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Riesz angles of Orlicz sequence spaces

Yan Yaqiang

Abstract. We introduce some practical calculation of the Riesz angles in Orlicz sequence
spaces equipped with Luxemburg norm and Orlicz norm. For an N-function Φ(u) whose

index function is monotonous, the exact value a(l(Φ)) of the Orlicz sequence space with

Luxemburg norm is a(l(Φ)) = 2

1

C0

Φ or a(l(Φ)) =
Φ−1(1)

Φ−1( 1
2
)
. The Riesz angles of Orlicz

space lΦ with Orlicz norm has the estimation max(2β0Ψ, 2β′

Ψ) ≤ a(lΦ) ≤ 2
θ0
Φ

.

Keywords: Orlicz space, N-function, index function, Riesz angle

Classification: 46E30

1. Introduction

In 1984, Borwein and Sims [2, p. 345] introduced the following

Definition 1.1. For a Banach lattice X , the Riesz angle a(X) of X is defined as

(1) a(X) = sup {‖(|x| ∨ |y|)‖ : ‖x‖ ≤ 1, ‖y‖ ≤ 1} ,

where |x| ∨ |y| = max(|x|, |y|).
Clearly, 1 ≤ a(X) ≤ 2. The notion of Riesz angle has attracted many re-

searchers (see Borwein and Sims [2], Chen [3], Cui, Hudzik and Li [4]). It is
an important geometric coefficient in Banach lattices. This paper is devoted to
the computation (estimation) of a(X) when X is an Orlicz sequence space with

Luxemburg norm or Orlicz norm, i.e., a(l(Φ)) and a(lΦ).
Let

Φ(u) =

∫ |u|

0
φ(t) dt and Ψ(v) =

∫ |v|

0
ψ(s) ds

be a pair of complementary N -functions. The Orlicz sequence spaces l(Φ) and lΦ

are defined to be the sets
{
x : ρΦ(λx) =

∞∑

n=1
Φ(λ|x(i)|) < ∞ for some λ > 0

}

equipped with Luxemburg norm ‖·‖(Φ) and Orlicz norm ‖·‖Φ, respectively, where

‖x‖(Φ) = inf
{

c > 0 : ρΦ

(x

c

)

≤ 1
}

, and ‖x‖Φ = inf
k>0

1

k
[1 + ρΦ(kx)].
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Φ(u) is said to satisfy the ∆2-condition for small u, in symbol Φ ∈ ∆2(0), if there
exist u0 > 0 and k > 2 such that Φ(2u) ≤ kΦ(u) for 0 ≤ u ≤ u0. An N -function
Φ(v) is said to satisfy the ∇2-condition if its complementary N -function satisfies
the ∆2-condition.
In Orlicz spaces, Borwein and Sims [2, p. 347] proved: If Φ ∈ ∇2(0), then

a(l(Φ)) < 2. Chen [3, p. 118] showed that if Φ /∈ ∇2(0), then a(l(Φ)) = 2. Thus,
we can state the results as follows:

Proposition 1.2 ([2], [3]). Let Φ be an N -function; then Φ ∈ ∇2(0) if and only
if a(l(Φ)) < 2.

The result analogous to the above proposition for spaces with Orlicz norm will
be given in this paper (see Corollary 3.4). We first introduce some propositions
on indices and index functions. Simonenko [8] and Semenov [7] introduced the
following indices:

A0Φ = lim inf
t→0

tφ(t)

Φ(t)
, B0Φ = lim sup

t→0

tφ(t)

Φ(t)
;(2)

α0Φ = lim inf
u→0

Φ−1(u)

Φ−1(2u)
, β0Φ = lim sup

u→0

Φ−1(u)

Φ−1(2u)
.(3)

The same indices can be applied to Ψ(v). Later on, these indices were extensively
studied (see Maligranda [6]) and were used by Rao and Ren (see [9]) to calculate
the packing sphere and the other important constants. We have the relationship:

Proposition 1.3 (Lindenstrauss and Tzafriri [5], Yan [10], Rao and Ren [9]). Let
Φ, Ψ be a pair of complementary N -functions. Then, we have

1

A0Φ
+
1

B0Ψ
= 1 =

1

A0Ψ
+
1

B0Φ
,(4)

2α0Φβ
0
Ψ = 1 = 2α

0
Ψβ
0
Φ,(5)

2
− 1

A0
Φ ≤ α0Φ ≤ β0Φ ≤ 2

− 1

B0
Φ .(6)

For the index functions of N -functions, the author obtained the following re-
sults.

Proposition 1.4 (Yan [10]). Let Φ be an N -function, φ(t) its right derivative.
Denote

(7) FΦ(t) =
tφ(t)

Φ(t)
, GΦ(c, u) =

Φ−1(u)

Φ−1(cu)
, (c > 1).

Then FΦ(t) is increasing (decreasing) on (0,Φ
−1(u0)] if and only if GΦ(c, u) is

increasing (decreasing) on (0, u0
c ] for every c > 1.
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Proposition 1.5 (Yan [10]). Let Φ, Ψ be a pair of N -functions, and φ, ψ be
their right derivative, respectively. C > 0, FΦ(t) and FΨ(s) are defined as in (7),
i.e.,

FΦ(t) =
tφ(t)

Φ(t)
, FΨ(s) =

sψ(s)

Ψ(s)
, t, s > 0.

Then

(i) FΦ(t) is increasing (decreasing) on (0, ψ(C)] if and only if FΨ(s) is decreas-
ing (increasing) on (0, C].

(ii) Denote

a∗Φ = inf{FΦ(t) : t ∈ (0, ψ(C)]},(8)

b∗Ψ = sup{FΨ(s) : s ∈ (0, C]}.(9)

Then

(10)
1

a∗Φ
+
1

b∗Ψ
= 1.

2. Riesz angles of Orlicz sequence spaces with Luxemburg norm

Theorem 2.1. Let Φ be an N -function; then

(11) max

(
1

α′Φ
,
1

α0Φ

)

≤ a(l(Φ)) ≤ 1

α̃Φ
,

where α0Φ is defined as (3), and

α′Φ = inf

{
Φ−1( 12k )

Φ−1( 1k )
: k = 1, 2, · · ·

}

,(12)

α̃Φ = inf

{
Φ−1(u)

Φ−1(2u)
: 0 < u ≤ 1

2

}

.(13)

Proof: We first prove

(14)
1

α0Φ
≤ a(l(Φ)).

The method is similar to that of Rao and Ren [9, Lemma 2.2(i)]. By the definition
of α0Φ, there exists a sequence 1 > un ց 0 such that

lim
n→∞

Φ−1(un)

Φ−1(2un)
= α0Φ.
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For any 0 < ε < 1, select an integer n0 ≥ 1 such that un < ε
2 for n ≥ n0 and

[Φ−1(un)/Φ
−1(2un)] < α0Φ + ε. For convenience, put u0 = un0 . Then

(15) 2u0 < ε, Φ−1(2u0) >
Φ−1(u0)

α0Φ + ε
.

Let k0 = [
1
2u0
] be the integral part of 1

2u0
. Then k0 ≤ 1

2u0
< k0 + 1, and so

1
2k0

< u0
1−2u0

. Define

x0 = Φ
−1(2u0)

k0∑

i=1

ei, y0 = Φ
−1(2u0)

2k0∑

i=k0+1

ei,

where ei = (

i
︷ ︸︸ ︷

0, · · · , 0, 1, 0, 0, · · · ). It is easy to see that

‖x0‖(Φ) = ‖y0‖(Φ) =
Φ−1(2u0)

Φ−1( 1k0 )
≤ 1.

It follows from (15) that

‖(|x0| ∨ |y0|)‖(Φ) = ‖x0 + y0‖(Φ) =
Φ−1(2u0)

Φ−1( 12k0 )

>
Φ−1(u0)

(α0Φ + ε)Φ
−1( 12k0 )

>
(1 − 2u0)Φ−1( u0

1−2u0
)

(α0Φ + ε)Φ
−1( 12k0 )

>
1− ε

α0Φ + ε
,

so (14) holds since ε is arbitrary.
Next we show

(16)
1

α′Φ
≤ a(l(Φ)).

For every k ≥ 1, define

Zk = (0, 0, · · · , 0), Xk = Φ
−1(
1

k
)(1, 1, · · · , 1),

with dimZk = dimXk = k. Denote

x0 = (Xk, Zk, Zk, · · · ), y0 = (Zk, Xk, Zk, · · · ).
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Then ‖x0‖(Φ) = ‖y0‖(Φ) = 1 and

‖(|x0| ∨ |y0|)‖(Φ) =
Φ−1( 1k )

Φ−1( 12k )
.

Therefore

a(l(Φ)) ≥ sup
{
Φ−1( 1k )

Φ−1( 12k )
: k = 1, 2, · · ·

}

=
1

α′Φ
.

Observe that (16) was proved by Borwein and Sims (see [2, p. 347]). However
their proof is too complex and attached with an extra assumption Φ(1) = 1.
Finally, it remains to show

(17) a(l(Φ)) ≤ 1

α̃Φ
.

By the definition of α̃Φ, α̃Φ ≤ Φ−1(u)
Φ−1(2u)

for 0 < u ≤ 1
2 , so that

(18) Φ(α̃ΦΦ
−1(2u)) ≤ u, 0 < u ≤ 1

2
.

For each x = (x(i)), y = (y(i)) ∈ l(Φ) satisfying ‖x‖(Φ) ≤ 1, ‖y‖(Φ) ≤ 1, we have
ρΦ(x) ≤ 1, ρΦ(y) ≤ 1. Thus

1

2
Φ(|x(i)|) ≤ 1

2
,

1

2
Φ(|y(i)|) ≤ 1

2
.

Note that (18) also holds for u = 0. Substitute ui =
1
2Φ(|x(i)|) and ui =

1
2Φ(|y(i)|) into (18); we have

(19) Φ(α̃Φ|x(i)|) ≤
1

2
Φ(|x(i)|), Φ(α̃Φ|y(i)|) ≤

1

2
Φ(|y(i)|), i ≥ 1.

It follows from (19) that

ρΦ(α̃Φ(|x| ∨ |y|)) ≤ ρΦ(α̃Φ|x|) + ρΦ(α̃Φ|y|)

=

∞∑

i=1

Φ(α̃Φ|x(i)|) +
∞∑

i=1

Φ(α̃Φ|y(i)|)

≤ 1
2

∞∑

i=1

Φ(|x(i)|) + 1
2

∞∑

i=1

Φ(|y(i)|)

=
1

2
ρΦ(x) +

1

2
ρΦ(y) ≤ 1.

Therefore,

‖(|x0| ∨ |y0|)‖(Φ) ≤
1

α̃Φ
.

Thus (16) holds since x and y are arbitrary. Consequently, (11) follows from (14),
(16) and (17). (The idea of the proof for (17) is due to Benavides and Rodriguez [1]

for estimation of the weakly convergent sequence coefficient WCS(l(Φ)).) �
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Remark 2.2. Proposition 1.2 may be deduced from (11). Indeed, if Φ /∈ ∇2(0),
then α0Φ =

1
2 , and by (14), one has 2 ≤ a(l(Φ)), which implies a(l(Φ)) = 2 since

a(l(Φ)) ≤ 2 always holds. On the other hand, if Φ ∈ ∇2(0) then 12 < α0Φ.

Observe that [Φ−1(u)/Φ−1(2u)] > 1
2 for 0 < u ≤ 1

2 , therefore α̃Φ >
1
2 , and hence,

a(l(Φ)) < 2 by (11).

Example 2.3 (Borwein and Sims [2, p. 346]).

(20) a(lp) = 2
1
p (1 < p <∞).

In [2], (20) was proved by means of Bohnenblust’s inequality. Here we simply

deduce it from Theorem 2.1. In fact, let Φ(u) = |u|p, then lp = l(Φ) and ‖ · ‖p =
‖ · ‖(Φ). Since

Φ−1(u)

Φ−1(2u)
= 2

− 1
p , 0 < u <∞,

we have α0Φ = α̃Φ = 2
− 1

p , and (20) holds.

We now present formulas for the exact value of a(l(Φ)).

Theorem 2.4. For an N -function Φ ∈ ∇2(0), we have:
(i) if FΦ(t) =

tφ(t)
Φ(t)

is increasing on (0,Φ−1(1)], then

(21) a(l(Φ)) = 2
1

C0
Φ ,

where C0Φ = limt→0

tφ(t)
Φ(t)
;

(ii) if FΦ(t) is decreasing on (0,Φ
−1(1)], then

(22) a(l(Φ)) =
Φ−1(1)

Φ−1(12 )
.

Proof: (i) If FΦ(t) is increasing on (0,Φ
−1(1)], then C0Φ = limt→0

tφ(t)
Φ(t)

exists; and

GΦ(u) =
Φ−1(u)
Φ−1(2u)

is increasing on (0, 12 ] (see Proposition 1.4), so by Proposi-

tion 1.3(6),

α′Φ = α
0
Φ = lim

u→0

Φ−1(u)

Φ−1(2u)
= 2

− 1

C0
Φ ,

and hence (21) follows from (11).
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(ii) If FΦ(t) is decreasing on (0,Φ
−1(1)], then GΦ(u) =

Φ−1(u)
Φ−1(2u)

is also decreas-

ing on (0, 12 ]. Therefore,

α0Φ ≥ α′Φ = α̃Φ = GΦ(
1

2
) =
Φ−1(12 )

Φ−1(1)
.

Thus (22) is derived from the above and (11). The proof is completed. �

Example 2.5. Suppose

(23) M(u) = e|u| − |u| − 1, N(v) = (1 + |v|) ln(1 + |v|)− |v|.

Then it is not difficult to check that FM (t) =
t(et−1)
et−t−1 is increasing on (0,∞) and

C0M = 2 (see [9, Example 2.6]). Moreover, FN (s) =
sN ′(s)
N(s)

is decreasing on (0,∞)
and C0N = 2. Thus, M,N ∈ ∇2(0), which satisfy the condition of Theorem 2.4,
so that

a(l(M)) =
√
2,(24)

a(l(N)) =
N−1(1)

N−1(12 )
≈ 1.487.(25)

3. Riesz angles of Orlicz sequence spaces with Orlicz norm

We first present some auxiliary lemmas. Observe that for a Banach lattice X ,
the Riesz angle a(X) can be expressed as

(26) a(X) = sup{‖(|x| ∨ |y|)‖ : x, y ∈ S(X)},

where S(X) is the unit sphere of X .
Since

1 <
CΦ−1(u0)

Φ−1(Cu0)
< C, 0 < u0 <∞,

for any N -function Φ and C > 1, we have:

Proposition 3.1 (Chen [3]). For an N -function Φ and a constant C > 1, one
has:

(i) Φ ∈ ∇2(0) if and only if 1 < lim inf
u→0

[CΦ−1(u)/Φ−1(Cu)];

(ii) Φ ∈ △2(0) if and only if lim sup
u→0

[CΦ−1(u)/Φ−1(Cu)] < C.
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Lemma 3.2. Let Φ and Ψ be a pair of N -functions. Denote

(27) QΦ = sup
‖x‖Φ=1

{

kx > 1 : ‖x‖Φ =
1

kx
[1 + ρΦ(kxx)]

}

and

(28) qΦ = inf
‖x‖Φ=1

{

kx > 1 : ‖x‖Φ =
1

kx
[1 + ρΦ(kxx)]

}

.

Then we have

(29) a∗Ψ ≤ qΦ ≤ QΦ ≤ b∗Ψ,

where

(30) a∗Ψ = inf
{sψ(s)

Ψ(s)
: 0 < s ≤ Ψ−1(1)

}

, b∗Ψ = sup
{sψ(s)

Ψ(s)
: 0 < s ≤ Ψ−1(1)

}

.

Proof: The author [10] proved QΦ ≤ b∗Ψ. Considering (10), it remains to show

(31) a∗Ψ =
b∗Φ

b∗Φ − 1 ≤ qΦ.

In fact, if Φ /∈ △2(0), then Ψ /∈ ∇2(0), and so b∗Φ =∞,
b∗Φ

b∗Φ−1
= 1 = a∗Ψ, which

means (31) holds. We show that (31) holds for Φ ∈ △2(0).
For every x = {x(i)} ∈ lΦ, ‖x‖Φ = 1, we have that ρΦ(4kxx) <∞. Since

Φ(4u) ≥ 2uφ(2u) ≥ Ψ(φ(2u))

we have ρΨ(φ(2kxx)) <∞. Now we shall prove

(32) lim
η→0

ρΨ[φ((1 + η)kxx)] = ρΨ[φ(kxx)].

Indeed, for an arbitrary ε > 0, choose an i0 satisfying

∑

i>i0

Ψ[φ(2kx|x(i)|)] <
ε

2
.

We have for a sufficiently small η

Ψ[φ(1 + η)kx|x(i)|)] −Ψ[φ(kx|x(i)|)] <
ε

2i0
(i = 1, 2, · · · , i0)
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by the right continuity of Ψ(φ(·)). It follows that

ρΨ[φ((1 + η)kxx)] − ρΨ[φ(kxx)]

≤
i0∑

i=1

{Ψ[φ(1 + η)kx|x(i)|)] −Ψ[φ(kx|x(i)|)]} +
∑

i>i0

Ψ[φ(1 + η)kx|x(i)|)]

≤ ε

2i0
i0 +

ε

2
= ε,

which implies (32). Since ρΨ[φ((1+η)kxx)] ≥ 1 for all η > 0, we deduce from (32)
that

(33) ρΨ[φ(kxx)] ≥ 1.

Analogously, we obtain

(34) ρΨ[φ (kxx)] ≤ 1,

where φ (t) is the left derivative of Φ(u). Therefore, Ψ[φ (kx|x(i)|)] ≤ 1 for
every i, and hence,

(35) kx|x(i)| ≤ ψ [φ (kx|x(i)|)] ≤ ψ [Ψ−1(1)] ≤ ψ[Ψ−1(1)] i = 1, 2, · · · .

Finally, by(34), (35) and the definition of b∗Φ,

1 ≤ ρΨ[φ(kxx)] =

∞∑

i=1

Ψ[φ(kx|x(i)|)]

=

∞∑

i=1

[kx|x(i)|φ(kx|x(i)|)− Φ(kx|x(i)|)]

≤ (b∗Φ − 1)
∞∑

i=1

Φ(kx|x(i)|)

= (b∗Φ − 1) [‖(kx)x‖Φ − 1]
= (b∗Φ − 1)(kx − 1).

It follows that
b∗Φ

b∗Φ−1
≤ kx. So (31) holds since x is arbitrary. �

Theorem 3.3. (i) Let Φ be an N -function and Ψ its complementary N -function.
Then

(36) max(2β0Ψ, 2β
′
Ψ) ≤ a(lΦ),
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where

β0Ψ = lim sup
v→0

Ψ−1(v)

Ψ−1(2v)
, β′Ψ = sup

{
Ψ−1( 12k )

Ψ−1( 1k )
: k = 1, 2, · · ·

}

;

(ii) if Φ ∈ ∇2(0) then

(37) a(lΦ) ≤ 2

θ0Φ
,

where

(38) θ0Φ = inf

{
(1 + qΦ

QΦ
)Φ−1(u)

Φ−1[(1 + qΦ
QΦ
)u]
: 0 < u ≤ QΦ

qΦ +QΦ
Φ(ψ[Ψ−1(1)])

}

.

Proof: (i) By the definition of β0Ψ, there exists a sequence 1 > vn ց 0 such that

lim
n→∞

[Ψ−1(vn)/Ψ
−1(2vn)] = β

0
Ψ.

For any 0 < ε < 1
2 , select a v ∈ {vn : n ≥ 1} satisfying 2v < ε and

(39)
1

Ψ−1(2v)
>
β0Ψ − ε

Ψ−1(v)
.

Let k = [ 12v ] be the integral part of (2v)
−1. Then k ≤ (2v)−1 < k + 1. Define

x =
2v

Ψ−1(2v)

k∑

i=1

ei, y =
2v

Ψ−1(2v)

2k∑

i=k+1

ei.

By the property of N -functions, for u2 ≥ u1 > 0 we have

u2
Ψ−1(u2)

≥ u1
Ψ−1(u1)

,

so that

‖x‖Φ = ‖y‖Φ =
2v

Ψ−1(2v)
kΨ−1(

1

k
) ≤ 1.
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On the other hand, one deduces from (39) that

‖(|x| ∨ |y|)‖Φ = ‖x+ y‖Φ

=
2v

Ψ−1(2v)
2kΨ−1(

1

2k
)

> 2(β0Ψ − ε)
v

Ψ−1(v)
2kΨ−1(

1

2k
)

≥ 2(β0Ψ − ε)
1

2(k + 1)Ψ−1( 1
2(k+1)

)
2kΨ−1(

1

2k
)

> 2(β0Ψ − ε)
k

k + 1
= 2(β0Ψ − ε)(1− 1

k + 1
)

> 2(β0Ψ − ε)(1− ε).

So that a(lΦ) ≥ 2β0Ψ since ε is arbitrary.
Next we show a(lΦ) ≥ 2β′Ψ. In fact, for any fixed integer k ≥ 1, let Zk =

(0, 0, · · · , 0), and Xk = [kΨ
−1( 1

k
)]−1(1, 1, · · · , 1), with dimZk = dimXk = k.

Define
x0 = (Xk, Zk, Zk, · · · ), y0 = (Zk, Xk, Zk, · · · ).

Then ‖x0‖Φ = ‖y0‖Φ = 1, and

‖(|x0| ∨ |y0|)‖Φ =
2Ψ−1( 12k )

Ψ−1( 1k )
.

Therefore,

a(l(Φ)) ≥ sup
{
2Ψ−1( 12k )

Ψ−1( 1k )
: k = 1, 2, · · ·

}

= 2β′Ψ.

(ii) If Φ ∈ ∇2(0), then QΦ <∞. By Proposition 3.1, we have

(40) 1 < θ0Φ ≤ 1 + qΦ
QΦ

.

By (38) one finds that if 0 < u ≤ QΦ
qΦ+QΦ

Φ(ψ[Ψ−1(1)]), then

θ0ΦΦ
−1

[(

1 +
qΦ
QΦ

)

u
]

≤
(

1 +
qΦ
QΦ

)

Φ−1(u).

Put v = Φ−1
[

(1 + qΦ
QΦ
)u

]

in the above inequality, then

(41) Φ
( θ0ΦQΦv

qΦ +QΦ

)

≤ QΦ
qΦ +QΦ

Φ(v), 0 < v ≤ ψ[Ψ−1(1)].
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Let x = (x(i)) ∈ S(lΦ), y = (y(i)) ∈ S(lΦ). We have qΦ < k ≤ QΦ and
qΦ < h ≤ QΦ satisfying

(42)
1

k
[1 + ρΦ(kx)] = ‖x‖Φ = 1 = ‖y‖Φ =

1

h
[1 + ρΦ(hy)].

Clearly,

(43) max
( k

k + h
,

h

k + h

)

≤ QΦ
qΦ +QΦ

.

Since

(44)
Φ(θ0Φb1v)

b1Φ(v)
≤ Φ(θ

0
Φb2v)

b2Φ(v)

for 0 < b1 ≤ b2 and v > 0 by the property of N -functions, it follows from (41)
and (43) that

(45) Φ

(
θ0Φkv

k + h

)

≤ k

k + h
Φ(v), Φ

(
θ0Φhv

k + h

)

≤ h

k + h
Φ(v)

for 0 < v ≤ ψ[Ψ−1(1)]. Note that ρΨ[φ(k|x|)] ≤ 1 and ρΨ[φ(h|y|)] ≤ 1. Thus we
have

(46) max(k|x(i)|, h|y(i)|) ≤ ψ[Ψ−1(1)]

for any i ≥ 1. Consequently, we deduce from (46), (45) and (42) that

‖θ0Φ(|x| ∨ |y|)‖Φ ≤ k + h

kh

{

1 + ρΦ

[
θ0Φkh

k + h
(|x| ∨ |y|)

]}

≤ k + h

kh

{

1 +

∞∑

i=1

Φ

(
θ0Φh

k + h
k|x(i)|

)

+

∞∑

i=1

Φ

(
θ0Φk

k + h
h|y(i)|

)}

≤ k + h

kh

{

1 +
h

k + h
ρΦ(kx) +

k

k + h
ρΦ(hy)

}

= 2.

So that (37) holds. The proof is completed. �
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Corollary 3.4. Φ ∈ ∇2(0) if and only if a(lΦ) < 2.
Proof: If Φ /∈ ∇2(0) then Ψ /∈ △2(0), therefore β0Ψ = 1. Hence a(lΦ) = 2 by
Theorem 3.3(i). If Φ ∈ ∇2(0), then a(lΦ) < 2 by (37) and (40). �

The inverse function Φ−1(u) of an N -function is usually hard to be expressed,
so it is still difficult to estimate Riesz angles directly by means of (36) and (37).
In order to make the calculation practical, we introduce the following proposition.
The proof is the same as that of Proposition 1.5 in [9], replacing 2 by c.

Proposition 3.5. For an N -function Φ(u) =
∫ |u|
0 φ(t) dt and c > 1, define

α0Φ(c) = lim inf
u→0

Φ−1(u)

Φ−1(cu)
, β0Φ(c) = lim sup

u→0

Φ−1(u)

Φ−1(cu)
.

Then

(47) c
− 1

A0
Φ ≤ α0Φ(c) ≤ β0Φ(c) ≤ c

− 1

B0
Φ

where A0Φ and B
0
Φ are defined as in (2).

Example 3.6. Let a pair of N -functions be defined as in Example 2.5(23), i.e.,

M(u) = e|u| − |u| − 1 and N(v) = (1 + |v|) ln(1 + |v|)− |v|.

Now we estimate a(lM ) and a(lN ).

Since FM (t) =
tM ′(t)
M(t)

is increasing on (0,∞) ([9, Example 2.6]), we have

a∗M = lim
u→0

FM (u) = 2,

b∗M = FM (u)|u=N ′[N−1(1)] = FM (u)|u=1 =
e− 1
e− 2 ,

and

a∗N = FN (v)|v=N−1(1) = FN (v)|v=e−1 = e− 1,

b∗N = lim
v→0

FN (v) = 2.

It follows from Lemma 3.2 that

1.718 ≈ e− 1 ≤ qM ≤ QM ≤ 2;(48)

2 = a∗M ≤ qN ≤ QN ≤ b∗M =
e− 1
e− 2 ≈ 2.392.(49)
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Since GM (c, u) =
M−1(u)
M−1(cu)

is also increasing on (0,∞) by Proposition 1.4, where
c = 1 + qM

QM
, we get

θ0M = lim
u→0

(1 + qM

QM
)M−1(u)

M−1[(1 + qM

QM
)u]
=

(

1 +
qM
QM

)(

1 +
qM
QM

)− 1
2
=

√(

1 +
qM
QM

)

≥ 1.3635

by Proposition 3.5 (A0M = B
0
M = C

0
M = 2).

On the other hand, FN (v) is decreasing on (0,∞), it follows also from Propo-
sition 1.4 that GN (v) =

N−1(v)
N−1(2v)

is decreasing, and so

2β′N = 2β
0
N =

1

α0M
= 2

1

C0
M =

√
2.

By (36) and (37) we have

(50) 1.414 ≈
√
2 ≤ a(lM ) ≤ 2

√
2√
3

≈ 1.469.

Finally we estimate a(lN ). Note that the index function GN

(

(1 + qN

QN
), v

)

(take c = 1+ qN

QN
in Proposition 1.4) is monotonically decreasing, hence we have

(see Lemma 3.5)

θ0N =
(1 + qN

QN
)N−1(v)

N−1[(1 + qN

QN
)v]

∣
∣
∣
∣
∣
v=

QN
qN+QN

N(M ′[M−1(1)])

≥
(1 + qN

QN
)N−1(v)

N−1[(1 + qN

QN
)v]

∣
∣
∣
∣
∣
v=

b∗
M

a∗
M
+b∗

M

N(M ′[M−1(1)])

≈
(1 + qN

QN
)N−1(v)

N−1[(1 + qN

QN
)v]

∣
∣
∣
∣
∣
v=0.77118

≥
(1 +

a∗

M
b∗
M
)N−1(v)

N−1[(1 +
a∗

M
b∗
M
)v]

∣
∣
∣
∣
∣
∣
v=0.77118

≈ 1.26502.

Because

2β0M ≤ 2β′M = 2
M−1(12 )

M−1(1)
≈ 1.4966,
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we obtain the final estimation from (36) and (37) of Theorem 3.3

(51) 1.4966 ≈ 2M
−1(12 )

M−1(1)
≤ a(lN ) ≤ 2

θ0
N

≈ 1.5810.
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