Commentationes Mathematicae Universitatis Caroline

Janusz Jerzy Charatonik; Paweł Krupski
On self-homeomorphic dendrites

Commentationes Mathematicae Universitatis Carolinae, Vol. 43 (2002), No. 4, 665--673

Persistent URL: http://dml.cz/dmlcz/119355

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2002

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

On self-homeomorphic dendrites

Janusz J. Charatonik, Pawee Krupski

Abstract

It is shown that for every numbers $m_{1}, m_{2} \in\{3, \ldots, \omega\}$ there is a strongly self-homeomorphic dendrite which is not pointwise self-homeomorphic. The set of all points at which the dendrite is pointwise self-homeomorphic is characterized. A general method of constructing a large family of dendrites with the same property is presented.

Keywords: dendrite, self-homeomorphic
Classification: 54F15, 54F50

1. Introduction

In [3, Section 2, p. 217] (see also [4, Section 2, p. 283]) the following four types of self-homeomorphic spaces are introduced and studied.

A topological space X is said to be:

- self-homeomorphic (concisely SH) provided that for each open set $U \subset X$ there is a set $W \subset U$ such that W is homeomorphic to X;
- strongly self-homeomorphic (concisely SSH) provided that for each open set $U \subset X$ there is a set $W \subset U$ with nonempty interior such that W is homeomorphic to X;
- pointwise self-homeomorphic at a point $x \in X$ provided that for each neighborhood U of x there is a set W such that $x \in W \subset U$ and W is homeomorphic to X; the space is said to be pointwise self-homeomorphic (concisely PSH) provided that it is pointwise self-homeomorphic at each of its points;
- strongly pointwise self-homeomorphic at a point $x \in X$ provided that for each neighborhood U of x there is a neighborhood W of x such that $x \in W \subset U$ and W is homeomorphic to X; the space is said to be strongly pointwise self-homeomorphic (concisely SPSH) provided that it is pointwise self-homeomorphic at each of its points.

The following diagram of implications applies to the above definitions (see [3, Theorem 2.5, p. 217]).

$$
\begin{align*}
& X \in \mathrm{SPSH} \Longrightarrow X \in \mathrm{PSH} \tag{1.1}\\
& \Downarrow \\
& \Downarrow \\
& X \in \mathrm{SSH} \Longrightarrow X \in \mathrm{SH}
\end{align*}
$$

Questions are asked in [3, Problems 6.21 and 6.23 , p. 237] whether $X \in \mathrm{SH}$ (or $X \in \mathrm{SSH}$) implies that $X \in \mathrm{PSH}$ if X is a dendrite. A negative answer to both these questions is given in [7], where a dendrite $X(3, \omega)$ is constructed which is SSH (at each of its points) but not PSH (at some of its end points). In this paper we extend the result in several directions. First, it is shown that for every numbers $m_{1}, m_{2} \in\{3, \ldots, \omega\}$ there is a dendrite $X\left(m_{1}, m_{2}\right)$ which is SSH but not PSH. Second, the set of all points $\operatorname{PSH}\left(X\left(m_{1}, m_{2}\right)\right)$ at which the dendrite is PSH is studied and characterized. Third, a general method of constructing a large family of dendrites with the same property is presented, and for each member of the family the set of its points at which the dendrite is PSH is characterized.

2. Preliminaries

A mapping means a continuous transformation. A continuum means a compact connected metric space. A countable family of metric spaces $\left\{M_{n}: n \in \mathbb{N}\right\}$ is called a null-family provided that $\lim \operatorname{diam} M_{n}=0$.

A dendrite means a locally connected continuum containing no simple closed curve. Various characterizations of dendrites are collected in [2]. Compare also [6, Chapter X, Part 1, p. 166]. Given two points p and q of a dendrite X, we denote by $p q$ the unique arc from p to q in X.

We shall use the notion of order of a point in the sense of Menger-Urysohn (see e.g. [5, §51, I, p. 274]), and we denote by $\operatorname{ord}(p, X)$ order of the space X at a point $p \in X$. It is well-known (see e.g. [5, §51, p. 274-307]) that the function ord takes its values from the set $\left\{0,1,2, \ldots, \omega, \aleph_{0}, 2^{\aleph_{0}}\right\}$. Points of order 1 in a space X are called end points of X; the set of all end points of X is denoted by $E(X)$. Points of order 2 are called ordinary points of X. It is known that in a dendrite the set of all its ordinary points is a dense subset of the dendrite. For each $n \in\left\{3,4, \ldots, \omega, \aleph_{0}, 2^{\aleph_{0}}\right\}$ points of order n are called ramification points of X; the set of all ramification points is denoted by $R(X)$. For each dendrite X points of order \aleph_{0} and $2^{\aleph_{0}}$ do not occur in X and the set $R(X)$ is at most countable [6 , Theorems 10.20 and 10.23 , p. 173 and 174]. Thus, for any ramification point p of a dendrite X the value $\operatorname{ord}(p, X)$ is in the set $\{3, \ldots, \omega\}$.

For a given integer $n \geq 3$, a simple n-od is a space homeomorphic to the cone over an n-point discrete space. The point of a simple n-od T which corresponds to the vertex of the cone (i.e. the only ramification point of T) is called a vertex of T. For an end point e of an n-od T the arc ve is called an arm of T.

Given a dendrite X we decompose it into disjoint subsets of points of a fixed order. Namely for each $n \in\{1,2,3, \ldots, \omega\}$ we put

$$
R_{n}(X)=\{p \in X: \operatorname{ord}(p, X)=n\}
$$

By a free arc A in a space X we mean an arc A with end points x and y such that $A \backslash\{x, y\}$ is an open subset of X. In particular, by a maximal free arc in a dendrite X we mean such an arc st $\subset X$ that $s t \cap(E(X) \cup R(X))=\{s, t\}$.

3. Generalized Pyrih's dendrite

An idea of the following construction is based on P. Pyrih's construction in [7, Section 2, p. 572-575].

Let a straight line segment $A=a b$ be fixed. For each $m \in\{3, \ldots, \omega\}$ we define two auxiliary dendrites $G_{0}(A, m)$ and $G_{1}(A, m)$. Choose a countable dense set $D(A) \subset A \backslash E(A)=a b \backslash\{a, b\}$. To each point $x \in D(A)$ we attach an m-od $T(m, x)$ in such a way that:
(3.1) the point $x \in D(A)$ is the vertex of $T(m, x)$;
(3.2) $A \cap T(m, x)=\{x\}$;
(3.3) $T\left(m, x_{1}\right) \cap T\left(m, x_{2}\right)=\emptyset$ for $x_{1}, x_{2} \in D(A)$ with $x_{1} \neq x_{2}$;
(3.4) $\{T(m, x): x \in D(A)\}$ is a null-family;
(3.5) $\operatorname{diam} T(m, x)<\frac{1}{2} \operatorname{diam} A$ for each $x \in D(A)$.

Thus the union

$$
\begin{equation*}
G_{0}(A, m)=A \cup \bigcup\{T(m, x): x \in D(A)\} \tag{3.6}
\end{equation*}
$$

is a dendrite.
Everything is the same in the definition of $G_{1}(A, m)$ except that condition (3.1) is replaced by
(3.7) the point $x \in D(A)$ is an end point of $T(m, x)$.

Again the union

$$
\begin{equation*}
G_{1}(A, m)=A \cup \bigcup\{T(m, x): x \in D(A)\} \tag{3.8}
\end{equation*}
$$

is a dendrite. Note that
(3.9) $R\left(G_{0}(A, m)\right)=R_{2+m}\left(G_{0}(A, m)\right) \subset A($ with $2+\omega=\omega)$, and that
(3.10) $R\left(G_{1}(A, m)\right)=R_{3}\left(G_{1}(A, m)\right) \cup R_{m}\left(G_{1}(A, m)\right)$, where
(3.11) $A \subset \operatorname{cl}\left(R_{m}\left(G_{1}(A, m)\right)\right)$ and, if $m \neq 3$, then $R_{3}\left(G_{1}(A, m)\right) \subset A$.

Let

$$
\begin{equation*}
m_{1}, m_{2} \in\{3, \ldots, \omega\} \tag{3.12}
\end{equation*}
$$

be fixed. We define a dendrite $X\left(m_{1}, m_{2}\right)$ as the inverse limit of an inverse sequence of dendrites X_{n} with bonding mappings being monotone retractions, as follows.

Let X_{1} be a simple m_{1}-od. Define X_{2} as a space obtained from X_{1} replacing each maximal free arc A of X_{1}, which obviously is an arm of X_{1}, by the dendrite $G_{0}\left(A, m_{2}\right)$ in such a way that, if v_{0} denotes the vertex of X_{1}, then

$$
G_{0}\left(A_{1}, m_{2}\right) \cap G_{0}\left(A_{2}, m_{2}\right)=\left\{v_{0}\right\} \text { for } A_{1} \neq A_{2}
$$

Thus $X_{1} \subset X_{2}$ and X_{2} is a dendrite. Let $f_{1}: X_{2} \rightarrow X_{1}$ be a monotone retraction, that is, $f_{1} \mid X_{1}$ is the identity, and, for each maximal free arc $A \subset X_{1}$ and for each point $x \in D(A) \subset A$, if $T\left(m_{2}, x\right)$ is the m_{2}-od attached at the point x according to the definition (3.6) of $G_{0}\left(A, m_{2}\right)$, then $f_{1} \mid T\left(m_{2}, x\right)$ is a constant mapping, with $f_{1}\left(T\left(m_{2}, x\right)\right)=\{x\}$.

Figure: X_{3} for $m_{1}=4, m_{2}=3$
Define X_{3} as a space obtained from X_{2} replacing each maximal free $\operatorname{arc} A$ of X_{2}, which obviously is an arm of $T\left(m_{2}, x\right)$, for some $x \in D(B)$, where B is a maximal free arc of X_{1}, by the dendrite $G_{1}\left(A, m_{1}\right)$ in such a way that $G_{1}\left(A_{1}, m_{1}\right) \cap$ $G_{1}\left(A_{2}, m_{1}\right)=A_{1} \cap A_{2}$ for every two distinct maximal free arcs A_{1} and A_{2} of X_{2}, that is, the intersection is either empty or it is a singleton $\{x\}$ for some $x \in D(B)$ as above (see Figure).

Thus $X_{2} \subset X_{3}$ and X_{3} is a dendrite. Let $f_{2}: X_{3} \rightarrow X_{2}$ be a monotone retraction, that is, $f_{2} \mid X_{2}$ is the identity, and, for each maximal free arc $A \subset X_{2}$ and for each point $x \in D(A) \subset A$, if $T\left(m_{1}, x\right)$ is the m_{1}-od attached at the point x according to the definition (3.7) of $G_{1}\left(A, m_{1}\right)$, then $f_{2} \mid T\left(m_{1}, x\right)$ is a constant mapping, with $f_{2}\left(T\left(m_{1}, x\right)\right)=\{x\}$.

The dendrite X_{4} is constructed from X_{3} in the same way as X_{2} from X_{1}, i.e., with replacing each free arc A of X_{3} by a dendrite $G_{0}\left(A, m_{2}\right)$, and the mapping $f_{3}: X_{4} \rightarrow X_{3}$ is again a monotone retraction. We continue this construction
using interchangeably the auxiliary dendrites $G_{0}\left(A, m_{2}\right)$ or $G_{1}\left(A, m_{1}\right)$ to create X_{n+1} from X_{n} depending on n is even or odd, respectively, and defining f_{n} : $X_{n+1} \rightarrow X_{n}$ always as a monotone retraction. Then the inverse limit space

$$
\begin{equation*}
X\left(m_{1}, m_{2}\right)=\varliminf_{\rightleftarrows}\left\{X_{n}, f_{n} ; n \in \mathbb{N}\right\} \tag{3.13}
\end{equation*}
$$

is a dendrite by [6 , Theorem 10.36, p. 180]. Moreover, condition (3.5) of the above construction guarantees that the assumptions of the Anderson-Choquet embedding theorem (see [6, Theorem 2.10, p. 23]) are satisfied, whence it follows that

$$
\begin{equation*}
X\left(m_{1}, m_{2}\right) \text { is homeomorphic to } \operatorname{cl}\left(\bigcup\left\{X_{n}: n \in \mathbb{N}\right\}\right) \tag{3.14}
\end{equation*}
$$

This completes the construction of the dendrite $X\left(m_{1}, m_{2}\right)$ for any pair m_{1}, m_{2} as in (3.12).

Observe that if $m_{1}=3$ and $m_{2}=\omega$ we get just the Pyrih's dendrite $X(3, \omega)$ as defined in [7, p. 574].

By (3.14) we may assume that

$$
X\left(m_{1}, m_{2}\right)=\operatorname{cl}\left(\bigcup\left\{X_{n}: n \in \mathbb{N}\right\}\right)
$$

Now we will prove the needed properties of $X\left(m_{1}, m_{2}\right)$. We start with the following extension of [7, (iii), p. 574].

Theorem 3.15. For every $m_{1}, m_{2} \in\{3, \ldots, \omega\}$ the dendrite $X\left(m_{1}, m_{2}\right)$ defined by (3.13) is SSH.

Proof: To show that $X\left(m_{1}, m_{2}\right)$ is SSH , let U be an open subset of $X\left(m_{1}, m_{2}\right)$. Note that
(3.15.1) for each $n \in \mathbb{N}$ the difference $R\left(X\left(m_{1}, m_{2}\right)\right) \backslash R\left(X_{n}\right)$ is a dense subset of $X\left(m_{1}, m_{2}\right)$,
and that
(3.15.2) for each $n \in \mathbb{N}$ the union $D=\bigcup\left\{A: A\right.$ is a maximal free arc in $\left.X_{n}\right\}$ is a dense subset of X_{n}.

Conditions (3.4) and (3.5) imply that there is a number $n_{0} \in \mathbb{N}$ such that some free arc A of $X_{n_{0}}$ is contained in U. Further, it follows from (3.4) that there is a point $x \in D(A)$ such that if K is a component of $X\left(m_{1}, m_{2}\right) \backslash\{x\}$ satisfying $K \cap A=\emptyset$, then $K \subset U$. Observe that K is an open subset of $X\left(m_{1}, m_{2}\right)$. Take an even number $n_{1}>n_{0}$ and note that we use the dendrites $G_{1}\left(A, m_{1}\right)$ to construct $X_{n_{1}+1}$ from $X_{n_{1}}$. Thus (3.15.1) and (3.15.2) imply that there is a maximal free $\operatorname{arc} A_{1}$ of $X_{n_{1}}$ such that $A_{1} \subset K$. Take a point $p \in D\left(A_{1}\right) \subset A_{1}$, and let $T\left(m_{1}, p\right)$
denote a copy of the m_{1}-od attached at the point p as a subset of $G_{1}\left(A_{1}, m_{1}\right)$ in the construction of $X_{n_{1}+1}$. Then

$$
W=\{p\} \cup\left\{x \in X\left(m_{1}, m_{2}\right): p x \cap\left(T\left(m_{1}, p\right) \backslash\{p\}\right) \neq \emptyset\right\}
$$

is the needed subset of U with nonempty interior which is homeomorphic to $X\left(m_{1}, m_{2}\right)$ by the construction.

It is shown in [7, (iv), p. 575] that $X(3, \omega)$ contains a point at which it is not PSH. To find the set of all points of the dendrite $X\left(m_{1}, m_{2}\right)$ at which it is PSH we need some auxiliary results. Recall that v_{0} denotes the vertex of the simple $m_{1} \operatorname{od} X_{1} \subset X\left(m_{1}, m_{2}\right)$.
Observation 3.16. For every $m_{1}, m_{2} \in\{3, \ldots, \omega\}$ the following property of a point $v \in X\left(m_{1}, m_{2}\right)$ is topological:
(3.16.1) there exists an m_{1}-od $T\left(m_{1}\right) \subset X\left(m_{1}, m_{2}\right)$ having the point v as its vertex, such that each ramification point of $X\left(m_{1}, m_{2}\right)$ lying in $T\left(m_{1}\right) \backslash\{v\}$ is of order $2+m_{2}$.

Accept the following notation. Let V be the set consisting of the vertex v_{0} of X_{1} and of the vertices of all copies of X_{1} attached in the sequential steps of the construction of $X\left(m_{1}, m_{2}\right)$. More precisely, a point $v \in X\left(m_{1}, m_{2}\right)$ is in the set V if and only if either $v=v_{0}$ or v is the vertex of an m_{1}-od $T\left(m_{1}, x\right) \subset$ $G_{1}\left(A, m_{1}\right)$ satisfying (3.7) for some point $x \in D(A)$ and some maximal free arc A in certain $X_{2 n}$. Observe that, since obviously v_{0} satisfies (3.16.1), then

$$
V=\left\{v \in X\left(m_{1}, m_{2}\right): v \text { satisfies condition }(3.16 .1)\right\}
$$

Thus $V \subset R_{m_{1}}\left(X\left(m_{1}, m_{2}\right)\right)$.
It follows from Observation 3.16 that $h(V) \subset V$ for any homeomorphism h of $X\left(m_{1}, m_{2}\right)$ into itself. Since v_{0} satisfies (3.16.1), we get the following.

Statement 3.17. Let $m_{1}, m_{2} \in\{3, \ldots, \omega\}$. If $h: X\left(m_{1}, m_{2}\right) \rightarrow h\left(X\left(m_{1}, m_{2}\right)\right) \subset$ $X\left(m_{1}, m_{2}\right)$ is a homeomorphism, then $h\left(v_{0}\right) \in V$.

For a continuum X let $\operatorname{PSH}(X)$ denote the set of points $p \in X$ such that X is pointwise self-homeomorphic at p.
Theorem 3.18. For every $m_{1}, m_{2} \in\{3, \ldots, \omega\}$ we have

$$
\operatorname{PSH}\left(X\left(m_{1}, m_{2}\right)\right)=V .
$$

Proof: If $v \in V$ and U is an open set containing v, then there is a small enough m_{1}-od $T\left(m_{1}\right) \subset T\left(m_{1}, x\right)$ with the vertex v such that $T\left(m_{1}\right) \subset U$. Take $W=\pi_{2 n}^{-1}\left(T\left(m_{1}\right)\right)$ for some n, where $\pi_{k}: X\left(m_{1}, m_{2}\right) \rightarrow X_{k}$ denotes the projection
of the inverse limit (3.13). It follows from the construction of $X\left(m_{1}, m_{2}\right)$ that $v \in W \subset U$ and W is homeomorphic to $X\left(m_{1}, m_{2}\right)$. Thus one inclusion is shown.

To prove the other one take a point p at which $X\left(m_{1}, m_{2}\right)$ is PSH and suppose on the contrary that $p \notin V$. Then there is a homeomorphism $h: X\left(m_{1}, m_{2}\right) \rightarrow$ $h\left(X\left(m_{1}, m_{2}\right)\right) \subset X\left(m_{1}, m_{2}\right)$ such that the copy $h\left(X\left(m_{1}, m_{2}\right)\right)$ of $X\left(m_{1}, m_{2}\right)$ is small enough and such that the following conditions are satisfied (that are easy observations from the construction):

1) $p \in h\left(X\left(m_{1}, m_{2}\right)\right)$;
2) $h\left(v_{0}\right) \in V \backslash\left\{v_{0}\right\}$;
3) the $\operatorname{arc} A=p h\left(v_{0}\right) \subset h\left(X\left(m_{1}, m_{2}\right)\right)$ is of the form $A=A_{1} \cup A_{2} \cup \cdots \cup\{p\}$ (of finitely or infinitely many sets A_{i}) such that each A_{i} is an arc, $A_{i} \cap A_{i+1}$ consists of a common end point of these two arcs, $h\left(v_{0}\right)$ is an end point of A_{1}, and $R\left(X\left(m_{1}, m_{2}\right)\right) \cap\left(A_{i} \backslash E\left(A_{i}\right)\right)$ contains solely points of order $2+m_{2}$ if i is odd, and of order 3 if i is even.
Let $a \in X\left(m_{1}, m_{2}\right)$ be such that $h(a)=p$, and let $B_{i}=h^{-1}\left(A_{i}\right)$ for each i. Then $v_{0} a=h^{-1}(A)=B_{1} \cup B_{2} \cup \cdots \cup\{a\}$, where $R\left(X\left(m_{1}, m_{2}\right)\right) \cap\left(B_{i} \backslash E\left(B_{i}\right)\right)$ contains solely points of order $2+m_{2}$ if i is odd, and of order 3 if i is even. Then there exists an arm A^{\prime} of the (initial) m_{1}-od X_{1} that contains the arc B_{1}. Thus each ramification point of $X\left(m_{1}, m_{2}\right)$ lying on the arc $\operatorname{cl}\left(A^{\prime} \backslash B_{1}\right)$ except of its end points is of order $2+m_{2}$ in $X\left(m_{1}, m_{2}\right)$. It follows that each ramification point of $h\left(X\left(m_{1}, m_{2}\right)\right)$ lying on the arc $\operatorname{cl}\left(h\left(A^{\prime}\right) \backslash A_{1}\right)$ except of its end points is also of order $2+m_{2}$ in $h\left(X\left(m_{1}, m_{2}\right)\right)$, while a subarc of the $\operatorname{arc} \operatorname{cl}\left(h\left(A^{\prime}\right) \backslash A_{1}\right)$ contains points of order 3 by the construction. This contradiction completes that proof.

4. General construction

The whole contents of the previous section, being an extension of results from [7], can be considered as a very special case of a more general approach, presented below.

For a given sequence

$$
\begin{equation*}
\sigma=\left(m_{1}, m_{2}, m_{3}, \ldots\right), \text { where } m_{n} \in\{3, \ldots, \omega\} \text { for each } n \in \mathbb{N} \tag{4.1}
\end{equation*}
$$

define a dendrite $X(\sigma)$ as the inverse limit of an inverse sequence of dendrites X_{n} with bonding mappings being monotone retractions, as follows.

Let X_{1}, X_{2} and $f_{1}: X_{2} \rightarrow X_{1}$ be defined as above, in the previous section.
Assume that a dendrite X_{n} is defined for some $n \in \mathbb{N}$. Define X_{n+1} as a space obtained from X_{n} replacing each maximal free $\operatorname{arc} A$ of X_{n}, either by the dendrite $G_{0}\left(A, m_{n+1}\right)$ (if n is odd), or by the dendrite $G_{1}\left(A, m_{n+1}\right)$ (if n is even), in such a way that

$$
G_{i}\left(A_{1}, m_{n+1}\right) \cap G_{i}\left(A_{2}, m_{n+1}\right)=A_{1} \cap A_{2} \text { for } i \in\{0,1\}
$$

and for every two distinct maximal free arcs A_{1} and A_{2} of X_{n}.

Thus $X_{n} \subset X_{n+1}$ and X_{n+1} is a dendrite. Let $f_{n}: X_{n+1} \rightarrow X_{n}$ be a monotone retraction. Thus the inverse sequence $\left\{X_{n}, f_{n} ; n \in \mathbb{N}\right\}$ is defined, and its inverse limit

$$
\begin{equation*}
X(\sigma)=\varliminf_{\rightleftarrows}\left\{X_{n}, f_{n} ; n \in \mathbb{N}\right\} \tag{4.2}
\end{equation*}
$$

is a dendrite again by [6 , Theorem 10.36, p. 180]. Similarly as in (3.14) we have

$$
\begin{equation*}
X(\sigma) \text { is homeomorphic to } \operatorname{cl}\left(\bigcup\left\{X_{n}: n \in \mathbb{N}\right\}\right) \tag{4.3}
\end{equation*}
$$

Using the above construction and repeating the arguments of the previous section (with necessary changes) one can show the following results.

Theorem 4.4. Let an integer $k \geq 2$ and a finite sequence $\left(m_{1}, \ldots, m_{k}\right)$ with $m_{i} \in\{3, \ldots, \omega\}$ for each $i \in\{1, \ldots, k\}$ be fixed. Let $\sigma=\left(m_{n}: n \in \mathbb{N}\right)$ be a periodic sequence of period k determined by

$$
\begin{equation*}
m_{n}=m_{i} \quad \text { if } n \equiv i \quad(\bmod k) \tag{4.4.1}
\end{equation*}
$$

Then the dendrite $X(\sigma)$ defined by (4.2) is SSH .
The following is an analog of Observation 3.16.
Observation 4.5. For each sequence $\sigma=\left(m_{n}: n \in \mathbb{N}\right)$ satisfying (4.1) the following property of a point $v \in X(\sigma)$ is topological:
(4.5.1) there exists an m_{1}-od $T\left(m_{1}\right) \subset X(\sigma)$ having the point v as its vertex, such that each ramification point of $X(\sigma)$ lying in $T\left(m_{1}\right) \backslash\{v\}$ is of order $2+m_{2}$.

Define

$$
V(X(\sigma))=\{v \in X(\sigma): v \text { satisfies condition (4.5.1) }\}
$$

An easy modification of the proof of Theorem 3.18 leads to the following result.
Theorem 4.6. The equality $\operatorname{PSH}(X(\sigma))=V(X(\sigma))$ holds for each sequence σ satisfying (4.1).

Finally, let us remark that if the periodicity condition (4.4.1) of the sequence σ is replaced by demanding that all terms m_{n} of σ are different from each other, then the general method presented above can be used in construction of chaotic and/or rigid dendrites. For details see [1].

References

[1] Charatonik J.J., Charatonik W.J., Strongly chaotic dendrites, Colloq. Math. 70 (1996), 181-190.
[2] Charatonik J.J., Charatonik W.J., Dendrites, Aportaciones Mat. Comun. 22 (1998), 227253.
[3] Charatonik W.J., Dilks A., On self-homeomorphic spaces, Topology Appl. 55 (1994), 215238.
[4] Charatonik W.J., Dilks Dye A., Reed J.F., Self-homeomorphic star figures, Continuum Theory and Dynamical Systems. Papers of the conference/workshop on continuum theory and dynamical systems held at Lafayette, LA (USA), (Thelma West, ed.), Lect. Notes Pure Appl. Math. 149, M. Dekker, New York, 1993, pp. 283-290.
[5] Kuratowski K., Topology, vol. 2, Academic Press and PWN, New York, London, Warszawa, 1968.
[6] Nadler S.B., Jr., Continuum Theory: An Introduction, M. Dekker, 1992.
[7] Pyrih P., An example of strongly self-homeomorphic dendrite not pointwise self-homeomorphic, Comment. Math. Univ. Carolinae 40 (1999), 571-576.

(J.J. Charatonik)

Mathematical Institute, University of Wroceaw, pl. Grunwaldzki 2/4, 50-384 Wroceaw, Poland
E-mail: jjc@hera.math.uni.wroc.pl

Instituto de Matemáticas, UNAM, Circuito Exterior, Ciudad Universitaria, 04510 MÉxico, D.F., MÉxico
E-mail: jjc@math.unam.mx
(P. Krupski)

Mathematical Institute, University of Wroceaw, pl. Grunwaldzki 2/4, 50-384 Wroceaw, Poland
E-mail: krupski@hera.math.uni.wroc.pl

Instituto de Matemáticas, UNAM, Circuito Exterior, Ciudad Universitaria, 04510 MÉxico, D.F., México
E-mail: krupski@math.unam.mx
(Received October 1, 2001)

