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No hedgehog in the product?

Petr Simon, Gino Tironi

Abstract. Assuming OCA, we shall prove that for some pairs of Fréchet α4-spaces X, Y ,
the Fréchetness of the product X ×Y implies that X ×Y is α4. Assuming MA, we shall
construct a pair of spaces satisfying the assumptions of the theorem.

Keywords: Fréchet space, α4-space, Fréchet fan, (κ, κ)-good set

Classification: Primary 54D55; Secondary 54B10, 54G20, 03E50, 03E65

All spaces are assumed to be Hausdorff. First of all, let us recall two well-
known definitions. A topological space is called Fréchet-Urysohn or Fréchet, if its
topology is fully described by convergent sequences, i.e., a point x ∈ X belongs
to a closure of a set M ⊆ X iff there is a convergent sequence 〈xn : n ∈ ω〉
with all values in M and having x as its limit point. We shall frequently identify
a convergent sequence with its range, so we shall use to say that A ⊆ X is a
convergent sequence with a limit x, if |A| = ω and for every neighborhood U
of x, |A \ U | < ω. Using this notation, recall that an α4-space is a space X
satisfying: Whenever x ∈ X and {Cn : n ∈ ω} is a collection of sequences, all
converging to x, then there is another sequence C with limC = x and such that
C ∩Cn 6= ∅ for infinitely many n ∈ ω. The notion of α4-space was introduced by
A.V. Archangel’skii in [Ar]; Fréchet α4-spaces are sometimes also called strongly
Fréchet [Sw] or countably bisequential [Mi]. As a rich source of more information
and related items, we recommend to the reader P.J. Nyikos’ survey paper [Ny].

The notation used in this paper is fairly standard. The formula A ⊆∗ B
(A =∗ B, resp.) denotes that A \ B (the symmetric difference A∆B, resp.) is
finite. The sets A,B are almost disjoint if A ∩ B = ∗∅ and a MAD family is a
maximal family of pairwise almost disjoint elements.

In 1986, T. Nogura asked the following question:
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Question [No, Question 3.15]. If X , Y are two Fréchet α4-spaces and their
product X × Y is Fréchet, is it true then that X × Y is α4, too?

The first named author recently showed that CH implies a negative answer
to this question [Si]. In an attempt for showing that the problem is in fact
independent of ZFC, we shall discuss in the present paper the structure of possible
counterexamples and prove that some of them cannot exist under Open Coloring
Axiom.
Usually, no consideration dealing with α4 property can ignore a countable

hedgehog, or briefly a hedgehog. It is a quotient space of ω × (ω + 1) with all
limit points (n, ω) identified. Other names of this topological space, appearing
in the literature, are Sω, Fω , Fréchet fan and sequential fan. Usually, a subset
{n} × ω is called n-th spine of the hedgehog and the equivalence class [(n, ω)] its
body. — Notice that the word “hedgehog” has a different meaning in the theory
of metrizable spaces. In the present paper, however, the metrizable hedgehog will
never occur.
It is well-known that a hedgehog is a test space for strong Fréchetness:

Fact 1. A space is strongly Fréchet if and only if it is Fréchet and does not

contain a copy of a hedgehog.

Indeed, if a Fréchet space X contains a copy of Sω with a body x, then each
spine Cn converges to x. If C ⊆ X is such that C ∩Cn is nonempty for infinitely
many n ∈ ω, select C′ ⊆ C such that C′ ∩ Cn is a one-point set whenever
C ∩ Cn 6= ∅. The subspace {x} ∪

⋃

{Cn : n ∈ ω} is homeomorphic to Sω , hence
there must be a neighborhood U of x in X , which is disjoint with C′. This shows
that C′ does not converge to x and consequently C does not converge to x, too.
So X is not α4.
Suppose X is not α4 and choose a witness of that: There is a family {Cn :

n ∈ ω} of convergent sequences with a common limit point x, such that no
C ⊆ X meeting infinitely many Cn’s converges to x. Passing to subsequences, if
necessary, we may assume that the sets Cn are pairwise disjoint and that the set
⋃

{Cn : n ∈ ω} is relatively discrete. For each n ∈ ω let Kn ⊆ Cn be a finite set,
infinitely many Kn’s be non-empty, and put K =

⋃

{Kn : n ∈ ω}. Observe that x
does not belong to the closure of K, otherwise the Fréchetness of X would imply
the existence of a sequence C ⊆ K, which converges to x, but this is impossible
by the choice of x and {Cn : n ∈ ω}. So X \ K is a neighborhood of x. This
however proves that {x} ∪

⋃

{Cn : n ∈ ω} is homeomorphic to Sω.

If there is a pair P,Q of Fréchet α4-spaces such that their product is Fréchet,
but fails to be α4, let us call, for the purposes of this paper, such a pair to be a
counterexample.

Definition. Call a pair of spaces X, Y to be a standard counterexample, if both
spaces have only one non-isolated point, X = ω ∪ {∞X}, Y = ω ∪ {∞Y }, the set
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ω is the countable set of isolated points, X, Y are both Fréchet and α4, X×Y is
Fréchet and the diagonal {(n, n) : n ∈ ω}∪ {(∞X ,∞Y )} is homeomorphic to Sω.

Lemma 1. There is a counterexample if and only if there is a standard coun-

terexample.

Proof: Suppose that the spaces P,Q are α4, P,Q, P ×Q are Fréchet, but P ×Q
is not α4. By the Fact 1, there is a copy of Sω in P ×Q with a point (p, q) as its
body. Denote by S(n) its n-th spine, S(n) = {(pn

k , q
n
k ) : k ∈ ω}. Each sequence

〈pn
k : k ∈ ω〉 converges in P to a point p; if it is eventually constant, then the
eventual value must be p. This, however, may happen for at most finitely many
n’s, otherwise the collection {〈qnk : k ∈ ω〉 : n ∈ ω & for all but finitely many
k’s, pn

k = p} would be a hedgehog in Q, which is impossible, because Q is α4.
Symmetric argument applies for 〈qnk : k ∈ ω〉. We can therefore assume without
any loss of generality that all sequences 〈pn

k : k ∈ ω〉, 〈qnk : k ∈ ω〉 (n ∈ ω)
are one-to-one (discard, if necessary, finitely many n’s and pass to subsequences
then).
Knowing that all sequences 〈pn

k : k ∈ ω〉, 〈qnk : k ∈ ω〉 are one-to-one, we may,
in fact, assume again without a loss of generality that {pn

k : k ∈ ω} ∩ {pm
k : k ∈

ω} = ∅ = {qnk : k ∈ ω} ∩ {qmk : k ∈ ω} for distinct n,m ∈ ω.
Finally, use the fact that both spaces are Hausdorff. Choose for each point

pn
k its neighborhood U(p

n
k ) and a neighborhood V (n, k) of the point p such that

U(pn
k ) ∩ V (n, k) = ∅. Proceeding by a simple induction and using the fact that

every neighborhood of the point p contains a cofinite part of every set {pn
k : k ∈ ω},

one can find for every n ∈ ω an infinite set An such that the set {pn
k : n ∈ ω& k ∈

An} is discrete in itself. Turning attention to {qnk : k ∈ An} (n ∈ ω), apply the
same reasoning to get infinite sets Bn ⊆ An such that the set {qnk : n ∈ ω& k ∈
Bn} is discrete in itself as well.
We clearly have that {(pn

k , q
n
k ) : k ∈ Bn} ⊆ S(n), therefore {{(pn

k , q
n
k ) : k ∈

Bn} : n ∈ ω} ∪ {(p, q)} is another hedgehog in the product P × Q. Because
both Fréchetness and the α4 property are hereditary, the subspaces X

′ = {pn
k :

n ∈ ω& k ∈ Bn} ∪ {p} ⊆ P and Y ′ = {qnk : n ∈ ω& k ∈ Bn} ∪ {q} ⊆ Q may be
obviously identified with a standard counterexample. — The opposite implication
is trivial. �

It is also well known that the topology of a Fréchet space with only one non-
isolated point has two equivalent descriptions, by means of a neighborhood filter
and by means of an almost disjoint family of convergent sequences. The precise
statement is as follows.

Fact 2. Let ω ∪ {∞} be a Fréchet space having all points except ∞ isolated.

Denote by F the filter {U ∩ ω : U is a neighborhood of the point ∞}.
Let A ⊆ [ω]ω be an arbitrary family satisfying

(i) for every A ∈ A, A converges to ∞;



352 P. Simon, G.Tironi

(ii) for distinct A,A′ ∈ A, A ∩A′ is finite;

(iii) A is a maximal family satisfying (i) and (ii).

Then F = {M ⊆ ω : for each A ∈ A, A \M is finite }.
Next, let A be an arbitrary non-empty almost disjoint family of infinite subsets

of ω. Declare G = {{∞} ∪M : M ⊆ ω and for each A ∈ A, A \M is finite } to
be a neighborhood system at∞. Then ω∪{∞} is a Fréchet space, each sequence
A ∈ A converges to ∞ and every sequence converging to ∞ meets some A ∈ A
in an infinite set.

An easy proof may be found e.g. in [Si].

We shall proceed now by examining further properties of a standard coun-
terexample. Let us fix the notation: X = ω ∪ {∞X}, Y = ω ∪ {∞Y } is some
standard counterexample. Since the diagonal {(n, n) : n ∈ ω} ∪ {(∞X ,∞Y )}
is a (copy of) hedgehog, denote by Cn the projection of its n-th spine. Observe
that it makes no difference which projection we choose. Notice that each set Cn

is infinite, Cn ∩ Cm = ∅ for n 6= m and ω =
⋃

{Cn : n ∈ ω}.
Clearly, for each n ∈ ω, Cn converges to ∞X in X and to ∞Y in Y . Choose

two families A, B of infinite subsets of ω such that A (B, resp.) describes the
topology of X (of Y , resp.) in the sense of Fact 2. We may and shall assume that
{Cn : n ∈ ω} ⊆ A ∩ B.

Observation 1. Whenever A ∈ A \ {Cn : n ∈ ω} and B ∈ B \ {Cn : n ∈ ω},
then A ∩B is finite.

Indeed, if the set {(n, n) : n ∈ A ∩ B} were infinite, then the diagonal could
not be a hedgehog.

For a function f ∈ ωω, put L(f) = {k ∈ ω : for all n ∈ ω, if k ∈ Cn, then
k < f(n)} and T (f) = ω \ L(f).

Observation 2. Whenever f ∈ ωω, then the set {(k, k) : k ∈ L(f)} is closed
discrete in X × Y .

If not, then, since X × Y is Fréchet, there is a sequence contained in {(k, k) :
k ∈ L(f)} and converging to (∞X ,∞Y ). The existence of such a sequence again
contradicts the fact that the diagonal is a hedgehog.

Observation 3. Whenever f ∈ ωω, then there are some A ∈ A \ {Cn : n ∈ ω}
and B ∈ B \ {Cn : n ∈ ω} such that both A∩T (f) and B ∩T (f) are infinite sets.

The family {Cn ∩ T (f) : n ∈ ω} is a collection of countably many sequences
converging to ∞X in X and to ∞Y in Y . The statement follows from the fact
that both spaces are α4.

Observation 4. There are two families of sets {P (f) : f ∈ ωω} and {Q(f) :
f ∈ ωω} with the following properties:

(i) for each f ∈ ωω, P (f) ∪Q(f) ⊆ L(f);
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(ii) for each f ∈ ωω, P (f) ∩Q(f) = ∅;
(iii) {{∞X} ∪ T (f) ∪ P (f) : f ∈ ωω} is a neighborhood basis at ∞X and

{{∞Y } ∪ T (f) ∪Q(f) : f ∈ ωω} is a neighborhood basis at ∞Y .

Proof: Consider the set M = {(f, U, V ) : f ∈ ωω, U is a neighborhood of
∞X , V is a neighborhood of ∞Y and T (f) ⊆ U , T (f) ⊆ V }. Fix an arbitrary
one-to-one mapping ψ :M −→ ωω such that ψ(f, U, V )(n) ≥ f(n) for all n ∈ ω.
Let U be a neighborhood of ∞X in X and V a neighborhood of ∞Y in Y .

Define the mapping f = fU,V ∈ ωω by the rule f(n) = min{j ∈ ω : if k ≥ j
and k ∈ Cn, then k ∈ U ∩ V }. Let g = ψ(f, U, V ) for the f just defined. Since
the set {(k, k) : k ∈ L(g)} is closed discrete in X × Y by Observation 2, there
are neighborhoods U1 of ∞X and V1 of ∞Y such that U1 ∩ V1 ∩ L(g) = ∅. Put
P (g) = U ∩ U1 ∩ L(g), Q(g) = V ∩ V1 ∩ L(g).
Notice that P (g)∪T (g) is a subset of U , because f ≤ g and P (g) ⊆ U . On the

other hand, the set {∞X}∪T (g)∪P (g) contains a neighborhood of∞X , namely
U ∩ U1, so it is a neighborhood as well.
Notice now that (i), (ii) and (iii) hold if we replace everywhere ωω by

{ψ(fU,V , U, V ) : U is a neighborhood of ∞X , V is a neighborhood of ∞Y }. For
every remaining f ∈ ωω, select an arbitrary g ≥ f such that the sets P (g) and
Q(g) were defined, then put P (f) = P (g) ∩ L(f) and Q(f) = Q(g) ∩ L(f). �

For f ∈ ωω, denote by A ↾ L(f) the set {A ∩ L(f) : A ∈ A & |A ∩ L(f)| = ω}
and analogously for B ↾ L(f).

Observation 5. For each f ∈ ωω, A ∈ A ↾ L(f), B ∈ B ↾ L(f) we have
A ⊆∗ P (f), B ⊆∗ Q(f).

Indeed, by Observation 4, {∞X} ∪ T (f)∪P (f) is a neighborhood of ∞X and
A converges to ∞X . Moreover, belonging to A ↾ L(f), A is disjoint with T (f).

We complete our list of observations by the trivial

Observation 6. There is no set M ⊆ ω such that

(a) |{n ∈ ω : |M ∩Cn| = ω}| = ω;
(b) for each A ∈ A \ {Cn : n ∈ ω}, A ∩M is finite or for each B ∈ B \ {Cn :

n ∈ ω}, B ∩M is finite.

With an M as in (a), there is an infinite set of disjoint sequences converging
to ∞X in X and to∞Y in Y from distinct sets of the form M ∩Cn, which shows
that X or Y is not α4, depending on which alternative in (b) actually takes place.

Definition. A pair of spaces X, Y will be called a strong counterexample, if it
is a standard counterexample which satisfies in addition: If a set D ⊆ ω is closed
discrete in both spaces X, Y , then D is finite.

Let us remark here that a strong counterexample has already been constructed
under the assumption of CH [Si]. The forthcoming theorem contrasts to that.
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We shall assume a well-known consequence of PFA, Todorcevic’s Open Coloring
Axiom in the theorem. We will not give a definition of OCA here, the reader may
find it in [To]. In fact, a bit weaker statement than OCA will be actually used.
For f ∈ ωω, let Uf = {(i, j) : j ≤ f(i)}. A coherent family of functions indexed

by ωω is a family {gf : f ∈ ωω} such that

(i) gf : Uf −→ ω for all f ∈ ωω,
(ii) {x ∈ Uf ∩ Uh : gf (x) 6= gh(x)} is finite for all f, h ∈ ωω.

Todorcevic proved that OCA implies that every coherent family of functions
indexed by ωω is trivial, which means that there is some function g : ω×ω −→ ω
such that for every f ∈ ωω, gf (x) = g(x) for all except finitely many x ∈ Uf ([To,
Theorem 8.7]).

Theorem 1. Assume OCA. Then there is no strong counterexample.

Proof: Assume not and follow with one strong counterexample X, Y .
We shall use the notation introduced in the previous observations. For each

f ∈ ωω, let Ff be a mapping from the set L(f) into {0, 1, 2} defined by:

Ff (n) =











0 if n ∈ P (f),

1 if n ∈ Q(f),

2 otherwise.

The family {Ff : f ∈ ωω} is coherent, i.e., whenever f, g ∈ ωω, then Ff ↾

(dom Ff ∩ dom Fg) =
∗ Fg ↾ (dom Ff ∩ dom Fg). To see this, notice that for

every infinite set M ⊆ ω, either ∞X ∈M or ∞Y ∈M , because X, Y is a strong
counterexample. Since both spaces are Fréchet, there is a sequence with values in
M which converges either in X or in Y . Using Fact 2(iii) and Observation 1, we
immediately get that A∪B is a MAD family on ω. Now, let f, g ∈ ωω be arbitrary.
Put H = {n ∈ L(f) ∩ L(g) : Ff (n) 6= Fg(n)}. Suppose for a contradiction that
the set H is infinite. Since A ∪ B is a MAD family, there is some D ∈ A ∪ B
with D ∩ H infinite. Assume that e.g., D ∈ A. Then D ∩ H ⊆ L(f) and by
Observation 5, D ∩H ⊆∗ P (f). Similarly, D ∩H ⊆∗ P (g). By the definition of
Ff and Fg, Ff (n) = 0 = Fg(n) for all but finitely many points from the infinite
set D ∩H . This, of course, contradicts our choice of H .
By [To, Theorem 8.7], OCA implies now that there is a mapping G ∈ ω{0, 1, 2}

such that Ff ⊆∗ G for every f ∈ ωω.

Consider the set P = G−1(0).
Choose an arbitrary B ∈ B \ {Cn : n ∈ ω}. Since B ∩ Cn is finite for all n,

there is a function f ∈ ωω such that B ⊆ L(f). By Observation 4, B ⊆∗ Q(f),
thus the set {n ∈ B : Ff (n) = 0} is finite. Having G ↾ L(f) =∗ Ff , we have also
that the set {n ∈ B : G(n) = 0} is finite as well. So B ∩ P is finite.
An analogous reasoning shows that for every A ∈ A \ {Cn : n ∈ ω}, A ⊆∗ P .
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We have just proved that the set P satisfies (b) from Observation 6. Therefore
(a) cannot hold for P and we have the following mapping f ∈ ωω: f(n) = 0 if
P ∩Cn is infinite, f(n) = 1+max(Cn ∩P ) otherwise. By Observation 3, there is
some A ∈ A \ {Cn : n ∈ ω} with A ∩ T (f) infinite.
For this particular A, the difference A\P is infinite, because it contains almost

all points from A ∩ T (f). This however contradicts the fact that A ⊆∗ P and
concludes the proof. �

Let us reformulate the theorem just proved as a positive statement.

Theorem 1. Assume OCA. Let X = ω ∪ {∞X} and Y = ω ∪ {∞Y } be two
Fréchet α4-spaces, each with a unique nonisolated point, and such that every
subset of ω, which is closed in both topologies, is finite. If X×Y is Fréchet, then
the diagonal {(n, n) : n ∈ ω} ∪ {(∞X ,∞Y )} is α4. �

Now, the questions arise. To what extent does OCA trivialize matters? Are the
assumptions of the theorem satisfied non-vacuously? We answer these questions
by showing an example. It will be constructed under MA, but it makes no harm,
since OCA+MA+c = ω2 is known to be consistent.
Strangely enough, it is known that the product of two Fréchet α4-spaces may

fail to be Fréchet, and it is also known that Sω×X is never Fréchet except when X
is discrete, but nobody seems to have asked, whether the product of two Fréchet
α4-spaces may be Fréchet, if neither of them is α3. (Recall that a space X is an
α3-space, if for each x ∈ X and for each countably infinite collection {Cn : n ∈ ω}
of sequences convergent to x, there is a sequence C with limC = x and such that
C ∩ Cn is infinite for infinitely may n ∈ ω [Ar].) Our example clears also this
point.

Example. Assume MA. Then there are two spaces X , Y , each with a unique
nonisolated point, X = ω ∪ {∞X} and Y = ω ∪ {∞Y }, with the following prop-
erties:

(1) X and Y are Fréchet, α4, but not α3;
(2) if a set M ⊆ ω is closed in X and also in Y , then M is finite;
(3) X × Y is Fréchet.

Proof: We shall construct a maximal almost disjoint family A on ω and its two
subcollections B, C, with A = B ∪ C. The space X will be described by B and Y
by C according to Fact 2. Observe that the maximality of A will imply (2). By
Fact 2, both spaces will be Fréchet.
We shall proceed by transfinite recursion to c. Enumerate all subsets of ω × ω

as {Fξ : ξ < c} with cofinally repetitions, that means that for every F ⊆ ω × ω,
the set {ξ < c : F = Fξ} is cofinal in c.
Start: Choose an arbitrary infinite partition of ω into infinite pieces, say R =

{Rn : n ∈ ω}. Define B0 = {R2n : n ∈ ω}, C0 = {R2n+1 : n ∈ ω} and
A0 = B0 ∪ C0. Observe that |A0| ≤ ω.
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For ξ ≤ c, ξ limit, we take unions of everything done so far: Aξ =
⋃

η<ξ Aη,

Bξ =
⋃

η<ξ Bη and Cξ =
⋃

η<ξ Cη.

Suppose ξ = η + 1 and Aη = Bη ∪ Cη are known. As a permanent assumption
we have that |Aη| ≤ ω · |η + 1|.
We shall consider three cases.

Case 1. There is a one-to-one mapping f ⊆ Fη and an infinite set B ⊆ dom f
such that B∩f [B] = ∅ and both sets B, f [B] are almost disjoint from all members
of Aη. Fix one witness fη and Bη of this case and let Bξ = Bη ∪ {Bη}, Cξ =
Cη ∪ {fη[Bη]} and Aξ = Aη ∪ {Bη, fη[Bη]}.

Case 2. Not Case 1, but there is a mapping g ⊆ Fη and an infinite set A ⊆ dom g
such that A is almost disjoint from all members of Aη and g ↾ A = idA. Similarly,
select and fix some gη, Aη with the property and put Aξ = Aη ∪ {Aη}, Bξ =
Bη ∪ {Aη} and Cξ = Cη ∪ {Aη}.

Case 3. Neither Case 1 nor Case 2. Let us relax: Aξ = Aη, Bξ = Bη, Cξ = Cη.

The recursive definitions are complete. It remains to put A = Ac, B = Bc,
C = Cc.

Let us verify first that A is a MAD family on ω. Almost disjointness is a
straightforward consequence of the recursive definitions. For maximality, choose
an arbitrary infinite set M ⊆ ω and let η be the first occurrence of idM = Fη.
When we passed from η to η +1, Case 1 could not happen from obvious reasons.
The failure of Case 2 implies that there already is some A ∈ Aη with |A∩M | = ω.
If Case 2 holds, then Aη ⊆M and Aη ∈ Aη+1 ⊆ A. The maximality of A follows.
Now, let us prove a simple statement with a frequent future use.

Claim. Let {An : n ∈ ω} be an infinite subset of A and let M ⊆ ω satisfy
|M ∩ An| = ω for all n ∈ ω. Then there are sets B ∈ B \ C and C ∈ C \ B with
B ⊆M,C ⊆M .

Proof of the claim: Put Hn = (M ∩ An) \
⋃

i<nAi. All sets Hn are infinite
and pairwise disjoint; let H be their union, H =

⋃

{Hn : n ∈ ω}. Split each Hn

into two disjoint infinite parts, Hn = H
0
n ∪H1n, and choose a one-to-one mapping

f : H −→ H such that for each n, f [H0n] = H
1
n. In particular, the domain and the

range of f are both subsets of M . Since the mapping f is listed cofinally many
times, there is some η < c such that {An : n ∈ ω} ⊆ Aη and f = Fη.
The set A′ = Aη \ {An : n ∈ ω} is of size ≤ |η + 1| · ω < c and whenever D

is a finite subfamily of A′, then |H1n \
⋃

D| = ω for each n ∈ ω. By Solovay’s
lemma (i.e., the Principle Sκ from [MS]), there is a set G

1 such that |G1∩A| < ω
for each A ∈ A′ and |G1 ∩ H1n| = ω for each n ∈ ω. Put G0n = H0n ∩ f−1[G1].
Applying Solovay’s lemma once more, now to the families A′ and {G0n : n ∈ ω},
we obtain a set Z such that |Z∩A| < ω for all A ∈ A′, |Z∩G0n| = ω for all n ∈ ω.
Whenever B ⊆ Z is such that B ∩G0n is nonvoid finite for each n ∈ ω, then B is
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infinite, B ⊆ dom f , B ∩ f [B] = ∅ and B as well as f [B] is almost disjoint from
each A ∈ Aη.
We have just verified that the assumptions of Case 1 were satisfied in the

(η + 1)-st step of the recursion. Thus there is some gη ⊆ Fη = f and an infinite
set Bη satisfying the assumptions of Case 1 with Bη ∈ Bη+1 and gη[Bη] ∈ Cη+1.
By our choice of f , the sets Bη and gη[Bη] have the required properties. The claim
is proved. — Notice that we used the equality p = c instead of the full strength
of MA, and a minor modification of the proof could show the claim under b = c.

Notice two instant consequences of Claim:
If T ⊆ ω is a sequence in X converging to ∞X , then the set {B ∈ B : B ∩ T is

infinite} contains only finitely many members, and similarly for C and Y . Indeed,
if not, apply the Claim to an arbitrary infinite collection {An : n ∈ ω} ⊆ {B ∈
B : |B ∩T | = ω} and T in role of M , we get some C ∈ C \B with C ⊆ T . The set
X \ C is then a neighborhood of ∞X omitting infinitely many points from T , so
T does not converge to ∞X , a contradiction.
The family

{

{∞X} ∪ ω \ (n ∪
⋃

C′) : C′ ⊂ C \ B, C′ is finite, n ∈ ω
}

is a neighborhood basis at ∞X in X , and analogously for Y . Clearly any set of
the above form is a neighborhood of ∞X . Let U be an arbitrary neighborhood
of ∞X and consider the difference M = ω \ U . Since there is no B ∈ B with
B ⊆M , Claim implies that the set A1 = {A ∈ A : |A∩M | = ω} is finite. Clearly
A1 ⊆ C \ B. As A is a MAD family, M \

⋃

A1 is finite.
Let us prove that X is not α3: Consider the family {Tn : n ∈ ω}, where

Tn = R2n. Each Tn is a convergent sequence and Tn ∈ B ⊆ A. If M ∩ Tn is
infinite for infinitely many n’s, then, by Claim, there is C ∈ C \ B with C ⊆ M .
So M does not converge to ∞X and thus X is not α3.
Let us show that X is α4: Choose an arbitrary family {Tn : n ∈ ω} of sequences

converging to∞X . If there is some B ∈ B such that B∩Tn is infinite for infinitely
many Tn’s, we are done. Otherwise pick B0 ∈ B such that B0 ∩ T0 is infinite,
put n(0) = 0 and proceed by an induction: Suppose Tn(k) and Bn(k) are known.

Then the family Bk = {B ∈ B : for some i ≤ k,B ∩ Tn(i) is infinite} is finite by
Claim and, since no B ∈ B meets infinitely many Tn’s in an infinite set, there is
some Tn(k+1) with Tn(k+1) ∩ B finite for all B ∈ Bk. Pick an arbitrary B ∈ B

such that |B ∩ Tn(k+1)| = ω and denote this B as Bn(k+1). After completing

the induction, the set M =
⋃

{Tn(k) ∩ Bn(k) : k ∈ ω} contains some B̃ ∈ B

by Claim. The sequence B̃ converges to ∞X and meets infinitely many members
from {Tn : n ∈ ω}. So X is α4.
It remains to verify that the product X × Y is Fréchet. Only one case is non-

trivial: Find a sequence converging to the point (∞X ,∞Y ) from a setM ⊆ ω×ω
with (∞X ,∞Y ) ∈M .



358 P. Simon, G.Tironi

We may encounter an easy situation when there is some B ∈ B such that

(∞X ,∞Y ) ∈M ∩ (B × ω).

The subspace B ∪ {∞X} is a convergent sequence with a limit point, hence com-
pact and metrizable. To get a desired sequence converging to (∞X ,∞Y ) we use
the well known fact that the product of a compact metric space and a Fréchet
α4-space is Fréchet ([Ar]). The same reasoning applies if

(∞X ,∞Y ) ∈M ∩ (ω × C)

for some C ∈ C.
So we shall assume for the rest of this proof that

(∞X ,∞Y ) /∈M ∩ (
⋃

B′ × ω) ∪ (ω ×
⋃

C′)

for arbitrary finite B′ ⊆ B, C′ ⊆ C.
Thus, for each finite B′ ⊆ B, C′ ⊆ C and for each neighborhood U of ∞X and

V of ∞Y , (M \ ((
⋃

B′ × ω)∪ (ω ×
⋃

C′))) ∩ (U × V ) is infinite. According to the
description of neighborhood bases given above, it means that

M \ (((n ∪
⋃

A′)× ω) ∪ (ω × (n ∪
⋃

A′)))

is infinite, whenever A′ is a finite subfamily of A and n ∈ ω.
There is some η < c such that M = Fη. The family Aη is of size < c, so p = c

applies: There is a set W ⊆ M such that W is infinite, W ∩ ((n × ω) ∪ (ω × n))
is finite for all n ∈ ω and W ∩ ((

⋃

A′ × ω) ∪ (ω ×
⋃

A′)) is finite for each finite
A′ ⊆ Aη . In particular, W ∩ ((A× ω) ∪ (ω ×A)) is finite for every A ∈ Aη.
Find a strictly increasing function h ⊆ W with an infinite domain. This is

clearly possible, becauseW is infinite, butW ∩ ((n×ω)∪ (ω×n)) is always finite.
If the set {n ∈ dom h : h(n) = n} is finite, then it is again easy to select an

infinite f ⊆ h with dom f ∩ f [dom f ] = ∅. Since f ⊆ W , both sets dom f and
f [dom f ] are almost disjoint from all members of Aη . So Case 1 had to be applied
in the corresponding step of the recursion. Thus there is a mapping fη ⊆ Fη =M
and a set Bη with Bη ∈ Bη+1, fη[Bη] ∈ Cη+1. The sequence {(n, fη(n)) : n ∈ Bη}
takes all values in M and converges to (∞X ,∞Y ).
If the set {n ∈ dom h : h(n) = n} is infinite, define g to be an identity mapping

on that infinite set. If Case 1 fails, then this mapping shows that Case 2 must
hold. So for the set Aη ∈ Aη+1 we have that {(n, n) : n ∈ Aη} converges to
(∞X ,∞Y ). �

Our last goal is to show the connection between Nogura’s question and the
existence of a (c, c)-good set in the product of two hedgehogs with c spines. Before
doing so, we recall a few definitions.
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Suppose κ to be an infinite cardinal. Consider κ as a discrete topological space.
A κ-hedgehog Fκ is a quotient space of κ× (ω+1) with all points (α, ω) identified
to a single point ∞. (Here, the standard name in the literature is the κ-fan; we
used the term “hedgehog” to stay in an agreement with the preceding.)
Suppose that a set Z is a subset of (κ× ω)× (κ× ω) ⊆ Fκ × Fκ. Call a set Z

to be (κ, κ)-good , if the following are satisfied:

(a) (∞,∞) ∈ Z;

(b) (∀E ∈ [κ]<κ)(∞,∞) /∈ Z ∩ ((κ×ω)× (E ×ω)) ∪ Z ∩ ((E ×ω)× (κ×ω));

Our definition of a (κ, κ)-good set agrees with the one given in [BL]; and
coincides with the notion of (κ, κ)-good set of type κ from [LL].
Finally, notice that a neighborhood of ∞ in Fκ is any set of the form

Vϕ = {∞} ∪ {(α, k) : ϕ(α) < k < ω},

with ϕ ∈ κω. We shall follow the commonly adopted convention and pretend that
sets

{(∞,∞)} ∪ {((α, k), (β, j)) : ϕ(α) < k, ϕ(β) < j}, where ϕ ∈ κω,

constitute a neighborhood base at (∞,∞) in Fκ × Fκ.
We are ready now to state the next result.

Theorem 2. Assume b = c. If there is a counterexample, then there is a (c, c)-
good set in Fc × Fc.

Proof: By Observation 1, we are allowed to assume that we are given a standard
counterexample. We shall again tacitly use a notation from the observations.
Enumerate the almost disjoint family A \ {Cn : n ∈ ω} as {Aα : α < c} and
B \ {Cn : n ∈ ω} = {Bα : α < c}. By Observation 1, there is no loss of generality
if we assume that Aα ∩Bα = ∅ for each α < c.
Define a subset Z of (c × ω)× (c × ω) by

Z = {((α, k), (β, k)) : α < c, β < c, k ∈ Aα ∩Bβ}.

(a) Let us show that (∞,∞) ∈ Z. Suppose not and choose a mapping ϕ ∈ cω
such that (Vϕ × Vϕ) ∩ Z = ∅. Put M =

⋃

{Aα \ (1 + ϕ(α)) : α < c}. We
shall reach the contradiction by showing that this setM has both properties from
Observation 6.
Suppose that the set M meets only finitely many sets Cn in an infinite set and

define a mapping f : ω −→ ω by the rule f(n) = 0 if M ∩ Cn is infinite and
f(n) = 1 + max(M ∩ Cn) if M ∩ Cn is finite. By Observation 3, some A ∈ A
meets the set T (f) in an infinite set. We have A = Aα for some α < c. Both sets
⋃

{Aα∩Cn : Cn∩M is infinite} and ϕ(α) are finite, so there is some k ∈ Aα∩T (f)
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not belonging to any of them. Let n ∈ ω be such that k ∈ Cn. Then k ≥ f(n),
since k ∈ T (f) and k < f(n) since k ∈ Aα \ (1 + ϕ(α)) ⊆ M . This contradiction
shows that (a) from Observation 6 holds true.
If β < c is arbitrary and k ∈M ∩Bβ \ (1+ϕ(β)), then there is some α < c such

that k ∈ Aα \(1+ϕ(α)). This means that k ∈ Aα∩Bβ , hence ((α, k), (β, k)) ∈ Z,
but it also means that (α, k) ∈ Vϕ, (β, k) ∈ Vϕ, which contradicts the assumption
Z ∩ (Vϕ × Vϕ) = ∅. Consequently, Bβ ∩M ⊆ (1 + ϕ(β)), so Bβ ∩M =∗ ∅.
Since β < c was arbitrary, we have verified that the set M satisfies also (b)

from Observation 6. But this is absurd, because a pair X, Y is a standard
counterexample.

(b) Let us verify that (∀E ∈ [c]<c) (∞,∞) /∈ Z ∩ ((E × ω)× (c × ω)).
The assumption b = c implies that c is regular, so it is enough to show that for

all γ < c there is a neighborhood Vϕ such that (Vϕ×Vϕ)∩Z∩((γ×ω)×(c×ω)) = ∅.
Consider the family {Aα : α < γ}. Since all sets Aα are almost disjoint from all
sets Cn, n ∈ ω, and since we have γ < b, there is a function f ∈ ωω such that
Aα ⊆∗ L(f) for all α < γ. By Observations 5 and 6, Aα ⊆∗ P (f) whenever
α < γ, and Bα ∩ P (f) =∗ ∅ for all α < c.
Define a mapping ϕ : c −→ ω by ϕ(α) = min{n : (Aα\P (f))∪(Bα∩P (f)) ⊆ n}

for α < γ, and by ϕ(α) = min{n : Bα ∩ P (f) ⊆ n} for γ ≤ α < c.
It remains to verify that (Vϕ × Vϕ) ∩ Z ∩ ((γ × ω) × (c × ω)) = ∅. For α < γ

and β < c, if ((α, k), (β, k)) ∈ Vϕ × Vϕ and k /∈ Aα, then ((α, k), (β, k)) /∈ Z.
On the other hand, if k ∈ Aα, then k ∈ P (f) because k ∈ Aα \ ϕ(α), so k /∈
Bβ \ ϕ(β), also, k /∈ ϕ(β) because (β, k) ∈ Vϕ, and hence k /∈ Bβ , and so, again,
((α, k), (β, k)) /∈ Z.
We shall not repeat the argument to show that

(∞,∞) /∈ Z ∩ ((c × ω)× (E × ω)).
So the set Z is (c, c)-good. �

The reformulation of Theorem 2 reads as follows.

Theorem 2. Assume b = c + there is no (c, c)-good set in Fc × Fc. If X,Y are
Fréchet α4-spaces and X × Y is Fréchet, then X × Y is α4. �

Unfortunately, we do not know the consistency of the assumptions. By [LL],
adding weakly compact many Cohen reals gives a model of ZFC without (c, c)-
good sets. But adding κ ≥ ω1 Cohen reals makes b = ω1.

Concluding remarks. By authors’ opinion, there is only one way how to prove
that Nogura’s conjecture may be consistently true: Find a set with the properties
(a) and (b) from Observation 6, killing thus a possible standard counterexample.
It is not necessary to separate A \ {Cn : n ∈ ω} from B \ {Cn : n ∈ ω} as we
already did in the proof. An additional assumption of having a counterexample
strong allowed us to reach a coherent situation; such a luck is hard to expect in
general case, even under OCA.
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Concerning the example, one may ask a question if it can be produced in ZFC.
Let us remark that any example satisfying (1), (2), (3) implies the existence of
a completely separable MAD family on ω. Completely separable MAD families
were introduced in [ES] and they are known to exist in various models of set
theory, but the existence of just one in ZFC is still an open problem.

References

[Ar] Archangel’skii A.V., The frequency spectrum of a topological space and the classification
of spaces, Soviet. Math. Dokl. 13 (1972), 265–268.

[BL] Brendle J., LaBerge T., Forcing tightness of products of fans, Fund. Math. 150 (1996),
no. 3, 211–226.

[ES] Erdös P., Shelah S., Separability properties of almost-disjoint families of sets, Israel J.
Math. 12 (1972), 207–214.

[LL] LaBerge T., Landver A., Tightness in products of fans and pseudo-fans, Topology Appl.
65 (1995), 237–255.

[MS] Martin D.A., Solovay R.M., Internal Cohen extension, Ann. Math. Logic 2 (1970), 143–
178.

[Mi] Michael E., A quintuple quotient quest, Gen. Topology Appl. 2 (1972), 91–138.
[No] Nogura T., Products of 〈αi〉-spaces, Topology Appl. 21 (1985), 251–259.
[Ny] Nyikos P.J., Convergence in topology, in: Recent Progress in General Topology, ed. by
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