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On self-homeomorphic dendrites

Janusz J. Charatonik, Pawe l Krupski

Abstract. It is shown that for every numbers m1, m2 ∈ {3, . . . , ω} there is a strongly
self-homeomorphic dendrite which is not pointwise self-homeomorphic. The set of all
points at which the dendrite is pointwise self-homeomorphic is characterized. A general
method of constructing a large family of dendrites with the same property is presented.
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1. Introduction

In [3, Section 2, p. 217] (see also [4, Section 2, p. 283]) the following four types
of self-homeomorphic spaces are introduced and studied.
A topological space X is said to be:

— self-homeomorphic (concisely SH) provided that for each open set U ⊂ X there
is a set W ⊂ U such that W is homeomorphic to X ;
— strongly self-homeomorphic (concisely SSH) provided that for each open set
U ⊂ X there is a set W ⊂ U with nonempty interior such that W is homeomor-
phic to X ;
— pointwise self-homeomorphic at a point x ∈ X provided that for each neigh-
borhood U of x there is a setW such that x ∈W ⊂ U andW is homeomorphic to
X ; the space is said to be pointwise self-homeomorphic (concisely PSH) provided
that it is pointwise self-homeomorphic at each of its points;
— strongly pointwise self-homeomorphic at a point x ∈ X provided that for each
neighborhood U of x there is a neighborhoodW of x such that x ∈W ⊂ U andW
is homeomorphic to X ; the space is said to be strongly pointwise self-homeomor-
phic (concisely SPSH) provided that it is pointwise self-homeomorphic at each of
its points.

The following diagram of implications applies to the above definitions (see [3,
Theorem 2.5, p. 217]).

(1.1)
X ∈ SPSH =⇒ X ∈ PSH

⇓ ⇓
X ∈ SSH =⇒ X ∈ SH
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Questions are asked in [3, Problems 6.21 and 6.23, p. 237] whether X ∈ SH (or
X ∈ SSH) implies that X ∈ PSH if X is a dendrite. A negative answer to both
these questions is given in [7], where a dendrite X(3, ω) is constructed which is
SSH (at each of its points) but not PSH (at some of its end points). In this
paper we extend the result in several directions. First, it is shown that for every
numbers m1, m2 ∈ {3, . . . , ω} there is a dendrite X(m1, m2) which is SSH but
not PSH. Second, the set of all points PSH(X(m1, m2)) at which the dendrite is
PSH is studied and characterized. Third, a general method of constructing a large
family of dendrites with the same property is presented, and for each member of
the family the set of its points at which the dendrite is PSH is characterized.

2. Preliminaries

Amapping means a continuous transformation. A continuum means a compact
connected metric space. A countable family of metric spaces {Mn : n ∈ N} is
called a null-family provided that lim diamMn = 0.
A dendrite means a locally connected continuum containing no simple closed

curve. Various characterizations of dendrites are collected in [2]. Compare also
[6, Chapter X, Part 1, p. 166]. Given two points p and q of a dendrite X , we
denote by pq the unique arc from p to q in X .
We shall use the notion of order of a point in the sense of Menger-Urysohn

(see e.g. [5, §51, I, p. 274]), and we denote by ord(p, X) order of the space X at
a point p ∈ X . It is well-known (see e.g. [5, §51, p. 274–307]) that the function
ord takes its values from the set {0, 1, 2, . . . , ω,ℵ0, 2

ℵ0}. Points of order 1 in a
space X are called end points of X ; the set of all end points of X is denoted by
E(X). Points of order 2 are called ordinary points of X . It is known that in a
dendrite the set of all its ordinary points is a dense subset of the dendrite. For each
n ∈ {3, 4, . . . , ω,ℵ0, 2

ℵ0} points of order n are called ramification points of X ; the
set of all ramification points is denoted by R(X). For each dendrite X points of

order ℵ0 and 2
ℵ0 do not occur in X and the set R(X) is at most countable [6,

Theorems 10.20 and 10.23, p. 173 and 174]. Thus, for any ramification point p of
a dendrite X the value ord(p, X) is in the set {3, . . . , ω}.
For a given integer n ≥ 3, a simple n-od is a space homeomorphic to the cone

over an n-point discrete space. The point of a simple n-od T which corresponds
to the vertex of the cone (i.e. the only ramification point of T ) is called a vertex
of T . For an end point e of an n-od T the arc ve is called an arm of T .
Given a dendrite X we decompose it into disjoint subsets of points of a fixed

order. Namely for each n ∈ {1, 2, 3, . . . , ω} we put

Rn(X) = {p ∈ X : ord(p, X) = n}.

By a free arc A in a space X we mean an arc A with end points x and y such
that A \ {x, y} is an open subset of X . In particular, by a maximal free arc in a
dendrite X we mean such an arc st ⊂ X that st ∩ (E(X) ∪R(X)) = {s, t}.
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3. Generalized Pyrih’s dendrite

An idea of the following construction is based on P. Pyrih’s construction in [7,
Section 2, p. 572–575].
Let a straight line segment A = ab be fixed. For each m ∈ {3, . . . , ω} we define

two auxiliary dendrites G0(A, m) and G1(A, m). Choose a countable dense set
D(A) ⊂ A \ E(A) = ab \ {a, b}. To each point x ∈ D(A) we attach an m-od
T (m, x) in such a way that:

(3.1) the point x ∈ D(A) is the vertex of T (m, x);
(3.2) A ∩ T (m, x) = {x};
(3.3) T (m, x1) ∩ T (m, x2) = ∅ for x1, x2 ∈ D(A) with x1 6= x2;
(3.4) {T (m, x) : x ∈ D(A)} is a null-family;
(3.5) diamT (m, x) < 1

2 diamA for each x ∈ D(A).

Thus the union

(3.6) G0(A, m) = A ∪
⋃
{T (m, x) : x ∈ D(A)}

is a dendrite.
Everything is the same in the definition of G1(A, m) except that condition (3.1)

is replaced by

(3.7) the point x ∈ D(A) is an end point of T (m, x).

Again the union

(3.8) G1(A, m) = A ∪
⋃
{T (m, x) : x ∈ D(A)}

is a dendrite. Note that

(3.9) R(G0(A, m)) = R2+m(G0(A, m)) ⊂ A (with 2 + ω = ω), and that
(3.10) R(G1(A, m)) = R3(G1(A, m)) ∪Rm(G1(A, m)), where
(3.11) A ⊂ cl (Rm(G1(A, m))) and, if m 6= 3, then R3(G1(A, m)) ⊂ A.

Let

(3.12) m1, m2 ∈ {3, . . . , ω}

be fixed. We define a dendrite X(m1, m2) as the inverse limit of an inverse
sequence of dendrites Xn with bonding mappings being monotone retractions, as
follows.
Let X1 be a simple m1-od. Define X2 as a space obtained from X1 replacing

each maximal free arc A of X1, which obviously is an arm of X1, by the dendrite
G0(A, m2) in such a way that, if v0 denotes the vertex of X1, then

G0(A1, m2) ∩G0(A2, m2) = {v0} for A1 6= A2.
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Thus X1 ⊂ X2 and X2 is a dendrite. Let f1 : X2 → X1 be a monotone retraction,
that is, f1 |X1 is the identity, and, for each maximal free arc A ⊂ X1 and for each
point x ∈ D(A) ⊂ A, if T (m2, x) is the m2-od attached at the point x according
to the definition (3.6) of G0(A, m2), then f1 |T (m2, x) is a constant mapping,
with f1(T (m2, x)) = {x}.

Figure: X3 for m1 = 4, m2 = 3

DefineX3 as a space obtained fromX2 replacing each maximal free arcA ofX2,
which obviously is an arm of T (m2, x), for some x ∈ D(B), where B is a maximal
free arc of X1, by the dendrite G1(A, m1) in such a way that G1(A1, m1) ∩
G1(A2, m1) = A1 ∩A2 for every two distinct maximal free arcs A1 and A2 of X2,
that is, the intersection is either empty or it is a singleton {x} for some x ∈ D(B)
as above (see Figure).

Thus X2 ⊂ X3 and X3 is a dendrite. Let f2 : X3 → X2 be a monotone
retraction, that is, f2 |X2 is the identity, and, for each maximal free arc A ⊂ X2
and for each point x ∈ D(A) ⊂ A, if T (m1, x) is the m1-od attached at the point
x according to the definition (3.7) of G1(A, m1), then f2 |T (m1, x) is a constant
mapping, with f2(T (m1, x)) = {x}.

The dendrite X4 is constructed from X3 in the same way as X2 from X1, i.e.,
with replacing each free arc A of X3 by a dendrite G0(A, m2), and the mapping
f3 : X4 → X3 is again a monotone retraction. We continue this construction
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using interchangeably the auxiliary dendrites G0(A, m2) or G1(A, m1) to create
Xn+1 from Xn depending on n is even or odd, respectively, and defining fn :
Xn+1 → Xn always as a monotone retraction. Then the inverse limit space

(3.13) X(m1, m2) = lim←−{Xn, fn;n ∈ N}

is a dendrite by [6, Theorem 10.36, p. 180]. Moreover, condition (3.5) of the
above construction guarantees that the assumptions of the Anderson-Choquet
embedding theorem (see [6, Theorem 2.10, p. 23]) are satisfied, whence it follows
that

(3.14) X(m1, m2) is homeomorphic to cl(
⋃
{Xn : n ∈ N}).

This completes the construction of the dendrite X(m1, m2) for any pair m1, m2
as in (3.12).

Observe that if m1 = 3 and m2 = ω we get just the Pyrih’s dendrite X(3, ω)
as defined in [7, p. 574].

By (3.14) we may assume that

X(m1, m2) = cl(
⋃
{Xn : n ∈ N}).

Now we will prove the needed properties of X(m1, m2). We start with the
following extension of [7, (iii), p. 574].

Theorem 3.15. For every m1, m2 ∈ {3, . . . , ω} the dendrite X(m1, m2) defined
by (3.13) is SSH.

Proof: To show that X(m1, m2) is SSH, let U be an open subset of X(m1, m2).
Note that

(3.15.1) for each n ∈ N the difference R(X(m1, m2)) \ R(Xn) is a dense subset
of X(m1, m2),

and that

(3.15.2) for each n ∈ N the union D =
⋃
{A : A is a maximal free arc in Xn}

is a dense subset of Xn.

Conditions (3.4) and (3.5) imply that there is a number n0 ∈ N such that some
free arc A of Xn0 is contained in U . Further, it follows from (3.4) that there is
a point x ∈ D(A) such that if K is a component of X(m1, m2) \ {x} satisfying
K∩A = ∅, thenK ⊂ U . Observe thatK is an open subset ofX(m1, m2). Take an
even number n1 > n0 and note that we use the dendrites G1(A, m1) to construct
Xn1+1 from Xn1 . Thus (3.15.1) and (3.15.2) imply that there is a maximal free
arc A1 of Xn1 such that A1 ⊂ K. Take a point p ∈ D(A1) ⊂ A1, and let T (m1, p)
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denote a copy of the m1-od attached at the point p as a subset of G1(A1, m1) in
the construction of Xn1+1. Then

W = {p} ∪ {x ∈ X(m1, m2) : px ∩ (T (m1, p) \ {p}) 6= ∅}

is the needed subset of U with nonempty interior which is homeomorphic to
X(m1, m2) by the construction. �

It is shown in [7, (iv), p. 575] that X(3, ω) contains a point at which it is not
PSH. To find the set of all points of the dendrite X(m1, m2) at which it is PSH
we need some auxiliary results. Recall that v0 denotes the vertex of the simple
m1-od X1 ⊂ X(m1, m2).

Observation 3.16. For every m1, m2 ∈ {3, . . . , ω} the following property of a
point v ∈ X(m1, m2) is topological:

(3.16.1) there exists anm1-od T (m1) ⊂ X(m1, m2) having the point v as its vertex,
such that each ramification point of X(m1, m2) lying in T (m1) \ {v} is of
order 2 +m2.

Accept the following notation. Let V be the set consisting of the vertex v0
of X1 and of the vertices of all copies of X1 attached in the sequential steps of
the construction of X(m1, m2). More precisely, a point v ∈ X(m1, m2) is in the
set V if and only if either v = v0 or v is the vertex of an m1-od T (m1, x) ⊂
G1(A, m1) satisfying (3.7) for some point x ∈ D(A) and some maximal free arc
A in certain X2n. Observe that, since obviously v0 satisfies (3.16.1), then

V = {v ∈ X(m1, m2) : v satisfies condition (3.16.1)}.

Thus V ⊂ Rm1(X(m1, m2)).
It follows from Observation 3.16 that h(V ) ⊂ V for any homeomorphism h of

X(m1, m2) into itself. Since v0 satisfies (3.16.1), we get the following.

Statement 3.17. Letm1, m2 ∈ {3, . . . , ω}. If h : X(m1, m2)→ h(X(m1, m2))⊂
X(m1, m2) is a homeomorphism, then h(v0) ∈ V .

For a continuum X let PSH (X) denote the set of points p ∈ X such that X is
pointwise self-homeomorphic at p.

Theorem 3.18. For every m1, m2 ∈ {3, . . . , ω} we have

PSH (X(m1, m2)) = V.

Proof: If v ∈ V and U is an open set containing v, then there is a small
enough m1-od T (m1) ⊂ T (m1, x) with the vertex v such that T (m1) ⊂ U . Take

W = π−1
2n (T (m1)) for some n, where πk : X(m1, m2)→ Xk denotes the projection
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of the inverse limit (3.13). It follows from the construction of X(m1, m2) that
v ∈ W ⊂ U and W is homeomorphic to X(m1, m2). Thus one inclusion is shown.
To prove the other one take a point p at which X(m1, m2) is PSH and suppose

on the contrary that p /∈ V . Then there is a homeomorphism h : X(m1, m2) →
h(X(m1, m2)) ⊂ X(m1, m2) such that the copy h(X(m1, m2)) of X(m1, m2) is
small enough and such that the following conditions are satisfied (that are easy
observations from the construction):

1) p ∈ h(X(m1, m2));
2) h(v0) ∈ V \ {v0};
3) the arc A = ph(v0) ⊂ h(X(m1, m2)) is of the form A = A1∪A2∪· · ·∪{p}
(of finitely or infinitely many sets Ai) such that each Ai is an arc, Ai∩Ai+1

consists of a common end point of these two arcs, h(v0) is an end point
of A1, and R(X(m1, m2)) ∩ (Ai \ E(Ai)) contains solely points of order
2 +m2 if i is odd, and of order 3 if i is even.

Let a ∈ X(m1, m2) be such that h(a) = p, and let Bi = h−1(Ai) for each i. Then
v0a = h−1(A) = B1∪B2∪· · ·∪{a}, where R(X(m1, m2))∩ (Bi \E(Bi)) contains
solely points of order 2 +m2 if i is odd, and of order 3 if i is even. Then there
exists an arm A′ of the (initial) m1-od X1 that contains the arc B1. Thus each
ramification point of X(m1, m2) lying on the arc cl(A

′ \ B1) except of its end
points is of order 2 +m2 in X(m1, m2). It follows that each ramification point of
h(X(m1, m2)) lying on the arc cl(h(A

′) \ A1) except of its end points is also of
order 2 +m2 in h(X(m1, m2)), while a subarc of the arc cl(h(A

′) \ A1) contains
points of order 3 by the construction. This contradiction completes that proof.

�

4. General construction

The whole contents of the previous section, being an extension of results from
[7], can be considered as a very special case of a more general approach, presented
below.
For a given sequence

(4.1) σ = (m1, m2, m3, . . . ), where mn ∈ {3, . . . , ω} for each n ∈ N,

define a dendrite X(σ) as the inverse limit of an inverse sequence of dendrites Xn

with bonding mappings being monotone retractions, as follows.
Let X1, X2 and f1 : X2 → X1 be defined as above, in the previous section.
Assume that a dendrite Xn is defined for some n ∈ N. Define Xn+1 as a space

obtained from Xn replacing each maximal free arc A of Xn, either by the dendrite
G0(A, mn+1) (if n is odd), or by the dendrite G1(A, mn+1) (if n is even), in such
a way that

Gi(A1, mn+1) ∩Gi(A2, mn+1) = A1 ∩A2 for i ∈ {0, 1}

and for every two distinct maximal free arcs A1 and A2 of Xn.
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Thus Xn ⊂ Xn+1 and Xn+1 is a dendrite. Let fn : Xn+1 → Xn be a monotone
retraction. Thus the inverse sequence {Xn, fn;n ∈ N} is defined, and its inverse
limit

(4.2) X(σ) = lim←−{Xn, fn;n ∈ N}

is a dendrite again by [6, Theorem 10.36, p. 180]. Similarly as in (3.14) we have

(4.3) X(σ) is homeomorphic to cl(
⋃
{Xn : n ∈ N}).

Using the above construction and repeating the arguments of the previous
section (with necessary changes) one can show the following results.

Theorem 4.4. Let an integer k ≥ 2 and a finite sequence (m1, . . . , mk) with
mi ∈ {3, . . . , ω} for each i ∈ {1, . . . , k} be fixed. Let σ = (mn : n ∈ N) be a
periodic sequence of period k determined by

(4.4.1) mn = mi if n ≡ i (mod k).

Then the dendrite X(σ) defined by (4.2) is SSH.

The following is an analog of Observation 3.16.

Observation 4.5. For each sequence σ = (mn : n ∈ N) satisfying (4.1) the
following property of a point v ∈ X(σ) is topological:

(4.5.1) there exists an m1-od T (m1) ⊂ X(σ) having the point v as its vertex,
such that each ramification point of X(σ) lying in T (m1) \ {v} is of order
2 +m2.

Define

V (X(σ)) = {v ∈ X(σ) : v satisfies condition (4.5.1)}.

An easy modification of the proof of Theorem 3.18 leads to the following result.

Theorem 4.6. The equality PSH (X(σ)) = V (X(σ)) holds for each sequence σ
satisfying (4.1).

Finally, let us remark that if the periodicity condition (4.4.1) of the sequence
σ is replaced by demanding that all terms mn of σ are different from each other,
then the general method presented above can be used in construction of chaotic
and/or rigid dendrites. For details see [1].
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