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Decay of solutions of some degenerate

hyperbolic equations of Kirchhoff type

Barbara Szomolay

Abstract. In this paper we study the asymptotic behavior of solutions to the damped,
nonlinear vibration equation with self-interaction

ü = −γu̇+m(‖∇u‖2)∆u − δ|u|αu+ f,

which is known as degenerate if m(·) ≥ 0, and non-degenerate if m(·) ≥ m0 > 0. We
would like to point out that, to the author’s knowledge, exponential decay for this type
of equations has been studied just for the special cases of α. Our aim is to extend the
validity of previous results in [5] to α ≥ 0 both to the degenerate and non-degenerate
cases of m. We extend our results to equations with ∆2.

Keywords: asymptotic behavior of solutions, hyperbolic PDE of degenerate type

Classification: 35B40, 35L80

1. Introduction

This article presents a study of the asymptotic behavior of solutions to the
initial value problem

(1.1)

ü+ γu̇ − m(‖∇u‖2)∆u + δ|u|αu = f(x, t) for x ∈ Ω, t ≥ 0,
u(x, 0) = g(x), u̇(x, 0) = h(x) for x ∈ Ω,

u(x, t) = 0 for x ∈ ∂Ω, t ≥ 0,

where Ω is a bounded domain in R
n, with smooth boundary ∂Ω; γ > 0, δ > 0,

α ≥ 0 are given constants, m is a non-negative and continuous function on [0,∞).
This equation appears in mathematical physics as a specific type of the damped

Kirchhoff-Carrier equation, when modeling planar vibrations. For constant m

and α = 0 we have the so-called telegraph equation; in which for arbitrary small
tension and resistance (γ ∼ 0, δ ∼ 0) we obtain the well-known wave equation
utt = a2∆u. In what follows we take δ = 1 without loss of generality.

Asymptotic behavior of solutions to equations without the self-restoring term
|u|αu have been studied by many authors (see [5] and the references therein).
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Of these, most striking are perhaps the results of J.G. Dix, who studied exponen-
tial decay of solutions to the damped, nonlinear wave equation

(∗) ü+ γu̇ − m(‖∇u‖2)∆u = f(x, t),

which is known as degenerate if the greatest lower bound for m is zero, and non-
degenerate if the greatest lower bound for m is positive. The non-degenerate
case has been the subject of many publications and it is already known that
solutions decay exponentially, but for the degenerate case exponential decay has
remained an open question and it has been proven just for the special cases of m.
J.G. Dix has shown that in general degenerate-problem solutions cannot decay
exponentially, but that ‖u̇‖ is square integrable on [0,∞).
When α = 2, f ≡ 0 and the function m is linear, exponential decay of global

strong solutions has been shown by M. Aassila (see [3]).
Inspired by the articles [1] and [5], we have added the self-restoring term |u|αu

and followed the steps of the proofs of theorems in these papers with little modi-
fications. Our aim was to generalize the results in [5] to the mixed problem (1.1)
and to weaken some of the assumptions imposed on m.
The outline is as follows: In Section 2 we state the theorem of existence of

global solutions. Section 3 proves exponential decay for the non-degenerate case.
Section 4 shows that if m ≡ 0 and α = 0, the decay is exponential and if m(·) ≥ 0,
f ≡ 0, the energy E(t) → 0 as t → ∞. In this section we also indicate with
an example that in case α = 0 solutions cannot decay with exponential order.
Section 5 extends our results to equations with ∆2.

Notation

‖ · ‖ and (·, ·) will denote the norm and inner product in the Hilbert space
L2(Ω). ‖ · ‖p (p ≥ 1) will denote the norm in the Lp(Ω) space. We define the
positive, self-adjoint operator A as the negative Laplacian, with domain

D(A) = H10 (Ω) ∩ H2(Ω),

where H2, H1 are the usual Sobolev spaces. The operator −∆, with zero bound-
ary conditions, has eigenvectors and corresponding eigenvalues denoted as follows

Awi = λ2i wi, with 0 < λ1 ≤ λ2 . . . , lim
i→∞

λi =∞.

Moreover, these eigenvectors can be chosen to form an orthogonal basis for L2(Ω),
in which functions have Fourier expansion of the form

u(x) =
∞
∑

i=1

uiwi(x), with ui = (u, wi).
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Using this spectral decomposition, powers of A are defined by

Au(x) =

∞
∑

i=1

λ2i uiwi, A2u(x) =

∞
∑

i=1

λ4i uiwi, . . . Aku(x) =

∞
∑

i=1

λ2ki uiwi,

provided that
∑∞

i=1 λ4ki |ui|2 < ∞. Parseval’s equality yields

λk
1‖u‖2 = λk

1

∞
∑

i=1

u2i ≤
∞
∑

i=1

λk
i u2i = ‖Ak

4 u‖2,

where k = {4, 2}. Therefore,

(1.2) λ1
2‖u‖ ≤ ‖Au‖, λ1‖u‖ ≤ ‖∇u‖ = ‖A 1

2u‖.

Now, the mixed problem (1.1) can be rewritten as

(1.3)
ü+ γu̇+m(‖A 1

2 u‖2)Au + |u|αu = f(x, t),

u(x, 0) = g(x), u̇(x, 0) = h(x),

the solutions of which are to be in the class of functions determined by Theorem 1.

2. Existence of global solutions

T. Matsuyama and R. Ikehata [6] have shown the following theorem:

Theorem 1. Let m, α, u0, u1 and f satisfy the following assumptions

m ∈ C1[0,∞) and m(r) ≥ m0 > 0 for r ≥ 0,(A.1)

g ∈ H10 (Ω) ∩ H2(Ω) and h ∈ H10 (Ω),(A.2)

0 ≤ α ≤ 2

n − 4 if n ≥ 5 and α ≥ 0 if n = 1, 2, 3, 4,(A.3)

f ∈ L1([0,∞), H10 (Ω)) ∩ L∞([0,∞), L2(Ω)).(A.4)

Under assumptions (A.1)–(A.4), there exists a positive constant ǫ0 (depending on
‖∇u0‖, ‖u0‖α+2, ‖u1‖ and ‖f‖L1(0,∞;L2(Ω))) such that, if

(A.5) ‖∆u0‖+ ‖∇u1‖+
∫ ∞

0
‖∇f(t)‖ dt < ǫ0,

then there exists a unique solution for (1.1) in class

u ∈ BC([0,∞), H10 (Ω)) ∩ BCw([0,∞), H2(Ω)) ∩ L2((0,∞), H2(Ω)),
ut ∈ BC([0,∞), L2(Ω)) ∩ BCw([0,∞), H10 (Ω)) ∩ L2((0,∞), H10 (Ω)),

utt ∈ L2((0,∞), L2(Ω)).
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3. Decay in the non-degenerate case

The following statement is already known for (∗) (see [5]). To prove Theorem 2,
we will consider in addition to (A.1)–(A.4) that

(A∗) g ∈ Lα+2(Ω) and u ∈ BC((0,∞), H10 (Ω) ∩ Lα+2(Ω)).

Now we can state our result:

Theorem 2. Assume that 0 < m0 ≤ m(·) ≤ M0 and that ‖f(·, t)‖ decays
exponentially to zero as t → ∞. Then for every solution of (1.1), ‖u̇‖, ‖∇u‖ and
‖u‖p (1 ≤ p ≤ α+ 2) decay exponentially to zero.

Proof: We shall find bounds for u̇, A
1

2 u and u by estimating the energy func-
tional

(3.4) E(t) = ‖u̇‖2 +
∫ ‖A

1

2 u‖
2

0
m(r) dr + δ(u̇, u) +

2

α+ 2
‖u‖α+2

α+2 ,

where δ = min{2λ1
√

m0,
γ
2 }. This choice of δ ensures that E is non-negative.

Indeed,

E(t)− 2

α+ 2
‖u‖α+2

α+2 ≥ ‖u̇‖2 +m0‖A
1

2u‖
2
− ‖u̇‖2 − δ2

4
‖u‖2

≥ (m0 −
δ2

4λ1
2 )‖A

1

2u‖
2
≥ 0.

Here we used the inequality

(3.5) 2|(u, v)| ≤ 2‖u‖‖v‖ ≤ β‖u‖2 + 1
β
‖v‖2 for β > 0.

Now, we take the inner product of each term in (1.3) with 2u̇, and with u, respec-
tively.

d

dt
‖u̇‖2 + 2γ‖u̇‖2 + d

dt

∫ ‖A
1

2 u‖
2

0
m(r) dr +

2

α+ 2

d

dt
‖u‖α+2

α+2 = 2(f, u̇),(3.6)

(ü, u) + γ(u̇, u) +m(‖A 1

2 u‖
2
)‖A 1

2 u‖
2
+ ‖u‖α+2

α+2 = (f, u).(3.7)

We differentiate E in order to build a first-order linear inequality.

E
′

(t) =
d

dt
‖u̇‖2 + d

dt

∫ ‖A
1

2 u‖
2

0
m(r) dr + δ(ü, u) + δ‖u̇‖2 + 2

α+ 2

d

dt
‖u‖α+2

α+2

= −(2γ − δ)‖u̇‖2 + 2(f, u̇)− γδ(u̇, u)

− δm(‖A 1

2 u‖
2
)‖A 1

2 u‖
2
− δ‖u‖α+2

α+2 + δ(f, u).
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From (1.2) and (3.5) we obtain

(3.8) 2(f, u̇) ≤ 2
γ
‖f‖2 + γ

2
‖u̇‖2

and

(3.9) 2δ(f, u) ≤ 2 δ

λ1
‖f‖‖A 1

2u‖ ≤ δ

m0λ1
2
‖f‖2 + δm0‖A

1

2 u‖2.

Using (3.8) and (3.9) and the boundedness of m, we obtain

E
′

(t) ≤ (−2γ + δ +
γ

2
)‖u̇‖2 − γδ(u̇, u) + (

2

γ
+

δ

2m0λ1
2 )‖f‖

2

− δm0

2
‖A 1

2 u‖2 − δ‖u‖α+2
α+2

≤ −γ‖u̇‖2 − γδ(u̇, u) + (
2

γ
+

δ

2m0λ1
2
)‖f‖2

− δm0

2M0

∫ ‖A
1

2 u‖
2

0
m(r) dr − δ‖u‖α+2

α+2

≤ −σE(t) + (
2

γ
+

δ

2m0λ1
2
)‖f‖2,

where σ = min{γ, δm0
2M0

,
δ(α+2)
2 }. It is easy to see that

d

dt
{E(t)eσt} ≤ ( 2

γ
+

δ

2m0λ1
2
)eσt‖f‖2.

From this inequality and the Fundamental Theorem of Calculus, it follows that

E(t) ≤ e−σt
{

E(0) + (
2

γ
+

δ

2m0λ1
2 )

∫ t

0
eσs‖f(·, s)‖2 ds

}

.

Also, (A∗) implies that E(0) ≤ C. From the assumption that ‖f(·, s)‖2 ≤ Ce−as

(a > 0) we obtain

0 ≤ E(t) ≤ Ce−σt
{

1 +

∫ t

0
e(σ−a)s ds

}

≤ Ke−at,

where a < σ. Therefore,

‖u̇‖2 ≤ Ke−at, ‖A 1

2u‖2 ≤ K

mo
e−at, ‖u‖p ≤

√

[α+2]
K(α+ 2)

2
e−at, ∀ t ≥ 0,

with 1 ≤ p ≤ α+ 2, which concludes this proof. �
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Remark 1. Theorem 2 also holds if 0 < m0 ≤ m(·) is non-decreasing on [0,∞).
In this case

−δm(‖A
1

2u‖2)‖A
1

2u‖2 + δm0

2
‖A

1

2 u‖2 ≤ − δ

2

∫ ‖A
1

2 u‖
2

0
m(r) dr,

and so

E
′

(t) ≤ −σE(t) + (
2

γ
+

δ

2m0λ1
2
)‖f‖2,

where σ = min{γ, δ
2 ,

δ(α+2)
2 }.

Remark 2. The order of exponential decay approaches zero as the lower bound
m0 approaches zero. This is so because the constant a satisfies

a < σ ≤ λ1m
3

2

0

M0
.

Also, the smaller the effect of the damping term is, the faster the order of expo-
nential decay approaches zero.

4. Decay in the degenerate case

Exponential decay has been shown in [5] for equation of the type ü+ γu̇ = f .
We will show exponential decay for α = 0, m ≡ 0 and asymptotic stability for
α ≥ 0, f ≡ 0 (for α = 2, f ≡ 0 a stronger result is known — exponential decay has
been shown in [2]). As far as we know, there is no result concerning asymptotic
behavior of the global strong solution when f 6≡ 0 and α is more general.

Theorem 3. Assume that m ≡ 0 and that ‖f(·, t)‖ decays exponentially to zero
as t → ∞. Then for any solution of (1.1), ‖u̇‖ and ‖u‖ decay exponentially to
zero.

Proof: Since α = 0, m ≡ 0, equation (1.1) reduces to ü+ γu̇+ u = f , which is
a very simple case of type of equations studied in [4]. Here existence of a strong
global solution is shown under condition that g ∈ H10 (Ω) and h ∈ L2(Ω). We
shall consider the energy functional

(4.10) E(t) = ‖u̇‖2 + δ(u̇, u) + ‖u‖2,

where δ = min{γ
2 ,
1
2}. Just as in Theorem 2, this choice of δ ensures that E is

non-negative. In fact,

E(t) ≥ ‖u̇‖2 − ‖u̇‖2 − δ2

4
‖u‖2 + ‖u‖2 = (1− δ2

4
)‖u‖2 ≥ 0.
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Also, we take the inner product of each term in (1.3) with 2u̇, and with u, respec-
tively.

d

dt
‖u̇‖2 + 2γ‖u̇‖2 + d

dt
‖u‖2 = 2(f, u̇),(4.11)

(ü, u) + γ(u̇, u) + ‖u‖2 = (f, u).(4.12)

Now, we differentiate E and make use of (4.11) and (4.12).

E
′

(t) =
d

dt
{‖u̇‖2 + ‖u‖2}+ δ(ü, u) + δ‖u̇‖2

= (−2γ + δ)‖u̇‖2 + 2(f, u̇)− γδ(u̇, u)− δ‖u‖2 + δ(f, u).

From (3.5) we obtain

(4.13) δ(f, u) ≤ δ

2
‖f‖2 + δ

2
‖u‖2.

Using (3.8) and (4.13), one obtains

E
′

(t) ≤ −γ‖u̇‖2 − δ

2
‖u‖2 − γδ(u̇, u) + (

δ

2
+
2

γ
)‖f‖2

≤ −σE(t) + (
2

γ
+

δ

2
)‖f‖2,

where σ = min{γ, δ
2}. From this first-order linear inequality and the assumption

that ‖f(·, s)‖ decays exponentially, follows the existence of positive constants C, b,

such that E(t) ≤ Ce−bt, with b < σ. Hence,

‖u̇‖2 ≤ Ce−bt, ‖u‖2 ≤ Ce−bt, ∀ t ≥ 0,

and the proof is complete. �

Remark 3. Notice that the order of exponential decay b < 1
4 . From the physics

point of view, Theorems 2 and 3 state that the energy ‖u̇‖2+‖∇u‖2+‖u‖2 decays
as time goes by.

Theorem 4. Consider the mixed problem

(4.14)

ü+ γu̇ − m(‖∇u‖2)∆u+ δ|u|αu = f(x, t) for x ∈ Ω, t ≥ 0,
u(x, 0) = g(x), u̇(x, 0) = h(x) for x ∈ Ω,

u(x, t) = 0 for x ∈ ∂Ω, t ≥ 0,
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where Ω, γ, α are as in (1.1) and m is a continuous function on [0,∞) satisfying
0 ≤ m(·) ≤ M0. We take initial data such that

g ∈ H10 (Ω) ∩ Lα+2(Ω) and h ∈ L2(Ω).

Assume that there exists a solution in class

u ∈ C((0,∞), H10 (Ω) ∩ Lα+2(Ω)) ∩ L2((0,∞), H2(Ω))(4.15)

u̇ ∈ C((0,∞), L2(Ω)) ∩ L2((0,∞), H10 (Ω))(4.16)

ü ∈ L2((0,∞), L2(Ω)).(4.17)

Define the energy associated to the solution of (4.14) by the following formula

E(t) =
1

2
‖u̇‖2 +

∫ ‖∇u‖2

0
m(r) dr +

1

α+ 2
‖u‖α+2

α+2 .

It holds that

E(t)→ 0, as t → ∞,

for every solution u satisfying (4.15)–(4.17).

Proof: It is easy to see that

Ė(t) = (ü, u̇) +m(‖∇u‖2)(∇u,∇u̇) + (|u|αu, u̇) = −γ‖u̇‖2 ≤ 0.

Hence, E(t) is a non-increasing continuous function on [0,∞) and so

E(t) ≤ E(0) for t ≥ 0.

For the proof we need two lemmas.

Lemma 1. It holds that

∫ t

0
‖u̇(s)u(s)‖1 ds = O(t

1

2 ), t → ∞.

Proof of Lemma 1: We have

∫ t

0
‖u̇(s)u(s)‖1 ≤

∫ t

0
‖u(s)‖‖u̇(s)‖ ds ≤ (

∫ t

0
‖u̇(s)‖2 ds)

1

2

√
t sup
[0,t]

‖u(s)‖.

It also holds that

∫ t

0
‖u̇(s)‖2 ds = − 1

γ
(E(t)− E(0)) ≤ 1

γ
E(0)
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and

‖u(s)‖ ≤ C‖u(s)‖α+2 ≤ C
√

[α+ 2]E(0).

From these inequalities it follows that

∫ t

0
‖u̇(s)u(s)‖1 ds ≤ C

√
t = O(t

1

2 ), t → ∞.

�

Lemma 2. It holds that

∫ t

0
‖u̇(s)‖2 ds = O(t

1

2 ), t → ∞.

Proof of Lemma 2: We have

∫ t

0
‖u̇(s)‖2 ds =

∫ t

0
‖u̇(s)‖‖u̇(s)‖ ds ≤

(
∫ t

0
‖u̇(s)‖2 ds

)
1

2√
t sup
[0,t]

‖u̇(s)‖.

Since ‖u̇(s)‖ ≤
√

2E(0), it follows that

∫ t

0
‖u̇(s)‖2 ds ≤ C

√
t = O(t

1

2 ), t → ∞.

�

Proof of Theorem 4: Assume on the contrary that l = limt→∞ E(t) > 0. We
shall prove that

(4.18) ‖u̇‖2 +
∫ ‖∇u‖2

0
m(r) dr +

1

α+ 2
‖u‖α+2

α+2 ≥ C̄ > 0.

We have

‖u̇‖2 + 2
∫ ‖∇u‖2

0
m(r) dr +

2

α+ 2
‖u‖α+2

α+2 ≥ l.

If ‖u̇‖2 ≥ l
2 , then (4.18) is satisfied with C̄ = l

2 . Conversely, if ‖u̇‖2 ≤ l
2 , then

2

∫ ‖∇u‖2

0
m(r) dr +

2

α+ 2
‖u‖α+2

α+2 ≥
l

2
,



80 B. Szomolay

and so (4.18) is satisfied with C̄ = l
4 . Now,

B(t) = (u, u̇) =

∫ t

0
‖u̇‖2 − γ(u̇, u)− m(‖∇u‖2)‖∇u‖2 − 1

α+ 2
‖u‖α+2

α+2 ds

≤
∫ t

0
{2‖u̇‖2 − γ(u̇, u)− C̄} ds → −∞ as t → ∞.

This is a contradiction to the fact that |B(t)| ≤ C{E(0) +
√

[α + 2]E2(0)}.
Therefore,

lim
t→∞

E(t) = 0.
�

Remark 4. The proof of Theorem 4 was inspired by the paper of M. Aassila
(see [1]). He has shown asymptotic stability for equations of the type ü−div((1+
|∇u|a)b|∇u|c−2∇u) + g(u̇) = 0, where the nonlinear function g satisfies certain
conditions.

Example. This example shows that in case α = 0 decay of solutions is not
necessarily exponential. J.G. Dix has shown a similar statement for the equation
ü + u̇ − m(‖ux‖2)uxx = 0 (see [5]). For α > 0 we are unable to give a counter-
example. Consider the initial value problem

ü+ 3u̇ − m(‖ux‖2)uxx + u = 0, for 0 ≤ x ≤ π, t ≥ 1,

u(x, 1) =

√

2

π
sinx, u̇(x, 1) = −

√

2

π
sinx,

u(0, t) = 0, u(π, t) = 0 for t ≥ 1,
where

m(r) = −2r + 3
√

r − 1 if
1

4
≤ r ≤ 1

and m(r) = 0 otherwise.

Then u(x, t) =
√

2
π sinx is a solution. Since

u̇ = −u

t
, ü =

2u

t2
, ux =

√

2

π

cosx

t
, uxx = −u,

‖ux‖2 = 1
t2
and m( 1

t2
) = − 2

t2
+ 31t − 1 for t ≥ 1, it is easy to check that u

satisfies the initial-value problem. Notice that ‖u̇‖ decays polynomially rather
than exponentially as t → ∞. Indeed,

‖u̇‖2 = ‖ − 1
t
u‖2 = π

2t2
= O(t−2).
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5. Extension of results to equations with ∆2

In this section we extend the previous analysis to equations that involve the bi-
harmonic operator which appears in modeling non-planar vibrations, for example
when studying the swaying of bridges. Consider the problem

(5.19)
ü+ γu̇+ ǫ∆2u − m(‖∇u‖2)∆u = f(x, t), for x ∈ Ω, t ≥ 0,

u(x, 0) = g(x), u̇(x, 0) = h(x) for x ∈ Ω,

with boundary conditions corresponding to hinged ends

u(x, t) = ∆u(x, t) = 0 for x ∈ ∂Ω, t ≥ 0.

Here Ω, γ, m are as in (1.1) and ǫ is a positive constant.
When f ≡ 0, asymptotic behavior of solutions to a more general problem has

been studied by M. Aassila (see [1]). He considered a similar problem with a
nonlinearity g(u̇) and that m(r) ≥ α+ βr (α, β > 0).
Our aim was to make use of the remark in [4, Section 5] and to show on a

particular example that the previous theorems can be extended to equations with
higher powers of A. In Theorem 5 we show that ‖u̇‖ is square integrable on [0,∞)
and in Theorem 6 we introduce an analogous statement with Theorem 2.
Define the positive, self-adjoint bi-harmonic operator as the second power of

the negative Laplacian, with domain

D(A2) = {u ∈ H2(Ω) : u, Au ∈ D(A)}.

In fact, u ∈ D(A) and Au ∈ D(A) imply that u = 0 and ∆u = 0 on ∂Ω× [0,∞).
Notice that the spectrum for A2 is given by

σ(A2) = {λ4;λ2 ∈ σ(A)}

and that (5.19) can be written as a nonlinear evolution equation in L2(Ω):

(5.20)
ü+ γu̇+ ǫA2u+m(‖A 1

2 u‖2)Au = f(x, t),

u(x, 0) = g(x), u̇(x, 0) = h(x).

In what follows we take initial data such that

g ∈ H10 (Ω) ∩ H2(Ω) and h ∈ L2(Ω).

Under solution on [0, T ) we mean a function u satisfying (5.20) and

u ∈ C((0, T ), D(A2)) ∩ C1((0, T ), L2(Ω)).

Now we are ready to state our results:
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Theorem 5. If ‖f(·, t)‖ is square integrable on [0,∞), and u is a solution to

(5.19), then ‖u̇‖ is square integrable on [0,∞).
Proof: We will estimate the growth of the energy functional

(5.21) E(t) = ‖u̇‖2 + ǫ‖Au‖2 +
∫ ‖A

1

2 u‖
2

0
m(r) dr.

Taking the inner product of each term in (5.20) with 2u̇ implies

d

dt

(

‖u̇‖2 + ǫ‖Au‖2 +
∫ ‖A

1

2 u‖
2

0
m(r) dr

)

+ 2γ‖u̇‖2 = 2(f, u̇).

Using (3.5), it follows that the derivative of E satisfies

E
′

(t) = −2γ‖u̇‖2 + 2(f, u̇) ≤ −γ‖u̇‖2 + 1
γ
‖f‖2.

From this inequality, we obtain

E(t) + γ

∫ t

0
‖u̇‖2 ds ≤ E(0) +

1

γ

∫ t

0
‖f(·, s)‖2 ds.

Since
∫ ∞
0 ‖f‖2 < ∞, it follows that

∫ ∞
0 ‖u̇‖2 < ∞, which concludes the proof.

�

Remark 5. In Theorem 5 there is no assumption regarding the degenerate and
non-degenerate cases ofm. The previous statement also remains valid for problem
(1.1). In this case the energy functional is just as in Theorem 4.

Theorem 6. Assume that 0 < m0 ≤ m(·) ≤ M0, and that ‖f(·, t)‖ decays
exponentially to zero as t → ∞. Then for any solution of (5.19), ‖u̇‖, ‖∇u‖,
‖∆u|, ‖u‖ decay exponentially to zero.
Proof: When proving this statement, the energy functional (5.21) is redefined
to be

(5.22) E(t) = ‖u̇‖2 + ǫ‖Au‖2 +
∫ ‖A

1

2 u‖
2

0
m(r) dr + δ(u̇, u),

where δ = min{2λ21
√

ǫ, γ
2 }. When choosing δ, we used (1.2) to ensure that E is

non-negative. Also, we take the inner-product of each term in (5.20) with 2u̇, and

with 2u, respectively. Substituting the two equations into E
′

(t) yields

E
′

(t) = 2(f, u̇)+(−2γ+δ)‖u̇‖2−δγ(u̇, u)−δǫ‖Au‖2−δm(A
1

2 u)‖A 1

2 u‖2+δ(f, u).



Decay of solutions of some degenerate hyperbolic equations of Kirchhoff type 83

Using (3.8) and (3.9) and the boundedness of m, we obtain

E
′

(t) ≤ −σE(t) + (
2

γ
+

δ

2m0λ
2
1

)‖f‖2,

where σ = min{γ, δm0
2M0

, δ}. The rest of the proof is the same as in Theorem 2.
Hence, there exist positive constants C, c, such that

‖u̇‖2 ≤ Ce−ct, ‖Au‖2 ≤ C

ǫ
e−ct ∀ t ≥ 0.

Since H10 (Ω) →֒ L2(Ω) and m0 > 0, ‖u‖ and ‖∇u‖ also decay exponentially to
zero. �

Remark 6. Theorem 6 also holds if m is non-decreasing and m(·) ≥ 0 on [0,∞).
In fact, in this case

−δm(‖A 1

2 u‖2)‖A 1

2u‖2 ≤ −δ

∫ ‖A
1

2 u‖
2

0
m(r) dr.

Instead of (3.9) we take

2δ(f, u) ≤ 2 δ

λ21
‖f‖‖Au‖ ≤ δ

ǫλ1
4
‖f‖2 + δǫ‖Au‖2.

Using (3.8) and the two inequalities above, we obtain

E
′

(t) ≤ −σE(t) +

(

2

γ
+

δ

2ǫλ1
4

)

‖f‖2,

where σ = min{γ, δ, δǫ
2 }. Note that the difference between Remark 1 and Re-

mark 6 is that here m is allowed attain zero values. It evokes the idea that
adding powers of A into (∗) “improves” the asymptotic stability. Since m(·) ≥ 0,
exponential decay of ‖∇u‖ and ‖u‖ follows from the inequality

‖u‖H2(Ω) ≤ C‖∆u‖ for u ∈ H10 (Ω) ∩ H2(Ω).

Remark 7. Notice that if ǫ → 0+, then the order of exponential decay ap-
proaches zero. An analogous remark with Remark 2 also holds.

Remark 8. Theorems 5 and 6 can be applied to equations of the type

ü+ γu̇+ κu+ ǫ∆2u − m(‖∇u‖2)∆u = f(x, t),

where γ, κ, ǫ are positive constants. In this case the energy functional (5.21) is
redefined to be

E(t) = ‖u̇‖2 + κ‖u‖2 + ǫ‖∆u‖2 +
∫ ‖A

1

2 u‖
2

0
m(r) dr.

We obtain the same results.
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