) as

E = {(xα
n)n∈ω : α < ω1, α limit} ⊂ ωω

1

where the distance between two distinct points x, y ∈ E is 1
n+1 if n ∈ ω is the

minimal natural number such that x(n) 6= y(n).
Let X be a metrizable space of weight ℵ1. We shall call an increasing sequence

A1 ⊂ A2 ⊂ . . . ⊂ Aξ . . . ⊂ X with |Aξ | ≤ ℵ0 and ξ < ω1,

admissible, if

cl(
⋃

{Aξ : ξ < ω1}) = X, and Aξ =
⋃

{Aα : α < ξ} for limit ξ.

We shall call the set

Âξ = cl(Aξ) \
⋃

{clAα : α < ξ}, for limit ξ,

the layer at the level ξ determined by the admissible sequence.

We shall need the following theorem proved by R. Pol.

Theorem 1 (R. Pol, [8]). For any two admissible sequences of subsets of a metriz-
able space X of weight ℵ1, the layers determined by these sequences coincide at
all levels, apart from a non-stationary set in ω1. �

Let us fix an admissible sequence for the space E:

Eξ = {(xα
n)n∈ω : α < ξ}.
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Repeating Stone’s arguments ([10, Chapter 5]) one can verify that all layers Êξ ,

except possibly a non-stationary set of levels, are singletons of the form {(xξ
n)n∈ω}

for some ξ < ω1.
For the reader’s convenience we give a proof of this fact. Firstly let us

observe that for every α < ξ there exists n0 ∈ ω such that xξ
n > α for all n > n0.

It proves that (xξ
n)n∈ω /∈ cl(Eα) for every α < ξ. Hence Êξ is empty or contains

exactly one element, namely the sequence (x
ξ
n)n∈ω .

Let us assume, on the contrary, that there exists a closed and unbounded set

C ⊂ ω1 such that for all ξ ∈ C layers Êξ are empty. We may assume that the set
C is a subset of the limit ordinals. With every number ξ ∈ C we may associate
a natural number nξ ∈ ω such that the open ball with radius 1nξ

around the

sequence (x
ξ
n)n∈ω does not contain any sequence (x

α
n)n∈ω for α < ξ. Since the

ball contains exactly those sequences which coincide with (x
ξ
n)n∈ω on at least

the first nξ places, it means that for every α < ξ there exists n < nξ such that

xα
n 6= x

ξ
n.

Let us define Cn = {ξ ∈ C : nξ = n}. Since the union of countably many non-
stationary sets is non-stationary, there exists n0 ∈ ω such that Cn0 is stationary.

Let us define A0 = Cn0 and fn : C → ω1 by the formula fn(ξ) = x
ξ
n (n ∈ ω).

The function f0 is regressive and the set A0 is stationary. According to the
Pressing Down Lemma there exists a stationary set A1 ⊂ A0 such that f0 is
constant on A1. Inductively we may construct a decreasing sequence {An}0≤n≤n0
of stationary subsets of C such that fn is constant on An+1 (0 ≤ n < n0).
Let us fix some α, ξ ∈ An0 , α < ξ. Since the functions fn (0 ≤ n < n0) are

constant on the set An0 it holds

xξ
n = fn(ξ) = fn(α) = xα

n

for every 0 ≤ n < n0. Since nξ = n0, it is a contradiction with the fact that the

ball with radius 1nξ
around the sequence (xξ

n)n∈ω does not contain (x
α
n)n∈ω. It

finishes the proof of the fact.

Remark. Stone’s arguments quoted above together with Pol’s theorem give that
for every admissible decomposition ofE all layers, except possible a non-stationary
set of levels, are singletons. Therefore, for all ξ < ω1 except possibly a non-
stationary subset of ω1, the layers of E ×ω and the layers of E ×ω×S are of the

form {(xξ
n)n∈ω} × ω, {(xξ

n)n∈ω} × ω × S respectively.

This remark shall be used in the course of the proof of the following

Theorem 2. There is no linear homeomorphism between Cp(E×ω) and Cp(E×
ω × S).
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Before the proof of the theorem let us observe that the space E × ω gives the
example mentioned in the abstract and in the beginning of Section 3. We have
Cp(E ×ω ×ω) ≈l Cp(E ×ω) because E × ω ×ω is homeomorphic to E ×ω. The
second property of the example is expressed in the statement of the theorem.

Proof of Theorem 2: To obtain a contradiction, suppose that there exists a
linear homeomorphism Φ from Cp(X) onto Cp(Y ), where X denotes E × ω and
Y denotes E × ω × S. Let

A01 ⊂ A02 ⊂ . . . ⊂ A0ξ . . . ⊂ X (ξ < ω1)

be any admissible sequence for the space X .
We define inductively for n ∈ ω

Bn
ξ =

⋃
{supp(x) : x ∈ An

ξ }

and
An+1

ξ
=

⋃
{supp(y) : y ∈ Bn

ξ }.

Finally, for every ξ < ω1 let

Cξ =
⋃

n∈ω

An
ξ

and
Dξ =

⋃

n∈ω

Bn
ξ .

Then the sequences

C0 ⊂ C1 ⊂ . . . ⊂ Cξ ⊂ . . . ⊂ X, ξ < ω1,

and
D0 ⊂ D1 ⊂ . . . ⊂ Dξ ⊂ . . . ⊂ Y, ξ < ω1,

are admissible and have the property that Cξ = supp(Dξ) and Dξ = supp(Cξ) for
every ξ < ω1. The only fact which requires an explanation is that the union of the
sequence (Dξ)ξ<ω1

is dense in Y . Let us fix a point y ∈ Y . According to the prop-

erty (3) of support maps there exists some x ∈ supp(y) such that y ∈ supp(x).
The sequence {Cξ}ξ<ω1 is admissible. In particular, x ∈ clX(

⋃
ξ<ω1

Cξ). Accord-

ing to the property (1) of support maps it holds supp(x) ⊂ clY (supp
⋃

ξ<ω1
Cξ).

Together with the fact that supp(
⋃

ξ<ω1
Cξ) =

⋃
ξ<ω1

Dξ it gives that y ∈

supp(x) ⊂ clY (
⋃

ξ<ω1
Dξ). It finishes the proof of the fact that

⋃
ξ<ω1

Dξ is

dense in Y .
According to the Remark formulated before the proof of Theorem 2, there

exists ξ < ω1 such that Ĉξ = (x
ξ
n)n∈ω × ω and D̂ξ = (x

ξ
n)n∈ω × ω × S. We fix
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a copy of S in D̂ξ. Due to the property (2) of support maps we know that the
space T = clX(supp(S)) is a compact subset of X . Moreover, the property (1)
of support maps together with the fact that supp(Dξ) = Cξ imply that the set T

is a subspace of clX(Cξ). The intersection of T with Ĉξ is finite, because Ĉξ is

discrete and T is compact. This implies that we can find y ∈ S \ supp(T ∩ Ĉξ).
We strive to obtain a contradiction with the fact that y ∈

⋃
{supp(x) : x ∈

supp(y)} (property (3) of support maps). We can represent the set supp(y)

as a union of two subsets supp(y) = X1 ∪ X2, where X1 = supp(y) ∩ Ĉξ and
X2 = supp(y) \ X1 ⊂

⋃
α<ξ clX (Cα); it implies that exists α < ξ such that

X2 ⊂ clX(Cα).
According to our choice of the point y, we have y /∈ supp(X1). On the other

hand
supp(X2) ⊂ supp(clX (Cα)) ⊂ clY (Dα),

thanks to the property (1) of support maps and the equality supp(Cα) = Dα. In

particular supp(X2) ∩ D̂ξ = ∅. Finally we obtain y /∈ supp(X1) ∪ supp(X2) =⋃
{supp(x) : x ∈ supp(y)}, a contradiction. �
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