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An answer to a question of Arhangel’skii

HENRYK MICHALEWSKI

Abstract. We prove that there exists an example of a metrizable non-discrete space X,
such that Cp(X x w) & Cp(X) but Cp(X x S) % Cp(X) where S = ({0} U {77 :
n € w}) and Cp(X) is the space of all continuous functions from X into reals equipped
with the topology of pointwise convergence. It answers a question of Arhangel’skii ([2,

Problem 4]).
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1. Introduction

All spaces under consideration are completely regular (T3 1). Symbol R stands
2

for the real numbers. For a space X define Cp(X) as the space of all continuous
functions from X to R equipped with the topology inherited from the Tychonoff
product RX. We say that a space X has the Baire property, if the intersection
of a countable family of open dense sets in X is dense in X. For spaces X and
Y the symbol Cp(X) ~; Cp(Y') means that there exists a linear homeomorphism
between the spaces Cp(X) and Cp(Y).

In his paper [2] Arhangel’skii investigates spaces X with the properties that
Cp(X) m Cp(X x w) or Cp(X) ~y Cp(X x ), where S = ({0} U {17 :n € w}).
He asks a question (]2, Problem 4]) whether the first of these properties implies
the second. In other words: does there exist a non-discrete space X such that
Cp(X) = Cp(X xw) but Cp(X) % Cp(X x S)? In this note we give two examples
of such spaces X.

2. A non-metrizable example

First, we give a relatively simple example of a non-metrizable X with the
property. The example has even a stronger property that Cp(X) ~; Cp(X x w)
but Cp(X) and Cp(X x S) are not homeomorphic. Its construction is based on a
result of Lutzer and McCoy ([5]) and it appeared in other context in a paper by
W. Marciszewski and J. van Mill ([6]).

According to Theorem 1.3.4 of [1], if a space Y contains an infinite compact
subspace, then C},(Y) does not have the Baire property. It implies in particular

545



546

H. Michalewski

that for any space X the function space Cp(X x S) does not have the Baire
property.

In the paper by Lutzer and McCoy ([5]) a countable, non-metrizable space Y
with one non-isolated point is constructed such that Cp(Y") has the Baire property.
The space Cp(Y) is separable and metrizable as a subspace of the countable
Tychonoff product of the real line.

Let us define X = w x Y. Space Cp(X) has the Baire property, because it is
linearly homeomorphic to Cp,(Y)* and the Baire property is preserved under the
countable Tychonoff products of metrizable separable spaces ([7]).

The space X xw is homeomorphic to X and, in particular, Cp(X) ~; Cp(X xw).
Since Cp(X) has the Baire property and C,(X x S) does not have it, there is no
homeomorphism between Cp(X) and Cp(X x S). This finishes the presentation
of the non-metrizable example.

3. The main example

The rest of the paper is devoted to the description of a non-discrete metrizable
space X such that Cp(X) 3%; Cp(X x S) but Cp(X) ~; Cp(X xw). Arhangel’skii’s
paper [2] concerns mainly metrizable spaces and it seems that it is more natural
and important to answers his question by giving a metrizable example.

A map x — S(x) which assigns to points in X nonempty subsets of Y is called
lower-semicontinuous, if for each point y € S(x) and its neighborhood U there
exists a neighborhood V' of = such that S(z) NU # @ for all z € V.

We shall call a set C C wy closed and unbounded if it is closed in the sense of
ordinal topology on wj and unbounded in wy in the sense of natural order on wy.
Countably intersection of closed and unbounded sets is closed and unbounded ([4,
Lemma 7.4]).

A subset A C w is stationary if A intersects all closed and unbounded subsets
of wi. A subset A C wq is non-stationary if there exists a closed and unbounded
C C wy such that CN A = ().

Let A be a subset of wy. A function f : A — wy is called regressive if for
every 0 # £ € A it holds f(§) < &. Pressing Down Lemma ([4, Theorem 22]) says
that for every stationary set A and regressive function f : A — w; there exists a
stationary set B C A such that f is constant on B.

Let @ : Cp(X) — Cp(Y) be a linear surjection between the function spaces
on metrizable spaces X and Y. Then we may associate (Chapter 1.4 of [3])
with each y € Y a nonempty finite set supp(y) C X and non-zero real num-
bers {az},esupp(y) Such that for every function f € Cp(X) it holds ®(f)(y) =
ZwESpr () az f(x). We call supp (y) the support of the point y; for every A CY
symbol supp (A4) denotes the union of supports of points in A.

The map y — supp(y) has the following properties:

e it is lower semicontinuous and, in particular, if A C Y and y € cly(A)
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then (Proposition 1.4.4 of [3])

(1) supp(y) C clx (supp(A));

e if S C Y is a compact subset then (Lemma 1.5.6 of [3])
(2) clx (supp(S)) is a compact subset of X;

e if ® is a linear homeomorphism and z — supp (z) is the map associated
with the inverse ®~!, then (Proposition 1.4.3 of [3]) for all y € Y’

(3) y € supp (supp (y))-

For every limit countable ordinal o < wy we fix an increasing sequence (z5}),,c,.»
such that 2§y < a and sup, ¢, ¢ = «. We define the Stone space (comp. Chap-
ter 5.1 of [10]) as

E = {())pew : @ < w1, alimit} C wy

where the distance between two distinct points z,y € FE is n%—l if n € wis the
minimal natural number such that z(n) # y(n).
Let X be a metrizable space of weight Nj. We shall call an increasing sequence

Al CA2C...CAe...C X with [Ag| <Ry and & <wy,
admissible, if
CI(U{Af 2{<wi})=X, and A= U{Aa s < &} for limit €.
We shall call the set
Eg = cl(Ag) \ U{clAa ca < &}, for limit &,

the layer at the level £ determined by the admissible sequence.
We shall need the following theorem proved by R. Pol.

Theorem 1 (R. Pol, [8]). For any two admissible sequences of subsets of a metriz-
able space X of weight Ny, the layers determined by these sequences coincide at
all levels, apart from a non-stationary set in w1. 0

Let us fix an admissible sequence for the space E:

Ee = {(#n)new s @ < &}
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Repeating Stone’s arguments ([10, Chapter 5]) one can verify that all layers Eg,

except possibly a non-stationary set of levels, are singletons of the form {(:c%)
for some £ < wi.

For the reader’s convenience we give a proof of this fact. Firstly let us

observe that for every a < £ there exists ng € w such that x% > « for all n > ng.

nEw}

It proves that (:c%)new ¢ cl(Eq) for every a < &. Hence E¢ is empty or contains

exactly one element, namely the sequence (:v%)new.

Let us assume, on the contrary, that there exists a closed and unbounded set
C C wq such that for all £ € C' layers Eg are empty. We may assume that the set
C is a subset of the limit ordinals. With every number ¢ € C' we may associate
a natural number ng € w such that the open ball with radius n% around the

«
new n)nEw

ball contains exactly those sequences which coincide with (:vfl)nau on at least
the first ng places, it means that for every a < £ there exists n < ng such that

Let us define Cp, = {{ € C': ng = n}. Since the union of countably many non-
stationary sets is non-stationary, there exists ng € w such that Cy,, is stationary.

Let us define Ag = Cpy and fy, : C — wy by the formula f,, (&) = a5, (n € w).
The function fy is regressive and the set Ag is stationary. According to the
Pressing Down Lemma there exists a stationary set A; C Agp such that fy is
constant on Aq. Inductively we may construct a decreasing sequence { Ap}o<p<n,
of stationary subsets of C' such that fy is constant on Ap41 (0 < n < ng).

Let us fix some o, & € Apy, o < €. Since the functions fp (0 < n < ng) are
constant on the set A, it holds

sequence (:c%) does not contain any sequence (x for @ < . Since the

a8, = fn(€) = fula) = 2

for every 0 < n < ng. Since ng = ng, it is a contradiction with the fact that the

ball with radius -1 around the sequence (:v%) It

n

finishes the proof of the fact.

does not contain (z%)

new new:

Remark. Stone’s arguments quoted above together with Pol’s theorem give that
for every admissible decomposition of E all layers, except possible a non-stationary
set of levels, are singletons. Therefore, for all £ < w; except possibly a non-
stationary subset of wy, the layers of E' x w and the layers of E X w x S are of the

form {(:v%)nau} X w, {(m%)new} X w X S respectively.
This remark shall be used in the course of the proof of the following

Theorem 2. There is no linear homeomorphism between C,(E x w) and Cp(E x
wx S).
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Before the proof of the theorem let us observe that the space E x w gives the
example mentioned in the abstract and in the beginning of Section 3. We have
Cp(E x w x w) =) Cp(E x w) because E X w X w is homeomorphic to £ x w. The
second property of the example is expressed in the statement of the theorem.

PrOOF OF THEOREM 2: To obtain a contradiction, suppose that there exists a
linear homeomorphism ® from Cp(X) onto Cp(Y'), where X denotes E x w and
Y denotes F x w x S. Let

AcA)c...cAl.. CcX ((<w)

be any admissible sequence for the space X.
We define inductively for n € w

B = U{supp (z) 1z € AZ}

and
A = J{swpp(y) : y € BE}.

Finally, for every £ < wy let

Ce= | 4¢
new
and
De = | B
new

Then the sequences
CocCiC...CCeC...C KX, {<wi,

and
DoyCDyC...CDeC...CY, {<uwy,

are admissible and have the property that C¢ = supp(D¢) and D¢ = supp (C¢) for
every £ < wi. The only fact which requires an explanation is that the union of the
sequence (D§)£<w1 is dense in Y. Let us fix a point y € Y. According to the prop-
erty (3) of support maps there exists some z € supp(y) such that y € supp(x).
The sequence {C¢ }¢<,, is admissible. In particular, z € clx (Ugy,, C¢)- Accord-
ing to the property (1) of support maps it holds supp (z) C cly (supp U5<w1 Ce).
Together with the fact that supp(U5<W1 Ce) = U§<w1 D¢ it gives that y €
supp (z) C cly(Ug<y, De)- It finishes the proof of the fact that e, De is
dense in Y.

According to the Remark formulated before the proof of Theorem 2, there

exists £ < wj such that 65 = (x%) x w and ﬁg = (x%) X w x S. We fix

new new
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a copy of S in ZA)S. Due to the property (2) of support maps we know that the
space T = clx (supp(5)) is a compact subset of X. Moreover, the property (1)
of support maps together with the fact that supp (D¢) = C¢ imply that the set T

is a subspace of cly(C¢). The intersection of T with 6§ is finite, because C¢ is

discrete and T is compact. This implies that we can find y € S\ supp(T'N ég)

We strive to obtain a contradiction with the fact that y € | J{supp(z) : = €
supp(y)} (property (3) of support maps). We can represent the set supp(y)
as a union of two subsets supp(y) = Xj U X2, where X7 = supp(y) N 6’2 and
Xo = supp(y) \ X1 C Uy<eclx(Ca); it implies that exists o < £ such that
Xo C ch(Oa)

According to our choice of the point y, we have y ¢ supp(X71). On the other
hand

supp (X2) C supp(cly (Ca)) C cly (Da),
thanks to the property (1) of support maps and the equality supp(Cy) = Dq. In

I

particular supp (X2) N D¢ = (). Finally we obtain y ¢ supp(X1) Usupp(X2) =
(U{supp(x) : « € supp(y)}, a contradiction. O
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