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Tightness of compact spaces is

preserved by the t-equivalence relation

Oleg Okunev

Abstract. We prove that if there is an open mapping from a subspace of Cp(X) onto
Cp(Y ), then Y is a countable union of images of closed subspaces of finite powers of
X under finite-valued upper semicontinuous mappings. This allows, in particular, to
prove that if X and Y are t-equivalent compact spaces, then X and Y have the same
tightness, and that, assuming 2t > c, if X and Y are t-equivalent compact spaces and
X is sequential, then Y is sequential.

Keywords: function spaces, topology of pointwise convergence, tightness

Classification: 54B10, 54D20, 54A25, 54D55

All spaces below are assumed to be Tychonoff (that is, completely regular
Hausdorff). We study the spaces Cp(X, Z) of all continuous functions on a space
X with the values in a space Z equipped with the topology of pointwise conver-
gence (see [Arh3] for a thorough presentation of the theory of spaces of functions
equipped with this topology). The space Cp(X, R) is denoted by Cp(X), and
C∗

p (X) denotes the subspace of Cp(X) consisting of all bounded functions; in
all cases we denote by 0 the zero constant function on X . We say that Y is a
t-image of X if Cp(Y ) is homeomorphic to a subspace (not necessarily linear) of
Cp(X). Every continuous image of a space is its t-image by virtue of the dual
mapping between the function spaces (see [Arh3]). Two spacesX and Y are called
t-equivalent if the spaces Cp(X) and Cp(Y ) are homeomorphic, and l-equivalent
if Cp(X) and Cp(Y ) are linearly homeomorphic. Of course, if two spaces are
t-equivalent, then each of them is a t-image of the other; simple examples show
that the converse is not true. Note also that the spaces Cp(X, [0, 1]) and C∗

p(X)

contain homeomorphic copies of Cp(X), and their homeomorphic copies are con-
tained in Cp(X). It follows that if one of the spaces Cp(Y ), C

∗
p(Y ), Cp(Y, [−1, 1]),

admits a homeomorphic embedding in Cp(X), C
∗
p(X), or Cp(X, [−1, 1]), then Y

is a t-image of X .
We denote by t(X) and l(X) the tightness and the Lindelöf number of a space

X (see e.g. [Eng]); we put l∗(X) = sup{ l(Xn) : n ∈ N } and t∗(X) = { t(Xn) :
n ∈ N }. All cardinals are assumed to be infinite; ω is the set of all naturals, and
N = ω \ {0}. The cardinal t is the minimum cardinality of a tower of infinite
subsets in ω (see [vDo]), and c = 2ω.
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For a set-valued mapping p : X → Y and a set A ⊂ X , we define the image
of A, p(A) as the union

⋃
{ p(x) : x ∈ A }. We say that a set-valued mapping

p : X → Y is onto if p(X) = Y . A set-valued mapping p : X → Y is called
compact-valued (finite-valued) if for every x ∈ X the set p(x) is compact (finite),
and upper semicontinuous if for every closed set F ⊂ Y , the preimage p−1(F ) =
{ x ∈ X : p(x) ∩ F 6= ∅ } is closed. We do not require p(x) 6= ∅ for every
x ∈ X ; this is slightly different from the common usage of the term, but is more
convenient in the context of this article. Note that for every upper-semicontinuous
mapping p : X → Y the set p−1(Y ) of all points of X with nonempty images is
closed in X , and every closed subspace of X is an image of X under a finite-
valued upper semicontinuous mapping (the one identical on the subspace, and
with empty images of the points of the complement), so “an image of X under
an upper semicontinuous mapping” in this article is the same as “an image of a
closed subspace of X under an upper semicontinuous mapping” in the traditional
sense. It is easy to verify that a set-valued mapping from a space X is compact-
valued upper semicontinuous if and only if it is the composition of the inverse of
a perfect mapping (onto a closed subspace of X) and a continuous mapping; in
particular, this implies the standard fact that we often use in this article: Upper
semicontinuous compact-valued mappings preserve compactness and do not raise

the Lindelöf number .
A set-valued mapping p : X → Y is called upper semicontinuous at a point

x0 ∈ X if for every open neighborhood V of p(x0) in Y , there is a neighborhood U
of x0 in X such that p(U) ⊂ V . It is easy to verify that p is upper semicontinuous
if and only if it is upper semicontinuous at every point of X .

In [Ok1] the author proved that if there is an open mapping of a subspace of
Cp(X) onto Cp(Y ), then Y is a countable union of continuous images of closed
subspaces of products of finite powers of X and a compact space — in other
words, Y is a countable union of images of finite powers of X under compact-
valued upper semicontinuous mappings. In this article we refine this result by
showing that Y is a countable union of images of finite powers of X under finite-
valued upper semicontinuous mappings; this allows to prove that if X is compact,
then the tightness of every compact subspace of Y does not exceed the tightness
of X . In particular, the tightness in compact spaces is not increased by t-images,
which gives a positive answer to Problem 32 (1057) in [Arh2] (the question first
appeared in [Tk1] and was repeated in [Tk2].) We also prove that if X and Y are
compact, X is sequential, and Y is a t-image of X , then Y is a countable union
of sequential compact subspaces, which consistently implies that Y is sequential.
Note that neither tightness, nor sequentiality are preserved by the relation of
t-equivalence without the assumption of compactness ([Ok2]).

1. Statements

1.1 Theorem. Let X and Y be spaces, and assume that there is a continuous
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open mapping of a subspace of Cp(X) onto Cp(Y ). Then there is a sequence

of finite-valued upper semicontinuous mappings Tk : X
k → Y , k ∈ N, such that

Y =
⋃
{Tk(X

k) : k ∈ N }.

1.2 Proposition. Let τ be a cardinal, Z a space, K a compact space, and

p : Z → K a compact-valued upper semicontinuous mapping such that p(Z) = K.
If l(Z)t(Z) ≤ τ and t(p(z)) ≤ τ for every z ∈ Z, then t(K) ≤ τ .

1.3 Theorem. If there is a continuous open mapping of a subspace of Cp(X)
onto Cp(Y ) (in particular, if Y is a t-image of X), then for every compact sub-
space K of Y , t(K) ≤ t∗(X)l∗(X). In particular, if X is compact, then t(K) ≤
t(X).

1.4 Corollary. Let Y be a k-space. If Y is a t-image of a compact space X ,
then t(Y ) ≤ t(X).

Indeed, if every compact subspace of a k-space Y has the tightness ≤ τ , then
t(Y ) ≤ τ .

1.5 Corollary. If X and Y are t-equivalent compact spaces, then t(X) = t(Y ).

The last statement is an answer to Problem 32(1057) in [Arh2].

Remark. The preservation of the tightness of compact spaces by the relation of
l-equivalence was proved by Tkachuk in [Tk1].

1.6 Proposition. Let Z and K be compact spaces, and p : Z → K a finite-

valued upper semicontinuous mapping such that p(Z) = K. If Z is sequential,
then K is sequential.

1.7 Corollary. If X and Y are compact spaces, X is sequential, and there is a
continuous open mapping of a subspace of Cp(X) onto Cp(Y ) (in particular, if Y
is a t-image of X), then Y is a countable union of sequential compact subspaces.
In particular, every countably compact subspace of Y is compact, and if 2t > c,

then Y is sequential.

2. The proofs

Proof of Theorem 1.1: Let Φ0 be a continuous open mapping from a subspace
C0 of Cp(X) onto Cp(Y ). Since Cp(X) and Cp(Y ) are homogeneous, we may
assume without loss of generality that 0 ∈ C0 and Φ0(0) = 0.

Denote I = [−1, 1]. The space Cp(Y, I) is a subspace of Cp(Y ); put C =

Φ−10 (Cp(Y, I)) and let Φ: C → Cp(Y, I) be the restriction of Φ0. Then Φ is
continuous, open, onto Cp(Y, I), and Φ(0) = 0.

Let βY be the Stone-Čech compactification of Y . For every g ∈ Cp(Y, I) we
denote by g̃ the continuous extension of g over βY .
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For every k ∈ N, x̄ = (x1, . . . , xk) ∈ Xk, ȳ = (y1, . . . , yk) ∈ (βY )k and ε > 0
denote

OX (x̄, ε) = { f ∈ C : |f(x1)| < ε, . . . , |f(xk)| < ε },

OY (ȳ, ε) = { g ∈ Cp(Y, I) : |g̃(y1)| < ε, . . . , |g̃(yk)| < ε },

and

ŌY (ȳ, ε) = { g ∈ Cp(Y, I) : |g̃(y1)| ≤ ε, . . . , |g̃(yk)| ≤ ε }.

The sets OX (x̄, 1/k), k ∈ N, x̄ ∈ Xk form an open base at 0 of the space C.

Similarly, the sets OY (ȳ, 1/k), k ∈ N, ȳ ∈ Y k form an open base at 0 of the space
Cp(Y, I) (see e.g. [Arh3]).

For every k ∈ N put

Pk = { y ∈ βY : there is a point x̄ ∈ Xk such that

Φ(OX (x̄, 1/k)) ⊂ ŌY (y, 1/2) }.

From the continuity of Φ it follows that Y ⊂
⋃
{Pk : k ∈ N }.

For every x̄ ∈ Xk put

Tk(x̄) = { y ∈ βY : Φ(OX (x̄, 1/k)) ⊂ ŌY (y, 1/2) }.

Obviously, Tk(X
k) = Pk, so Y ⊂

⋃
{Tk(X

k) : k ∈ N }.

Claim 1. For every x̄ ∈ Xk, Tk(x̄) is a finite subset of Y .

Since Φ is open, the set Φ(OX (x̄, 1/k)) is a neighborhood of 0 in Cp(Y, I).
Hence there are points y1, . . . , ym ∈ Y and δ > 0 such that OY (y1, . . . , ym, δ) ⊂
Φ(OX (x̄, 1/k)). Then Tk(x̄) ⊂ {y1, . . . , ym}. Indeed, if y is a point of βY dis-
tinct from y1, . . . , ym, then there is a function g ∈ Cp(Y, I) such that g(yi) = 0,
i = 1, . . . , m, and g̃(y) = 1. Then g ∈ OY (y1, . . . , ym, δ), and therefore g ∈
Φ(OX (x̄, 1/k)). Then there is an f ∈ OX (x̄, 1/k) such that Φ(f) = g; then
g = Φ(f) /∈ OY (y, 1/2), so y /∈ Tk(x̄).

Thus, we have defined finite-valued mappings Tk : X
k → Y so that

⋃
{Tk(X

k) :
k ∈ N } = Y .

Claim 2. For every k ∈ N, the mapping Tk is upper semicontinuous.

Obviously, it is sufficient to verify that Tk is upper semicontinuous as a mapping
to βY .
Let x̄0 be a point of X

k, and let V be an open neighborhood of Tk(x̄0) in βY .
For every y ∈ βY \V choose a function fy ∈ O(x̄0, 1/k) so that g̃y(y) > 1/2 where
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gy = Φ(fy), and put Fy = g̃−1y ([−1/2, 1/2]). Then Fy is closed in βY and y /∈ Fy ,
so ⋂

{Fy : y ∈ βY \ V } ⊂ V.

By the compactness of βY , there is a finite set y1, . . . , ym in βY \ V such that

Fy1 ∩ · · · ∩ Fym ⊂ V.

Put
U = { (x1, . . . , xk) ∈ Xk : |fyi

(xj)| < 1/k, i ≤ m, j ≤ k }.

Then U is a neighborhood of x̄0 in Xk, and Tk(U) ⊂ V . Indeed, if x̄ ∈ U and
y /∈ V , then y /∈ Fyi

for some i ≤ m, so fyi
∈ O(x̄, 1/k) and gyi

= Φ(fyi
) /∈

ŌY (y, 1/2), so y /∈ Tk(x̄).

This concludes the proof of Theorem 1.1. �

Remark. The above proof may be easily (almost literally) modified to prove the
following:

2.1 Theorem. Let X and Y be spaces such that indY = 0, and assume that
there is a continuous open mapping of a subspace of Cp(X) onto Cp(Y, 2). Then

there is a sequence of finite-valued upper semicontinuous mappings Tk : X
k → Y ,

k ∈ N, such that Y =
⋃
{Tk(X

k) : k ∈ N }.

Proof of Proposition 1.2: Let

Γ = { (z, y) ∈ Z × K : y ∈ p(z) }.

Then Γ is closed in Z ×K. Indeed, if (z0, y0) /∈ Γ, then y0 and p(z0) have disjoint
neighborhoods V and W in K; put U = { z ∈ Z : p(z) ⊂ W }. Then U × V is a
neighborhood of (z0, y0) disjoint from Γ.
Let πZ : Z×K → Z, πK : Z×K → K be the projections. Since K is compact,

the projection πZ is perfect, so its restriction h = πZ |Γ is perfect. In particular,
this implies l(Γ) ≤ τ . Obviously, for every z ∈ Z, πK maps h−1(z) homeomor-
phically onto p(z), so h : Γ → Z is a closed mapping whose all fibers have the
tightness ≤ τ . By Theorem 4.5 in [Arh1], t(Γ) ≤ τ . The statement of the propo-
sition now follows from the next well-known fact (apparently, first discovered by
Tkachenko; see also Theorem 1 in [Ra]):

2.2 Proposition. Let K be a compact space, and suppose there is a continuous
mapping p from a space Γ onto K. Then t(K) ≤ l(Γ)t(Γ).

�

Proof of Theorem 1.3: Let Φ be a continuous open mapping of a subspace of
Cp(X) onto Cp(Y ), and let r : Cp(Y )→ Cp(K) be the restriction mapping; since
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K is compact, r is open and onto Cp(K). Hence, the composition r ◦Φ is an open
mapping of a subspace of Cp(X) onto Cp(K).

Let Tk : X
k → K, k ∈ N, be as in Theorem 1.1. Put M =

⊕
k∈N

Xk, and

define a mapping T : M → K by the rule: T (x̄) = Tk(x̄) if x̄ ∈ Xk. Obviously, T is
finite-valued and upper semicontinuous. By Proposition 1.2, t(K) ≤ l(M)t(M) =
l∗(X)t∗(X).
If X is compact, then l∗(X)t∗(X) = t(X) [Mal], so t(K) ≤ t(X). �

Proof of Proposition 1.6: Let Γ, πZ , πK and h = πZ |Γ be as in the proof
of Proposition 1.2. Since Z is compact, πK is perfect, and its restriction h to the
closed set Γ is closed. Thus, it is sufficient to verify that Γ is sequential.
Let A be a non-closed set in Γ; we will prove that A is not sequentially closed.

Let a0 ∈ Γ \ A be a limit point of A and b0 = h(a0). Fix a closed neighborhood
W of a0 in Γ so that {a0} =W ∩h−1(b0), and put A0 =W ∩A. Then h0 = h|W
is closed and has finite fibers, and a0 is a limit point of A0. The point b0 is a limit
point of B = h(A0) and is not in B, so B is not closed in Z. Since Z is sequential,
there is a sequence { zn : n ∈ ω } in B that converges to a point b1 ∈ Z \ B. The

setM = h−10 ({ zn : n ∈ ω })∪h−10 (b1) is a countable compact subspace ofW , and
h(M ∩ A) = { zn : n ∈ ω } is not compact. It follows that M ∩ A is not compact,
and hence A is not sequentially closed. �

Proof of Corollary 1.7: The first statement follows immediately from The-
orem 1.1 and Proposition 1.6. Let Y =

⋃
{ Yn : n ∈ N } where each Yn is compact

and sequential. If A is a countably compact subspace of Y , then for each n ∈ N,
A∩Yn is countably compact, and therefore is closed in Yn. It follows that A is σ-
compact, so it is compact. This proves the second statement. The last statement
follows from the fact that 2t > c implies that a compact space is sequential if and
only if every its countably compact subspace is closed (Corollary 6.4 in [vDo]).

�

Remark. The sequentiality of a compact space that is a countable union of se-
quential compact subspaces was proved under the assumption of Martin’s Axiom
or c < 2ω1 in [Ra]. Both assumptions are stronger that 2t > c.

3. Some open problems

It is shown in [Ok2] that there are l-equivalent spaces X and Y such that X is
bisequential and the tightness of Y is uncountable. The example, however, relies
heavily on the non-normality of the space X , so the following questions appear
very interesting.

3.1 Problem. Let X and Y be t-equivalent normal spaces. Is it true that t(X) =
t(Y )?
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3.2 Problem. Let X and Y be l-equivalent normal spaces. Is it true that t(X) =
t(Y )?

From Theorem 2.2 follows that if X is σ-compact and all finite powers of X
have tightness ≤ τ , then every compact subspace in Y has the tightness ≤ τ .
The following version of Problem 1.1 remains open; it also appears more natural,
because compactness is not preserved by t-equivalence [GH], while σ-compactness
is [Ok1].

3.3 Problem. Let X and Y be t-equivalent σ-compact spaces. Is it true that
t(X) = t(Y )?

3.4 Problem. Let X and Y be l-equivalent σ-compact spaces. Is it true that
t(X) = t(Y )?

Note that the tightness is not preserved by t-images in the class of σ-compact
spaces. Indeed, there are σ-compact spaces of uncountable tightness in which
all compact subspaces are Fréchet — for example, consider the subspace X of
Iω1 consisting of the σ-product with the center at 0 and the point whose all
coordinates are equal to 1. This space is obviously a continuous image (and hence
a t-image) of a countable direct sum of Eberlein compact spaces. Furthermore,
using the construction as in Theorem III.1.11 in [Arh3] one can show that X is a
t-image of an Eberlein (hence, Fréchet) compact space.

A positive answer to the next question, suggested by Reznichenko, would be a
big improvement of Corollary 1.5.

3.5 Problem. Let X be a compact space. Is it true that t(K) ≤ t(X) for every
compact subspace K of Cp(Cp(X))?

The proof of the preservation of the tightness of compact spaces by the relation
of l-equivalence given in [Tk1] in fact shows that if X is compact, then t(K) ≤
t(X) for every compact set K in the subspace Lp(X) of Cp(Cp(X)) consisting of
all linear continuous functions on Cp(X).
Corollary 1.7 leaves open the next question:

3.6 Problem. Let X and Y be t-equivalent (or l-equivalent) compact spaces. Is it
true in ZFC that the sequentiality of X implies the sequentiality of Y ?

Clearly, the answer is positive if it is true in ZFC that every compact space,
which is a union of a countable family of sequential closed subspaces, is sequential.

The following interesting question was suggested by the referee:

3.7 Problem. Let X and Y be t-equivalent (or l-equivalent) compact spaces. Is it
true that the orders of sequentiality of X and Y coincide?

In particular, it is unknown whether the Fréchet property is preserved by l-
equivalence within the class of compact spaces (Problem 33 (1058) in [Arh2]).
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