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Weighted norm inequalities for singular integral

operators satisfying a variant of Hörmander’s condition

R. Trujillo-González

Abstract. In this paper we establish weighted norm inequalities for singular integral
operators with kernel satisfying a variant of the classical Hörmander’s condition.

Keywords: singular integral operators, maximal operators, Ap weights

Classification: 42B20, 42B25

1. Introduction

In the classical Calderón-Zygmund theory, the Hörmander’s condition

(1.1)

∫

|x|>2|y|
|K(x − y)− K(x)| dx ≤ C

plays a fundamental role and became the weakest restriction on the kernel in
order to develop all the theory. Hörmander’s condition was introduced in [7] and
relaxed the original Dini property given in the work of Calderón and Zygmund
([3]). On the other hand, there has been also a great interest in operators which
are not in the scope of the Calderón-Zygmund theory. The particular situation
of singular integral operators which do not satisfy the Hörmander’s condition has
been extensively considered (say, among others, oscillatory and rough singular
integral operators).
In [6], D.J. Grubb and C.N. Moore introduced a variant of the Hörmander’s

condition in order to study the Lp-boundedness of certain singular integral oper-
ators. In particular, these authors considered convolution operators bounded in
L2(Rn) with kernel K satisfying the so called variant of Hörmander’s condition

(1.2)

∫

|x|>2|y|

∣∣∣∣∣∣
K(x − y)−

m∑

j=1

Bj(x)φj(y)

∣∣∣∣∣∣
dx ≤ C

with Bj and φj ’s appropriate functions (see Theorem 3.1). As an example we
mention the kernel K(x) = sinx/x, which verifies (1.2) (see Example 3.3) but
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it is not a Calderón-Zygmund kernel since its derivative does not decay quickly
enough at infinity. Condition (1.2) makes it possible to develop a study similar
to the classical for Calderón-Zygmund singular integral operators.
As it is well known, the classical Hörmander’s condition (1.1) is too weak to get

weighted inequalities by any known method. The usual hypothesis on the kernel
K to obtain them is the Lipschitz condition

(1.3) |K(x − y)− K(x)| ≤ C
|y|α

|x|α+n , |x| > c|y|.

Weaker conditions than (1.3), but stronger than (1.1), have been also considered
in [10] or [12].
The goal of this paper is the study of the weighted norm inequalities for op-

erators satisfying an appropriate version of (1.3) in the scope of (1.2). Thus, we
proceed with the same philosophy as Gruub and Moore ([6]) trying to develop
the classical scheme in this setting (cf. [5, Chapter IV-Sect. 3]). We remark that
the key of the arguments is the definition of an appropriate #-maximal operator.
The paper is organized as follows. In Section 2 we introduce the basic tool, a #-

maximal type operator. We study its main properties and we establish the version
of the classical Fefferman-Stein’s weighted inequality with the Hardy-Littlewood
maximal operator (Theorem 2.9). Section 3 is devoted to the proof of the main
results on the weighted inequalities of the singular integral operators. Having
introduced the class of singular integral operators of our interest, we first analyze
the action on them of the #-maximal operator introduced, determinating the
maximal operator that controls it (Theorem 3.6). Finally, we establish the Lp and
weak-(1,1) weighted estimates for these operators (Theorem 3.7 and Theorem 3.8).
Throughout this paper, we denote by C a constant, not necessarily the same

at each occurrence, which depends only on the parameters indicated.

2. The #-maximal type operator

We begin by introducing the definition of the #-maximal type operator asso-
ciated to a family of bounded functions.

Definition 2.1. Let Φ = {φ1, . . . , φm} be a finite family of bounded functions
in R

n. For any f ∈ L1loc(R
n), we define the Φ-# maximal function M

#
Φ f by

M
#
Φ f(x) = sup

Q∋x
inf

{c1,...,cm}


 1
|Q|

∫

Q
|f(y)−

m∑

j=1

cjφj(−(y − xQ))| dy


 ,

where the infimum is taken over all m-tuples {c1, . . . , cm} of complex numbers,
and the supremum is taken over all cubes Q with sides parallel to the coordinate
axes that contain the point x and center denoted by xQ.
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Remark 2.2. We note that in the particular case of m = 1 and φ1 ≡ 1, M#
Φ

is the classical sharp maximal operator M# (see [5], [11] for details about this

operator). So, in some sense, M#
Φ can be understood as a generalization of this

well-known operator.

The basic properties of this operator needed for our study will require an
additional property of the family Φ, say, a reverse Hölder condition which we
first introduce in the general sense.

Definition 2.3. Given a positive and locally integrable function g in R
n, we say

that g satisfies the reverse Hölder RH∞ condition, in short, g ∈ RH∞(R
n), if for

any cube Q centered at the origin we have

0 < sup
x∈Q

g(x) ≤ C
1

|Q|

∫

Q
g(x) dx

with C > 0 being an absolute constant independent of Q.

Remark 2.4. It will be useful for later on to notice that if g ∈ RH∞(R
n) then

also g(−x) ∈ RH∞(R
n).

The condition RH∞ implies the well known Reverse Hölder condition RH1+ε

(2.4)

(
1

|Q|

∫

Q
g(x)1+ε dx

) 1
1+ε

≤ C

(
1

|Q|

∫

Q
g(x) dx

)

for all ε > 0. The Reverse Hölder condition RH1+ε characterizes the Ap classes
of weights that we introduce next (cf. [5, p. 403]). We say that a positive and
locally integrable function w belongs to Ap, 1 ≤ p < ∞, if there exists a constant
C such that

(
1

|Q|

∫

Q
w(y) dy

)(
1

|Q|

∫

Q
w(y)1−p′ dy

)p−1

≤ C, (1 < p < ∞)

1

|Q|

∫

Q
w(y) dy ≤ C inf

Q
w, (p = 1).

for any cube Q with sides parallel to the coordinate axes.
It follows that the Ap classes are increasing with respect to p and the widest

one is defined as A∞ =
⋃

p≥1Ap. Moreover, there exists another characterization
of the elements of A∞ that will be useful later on. If w ∈ A∞ then there exist
positive constants c and r such that, for any cube Q and any measurable set E
contained in Q, denoting w(A) =

∫
A w for any subset A ⊂ R

n, we have

(2.5)
w(E)

w(Q)
≤ c

( |E|
|Q|

)r

.
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For the basic theory of Ap weights, we refer the reader to the classical references
[5] or [11].
Our interest will be concentrated in the projection of any function on the

subspace generated by Φ. This projection, under a certain RH∞-conditions on

the family Φ, will be the optimal linear combination for the estimation of M
#
Φ .

We detail all these comments.
By the projection of an L1-function f onto a finite-dimensional subspace Y we

refer to such an element, if it exists, P (f) of Y verifying

∫
fh̄ dx =

∫
P (f)h̄ dx

for every h ∈ Y . The uniqueness of this projection is immediate from its existence.
The most simple example is given for the subspace Y generated by that one

functions constant on a fixed cube Q. Then the projection of any function f
integrable on Q always exists and is given by its average fQ on Q, which trivially
satisfies |fQ| ≤ |f |Q. For the subspace generated by a finite family Φ of bounded
functions, the existence of this projection and this type of estimate also holds
under an appropriate RH∞-condition on the family Φ. This result is stated in
the following lemma, which became the key for the proof of the main result of [6].

Lemma 2.5. Let Φ = {φ1, . . . , φm} be a finite family of bounded functions in
R

n satisfying that | det[φj(yi)]|2 ∈ RH∞(R
mn). Then, for any cube Q centered

at the origin and any f ∈ L1(Q), there exists the projection PQf of f onto the

subspace of L1(Q) generated by the family Φ and satisfies

(2.6) sup
y∈Q

|PQf(y)| ≤ C0
1

|Q|

∫

Q
|f(y)| dy,

where the constant C0 depends only on n, m and the constant in the RH∞-

condition satisfied by the family Φ.

We specially remark that the RH∞ condition imposed to the family Φ is the
essential hypothesis to give both the existence of the projection and the bound-
edness (2.6).

Remark 2.6. Lemma 2.5 means that the projection operator PQ : L
1(Q) → Y

is bounded with norm ‖PQ‖L1(Q)→L1(Q) ≤ C0.

Lemma 2.5 allows us to establish a close relationship between the operator

projection and the operator M
#
Φ .

Lemma 2.7. Let Φ = {φ1, . . . , φm} be a finite family of bounded functions in R
n

satisfying that | det[φj(yi)]|2 ∈ RH∞(R
nm). For any cube Q in R

n with center
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xQ and any f ∈ L1(Q), let PQf be the projection of f onto the subspace Y of

L1(Q) generated by {φ1(−(· − xQ)), . . . , φm(−(· − xQ))}.
Then

(2.7)
1

|Q|

∫

Q
|f(x)− PQf(x)| dx ≤ C inf

g∈Y

1

|Q|

∫

Q
|f(x)− g(x)| dx,

with C > 0 being an absolute constant depending only on the RH∞-condition of

the family Φ.

Proof: The main idea of this result follows from the concept of near-best L1-
approximation (cf. [9]). Since PQg = g for any g ∈ Y , if I denotes the identity
operator, we have

1

|Q|

∫

Q
|f(x)− PQf(x)| dx =

1

|Q|

∫

Q
|f(x) − g(x)− PQ(f − g)(x)| dx

=
1

|Q|

∫

Q
|[I − PQ](f − g)(x)| dx

≤ ‖I − PQ‖L1(Q)→L1(Q)
1

|Q|

∫

Q
|f(x)− g(x)| dx

≤
(
1 + ‖PQ‖L1(Q)→L1(Q)

) 1
|Q|

∫

Q
|f(x)− g(x)| dx.

Now, from Remark 2.4, Lemma 2.5 and Remark 2.6 it follows (2.7) and the
lemma is proved. �

Remark 2.8. Lemma 2.7 implies that

sup
Q∋x

1

|Q|

∫

Q
|f(y)− PQf(y)| dy ∼ M#

Φ f(x),

where, as usual, the supremum is taken over all cubes Q with sides parallel to the
coordinate axes that contain the point x.

Our first weighted estimate relates the operator M#
Φ and the non-centered

maximal operator of Hardy-Littlewood

Mf(x) = sup
Q∋x

1

|Q|

∫

Q
|f(y)| dy,

where the supremum is taken over all cubes Q with sides parallel to the coordinate
axes that contain the point x.
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Theorem 2.9. Let 1 < p < ∞, w ∈ A∞ and Φ = {φ1, . . . , φm} be a finite family
of bounded functions satisfying | det[φj(yi)]|2 ∈ RH∞(R

nm). Then there exists a
constant C > 0 such that

(2.8)

∫

Rn

Mf(x)p w(x) dx ≤ C

∫

Rn

M
#
Φ f(x)p w(x) dx,

for every smooth function f such that the left hand side is finite.

This result became the version for these operators of the classical one due to
C. Fefferman and E. Stein (see [8]). Its proof reduces to show that the RH∞-
condition on the family Φ is sufficient to establish a good-λ inequality between
these two operators. This technique was introduced by Burkholder and Gundy
in [2], and it was first used by Coifman and Fefferman in [4] for the study of the
boundedness of Calderón-Zygmund singular integral operators. The use of this
tool to relate the classical #-maximal and Hardy-Littlewood maximal operators
was first considered by Bagby and Kurtz in [1].

Proof of Theorem 2.9: Following [11, Chapter XIII], we have to show that

the operators M and M#
Φ verify a good-λ inequality with respect to the measure

w(x) dx. For this purpose it is enough to check that the following conditions hold:

(i) M and M#
Φ are sublinear and positive,

(ii) {x ∈ R
n :Mf(x) > λ} is an open set of finite Lebesgue measure for each

f in C∞
0 (R

n) and each λ > 0,
(iii) if a cube Q contains a point x0 whereMf(x0) ≤ λ, then for each 0 < η < 1

there exists a constant γ > 0 independent of λ, Q and f such that

(2.9) w({y ∈ Q :Mf(y) > (C0 + 1)λ, M#
Φ f(y) ≤ γλ}) ≤ ηw(Q),

where C0 > 0 is the constant given in (2.6).

Conditions (i) and (ii) are readily seen from the definition of the operators

M and M#
Φ and the basic properties of the Hardy-Littlewood maximal operator,

respectively. So, it only remains to show (iii).
By simplicity, let us denote

E = {y ∈ Q :Mf(y) > (C0 + 1)λ, M
#
Φ f(y) ≤ γλ}.

First note that, since w ∈ A∞, there exist constants c, r > 0 such that

w(E)

w(Q)
≤ c

( |E|
|Q|

)r

,

and this reduces the problem to prove (2.9) with the Lebesgue measure instead
of the measure w(x) dx.
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Fix f ∈ C∞
0 (R

n) and a cube Q that contains a point x0 such thatMf(x0) ≤ λ.

Then, by the non-centered definition of the operator M , the cube Q̃ concentric
with Q and side length two times that of Q satisfies

(2.10)
1

|Q̃|

∫ eQ |f(y)| dy ≤ λ.

We claim that, for all x ∈ E,

(2.11) M(fχ eQ)(x) > (C0 + 1)λ.

Indeed, since Mf(x) > (C0 + 1)λ, any cube that contains x and where the
average of |f | is bigger than (C0+1)λ it cannot contain x0, so its diameter is less

than the diameter of Q, and consequently it is contained in Q̃.

Now, since P eQf is the projection of f onto the subspace of L1(Q̃) generated

by {φ1(−(· − xQ)), . . . , φm(−(· − xQ))}, from (2.11) it follows that

(2.12) M((f − P eQf)χ eQ)(x) > λ.

To see this, first recall that, for any cube R, by (2.6) and (2.10), we have

(2.13)

1

|R|

∫ eQ∩R
|P eQf(y)| dy ≤ C0

|Q̃ ∩ R|
|R| (

1

|Q̃|

∫ eQ |f(y)| dy)

≤ C0λ

with C > 0 independent of Q̃, R, f and λ. On the other hand, by (2.11), we can
choose a cube R such that

(2.14)
1

|R|

∫ eQ∩R
|f(y)| dy > (C0 + 1)λ.

From (2.13) and (2.14) we conclude

1

|R|

∫ eQ∩R
|f(y)− P eQf(y)| dy ≥

∣∣∣∣
1

|R|

∫ eQ∩R
|f(y)| dy − 1

|R|

∫ eQ∩R
|P eQf(y)| dy

∣∣∣∣

> |(C0 + 1)λ − C0λ|
= λ,

which proves (2.12).
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Finally, we have

|E| = |{y ∈ Q :Mf(y) > (C + 1)λ, M#
Φ f(y) ≤ γλ}|

≤ |{y ∈ Q :M((f − P eQf)χ eQ)(y) > λ, M
#
Φ f(y) ≤ γλ}|

≤ C

λ

∫ eQ |f(y)− P eQf(y)| dy

≤ C

λ
|Q̃|M#

Φ f(y)

≤ C

λ
|Q|γλ

= Cγ|Q|,

where the first inequality follows from (2.12), the second one holds because M is
of weak type-(1,1) and the third one by Remark 2.8 for any y ∈ E.
Thus, (iii) is verified by taking γ = η/C and the proof of the theorem is finished.

�

3. Weighted norm inequalities

In this section we establish the main results of the paper. We begin by giving
the main theorem of [6] on the Lp-boundedness of the singular integral operators
that satisfy the variant of the Hörmander’s condition (1.2).

Theorem 3.1 [6]. Let K ∈ L2(Rn) satisfy

(i) ‖K̂‖∞ ≤ C,
(ii) there exist functions B1, . . . , Bm and Φ = {φ1, . . . , φm} ⊂ L∞(Rn) such
that | det[φj(yi)]|2 ∈ RH∞(R

nm), and
(iii) for all |y| > 0,

∫

|x|>2|y|
|K(x − y)−

m∑

j=1

Bj(x)φj(y)| dx ≤ C.

For f ∈ C∞
0 (R

n), 1 < p < ∞, we define the singular integral operator

Tf(x) =

∫

Rn

K(x − y)f(y) dy.

Then

‖Tf‖p ≤ C‖f‖p

with a constant C depending only on p, the dimension of the space and the
constant in the RH∞-condition for the φj ’s.
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Example 3.2. The simplest example is given by K(x) ∈ L2(Rn) being a Calde-
rón-Zygmund kernel. Then, with m = 1, B1(x) = K(x) and φ1 ≡ 1, Theorem 3.1
is the Hörmander’s version of the Calderón-Zygmund theorem ([7]).

Example 3.3. Consider the kernel

K(x) =
1

x

m∑

j=1

cje
iλjx

with λj ∈ R for all j and
∑m

j=1 cj = 0. This kernel satisfies that K̂ is a step

function, so it includes the particular case K(x) = sinx/x mentioned in the

Introduction. It verifies (iii) in Theorem 3.1 with Bj(x) = cje
iλjx/x and φj(y) =

e−iλjy . In [6] is proved that | det[φj(yi)]|2 satisfies the RH∞-condition in R
m.

As we pointed out in the Introduction, we will require a pointwise version
of condition (iii) to be satisfied by the kernels of the operators considered. We
precise it.
Let K ∈ L2(Rn) verify for certain constant C > 0

(K1) ‖K̂‖∞ ≤ C,

(K2) |K(x)| ≤ C
|x|n
,

(K3) there exist functions B1, . . . , Bm ∈ L1loc(R
n\{0}) and Φ = {φ1, . . . , φm} ⊂

L∞(Rn) such that | det[φj(yi)]|2 ∈ RH∞(R
nm), and

(K4) for a fixed γ > 0 and for any |x| > 2|y| > 0,

∣∣∣∣∣∣
K(x − y)−

m∑

j=1

Bj(x)φj(y)

∣∣∣∣∣∣
≤ C

|y|γ
|x − y|n+γ .

For f ∈ C∞
0 (R

n), we define the convolution operator associated to the kernel
K by

(3.1) Tf(x) =

∫

Rn
K(x − y)f(y) dy.

Remark 3.4. It is immediate that any operator satisfying (K4) also verifies (iii)
in Theorem 3.1.

Remark 3.5. The family of kernels given in Example 3.3 also satisfies (K1)–(K4).

As in the classical case, we will use the Φ-# maximal operator as a bridge
to pass from weighted estimates of the operator to weighted estimates of the
functions (cf. [5, Chapter II]). This is shown in the following result that reflect

the action of M
#
Φ on these operators.
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Theorem 3.6. Let T be a singular integral operator given by (3.1) with kernel
K satisfying (K1)–(K4). Then, for any q > 1,

(3.2) M#
Φ (Tf)(x) ≤ CMqf(x)

with an absolute constant C > 0 independent of f and q.

Proof: Fix f ∈ C∞
0 (R

n) and x ∈ R
n. Let Q be an arbitrary cube containing x,

with sides parallel to the coordinate axes and center denoted by xQ. Taking

f1 = fχQ∗ with Q∗ = 2
√

nQ, the cube which has the same center as Qj but with

side length 2
√

n times as long, and f2 = f − f1, we define

(3.3) bj =

∫

Rn
Bj(−(y − xQ))f2(y) dy, 1 ≤ j ≤ m,

which by the choice of the Bj ’s are all finite. So, we can split

(3.4)

1

|Q|

∫

Q
|Tf(y)−

m∑

j=1

bjφj(−(y − xQ))| dy

≤ 1

|Q|

∫

Q
|Tf1(y)| dy

+
1

|Q|

∫

Q
|Tf2(y)−

m∑

j=1

bjφj(−(y − xQ))| dy

= I + J.

The estimate of the first term is straightforward. Indeed, for any q > 1,

(3.5)

I ≤
(
1

|Q|

∫

Q
|Tf1(y)|q dy

)1/q

≤ C

(
1

|Q|

∫

Q∗

|f(y)|q dy

)1/q

≤ CMqf(x),

where the second inequality follows from (K1), (K3) and (K4) since these hy-
potheses imply that T is of type-(q, q) by Remark 3.4 and Theorem 3.1.
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On the other hand, taking into account (3.3) and (K4),
(3.6)

J =
1

|Q|

∫

Q

∣∣∣∣∣∣

∫

Rn


K(y − s)−

m∑

j=1

Bj(−(s − xQ))φj(−(y − xQ))


 f2(s) ds

∣∣∣∣∣∣
dy

≤ 1

|Q|

∫

Q




∫

Rn\Q∗

∣∣∣∣∣∣
K(y − s)−

m∑

j=1

Bj(−(s − xQ))φj(−(y − xQ))

∣∣∣∣∣∣
|f(s)| ds



 dy

≤ C
1

|Q|

∫

Q

(∫

|s−xQ|>2|y−xQ|

|y − xQ|γ
|s − xQ|n+γ |f(s)| ds

)
dy

≤ C
1

|Q|

∫

Q

(
∞∑

l=1

∫

2l−1(2|y−xQ|)<|s−xQ|≤2l(2|y−xQ|)

|y − xQ|γ
|s − xQ|n+γ |f(s)| ds

)
dy

≤ C
1

|Q|

∫

Q

(
∞∑

l=1

1

2lγ
1

(2l2|y − xQ|)n
∫

|s−xQ|≤2l(2|y−xQ|)
|f(s)| ds

)
dy

≤ CMf(x)

(
∞∑

l=1

1

2lγ

)

≤ CMqf(x).

Concluding, from (3.5) and (3.6) we get (3.2) and the theorem is proved. �

At this point we can state the weighted Lp-boundedness of these operators.

Theorem 3.7. Let 1 < p < ∞, w ∈ Ap and T be a singular integral operator
given by (3.1) with kernel K satisfying (K1)-(K4). Then there exists a constant
C such that

(3.7)

∫

Rn

|Tf(x)|pw(x) dx ≤ C

∫

Rn

|f(x)|pw(x) dx

for every smooth function f with compact support.

Proof: The theorem will be proved if we can show that M(Tf) ∈ Lp(w) for any
f ∈ C∞

0 (R
n). Indeed, taking this for granted, by Theorem 2.9, Theorem 3.6 and

choosing q > 1 such that w ∈ Ap/q ⊂ Ap (cf. [11, p. 236]), we have

∫

Rn
|Tf(x)|pw(x) dx ≤

∫

Rn
M(Tf)(x)pw(x) dx

≤ C

∫

Rn
M
#
Φ (Tf)(x)pw(x) dx

≤ C

∫

Rn
Mq(f)(x)

pw(x) dx
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= C

∫

Rn

M(|f |q)(x)p/qw(x) dx

≤ C

∫

Rn

|f(x)|pw(x) dx,

where the last estimate follows by the classical result of Muckehoupt ([5, Chap-
ter IV]).

So, to conclude the proof it only remains to prove the claim made. To show
that M(Tf) ∈ Lp(w) for any f ∈ C∞

0 (R
n), since w ∈ Ap, again by the classical

Muckehoupt’s result it is enough to see that Tf ∈ Lp(w). In order to make the
proof as selfcontained as possible, we detail this estimate (cf. [5, Chapter IV]).

Fix any f ∈ C∞
0 (R

n) with ‖f‖∞ = 1 and let R > 0 such that f(y) = 0 for
|y| ≥ R. Then, by (K2) and for any x ∈ R

n with |x| ≥ 2R,

(3.8)

|Tf(x)| ≤
∫

|y|<R
|K(x − y)||f(y)| dy

≤
∫

|y|<R

C

|x − y|n |f(y)| dy

≤ C

|x|n .

Now, we split the integral to estimate in two parts

∫

Rn

|Tf(x)|pw(x) dx =

∫

|x|<2R
|Tf(x)|pw(x) dx +

∫

|x|≥2R
|Tf(x)|pw(x) dx.

On one hand, if ε > 0 is given by the reverse Hölder condition (2.4) of w, then

(3.9)

∫

|x|<2R
|Tf(x)|pw(x) dx

≤
(∫

Rn

|Tf(x)|p(1+ 1ε ) dx

) ε
(1+ε)

(∫

|x|<2R
w(x)1+ε dx

) 1
(1+ε)

< ∞,

where the first term is finite since, by Remark 3.4 and Theorem 3.1, T is bounded

in Lp(1+1/ε)(Rn).

On the other hand, recalling that w(x) dx is a doubling measure and, as usual,
denoting w(B) =

∫
B w(x) dx for any subset B, from (3.8) and by taking 1 < r < p
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such that w ∈ Ar , it follows (cf. [5, p. 412]) that

(3.10)

∫

|x|≥2R
|Tf(x)|pw(x) dx ≤ C

∫

|x|≥2R

1

|x|np w(x) dx

= C

∞∑

l=1

∫

2l−12R<|x|≤2l2R

1

|x|np w(x) dx

≤ C

∞∑

l=1

1

(2l−12R)np
w(2lB(0, 2R))

≤ C

∞∑

l=1

1

(2l−12R)np
2lrnw(B(0, 2R))

≤ C

(
∞∑

l=1

1

2ln(p−r)

)
w(B(0, 2R)) < ∞.

Finally, from (3.9) and (3.10) we conclude that Tf ∈ Lp(w) and the proof is
complete. �

We can also prove that T is of weak type-(1,1) with respect to the A1 weights.
The proof of this result follows the classical scheme, but making use of the mod-
ification of the Calderón-Zygmund decomposition introduced in [6].

Theorem 3.8. Let w ∈ A1 and T be a singular integral operator given by (3.1)
with kernel K satisfying (K1)-(K4). Then there exists a constant C such that

w({x ∈ R
n : |Tf(x)| > λ}) ≤ C

λ

∫

Rn

|f(x)|w(x) dx

for every smooth function f with compact support.

Proof: We first recall that w ∈ A1 means that there exists a constant C such
that, for any cube Q,

(3.11)
w(Q)

|Q| ≤ Cw(x) a.e. on Q.

Fix λ > 0 and f ∈ C∞
0 (R

n) that we can assume to be real. The Calderón-
Zygmund decomposition of f at level λ provides a family {Qj} of non-overlapping
cubes such that

(i) for Ω =
⋃

j Qj it follows that |f(x)| ≤ λ a.e. on R
n \ Ω’,

(ii) for any cube Qj

λ ≤ 1

|Qj |

∫

Qj

|f(x)| dx ≤ 2nλ,
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(iii) if Q∗
j = 2

√
nQ and Ω∗ =

⋃
j Q∗

j , then

|Ω∗| = |
⋃

j

Q∗
j | ≤

C

λ

∫

Rn
|f(x)|w(x) dx.

We now introduce the variant of the classical decomposition of f in its “good”
and “bad” part (cf. [6, p. 169]). For each Qj , if yj denotes its center, let gj(x) be
the projection of the restriction of f to Q onto the span of {φ1(·− yj), φ2(·− yj),
· · ·, φm(· − yj)}.
Now set

g(x) =

{
f(x), x ∈ R

n \ Ω,

gj(x) x ∈ Qj ,

and b(x) = f(x)− g(x) =
∑

j bj(x) =
∑

j f(x)− gj(x).

Two facts are consequence of this construction. First, it readily follows that
|g(x)| ≤ λ a.e. on R

n \ Ω. On the other hand, for any x ∈ Ω and by Lemma 2.5
and (ii), |g(x)| ≤ C|f |Qj

≤ Cλ. Both inequalities can be fusioned in the general

(3.12) |g(x)| ≤ Cλ a.e.

With respect to the “bad” part b, we first note that for any 1 ≤ i ≤ m and
any j

(3.13)

∫

Qj

φi(x − yj)bj(x) dx = 0.

The basic Lemma 2.5 provides a fundamental weighted estimate of g based in
the A1 condition (3.11) of the weight. Indeed,

(3.14)

∫

Rn

|g(x)|w(x) dx ≤
∫

Rn\Ω
|f(x)|w(x) dx +

∑

j

w(Qj)
1

|Qj |

∫

Qj

|f(x)| dx

≤ C

∫

Rn

|f(x)|w(x) dx.

Having fixed the decomposition f = g + b of the function, we now proceed
as in the classical case (cf. [5, p. 413]), hence we will simplify the computations
detailing those steps that differ from it.
The decomposition of f reduces the problem to estimate

w({x ∈ R
n : |Tf(x)| > λ}) ≤ w({x ∈ R

n : |Tg(x)| > λ})
+ w({x ∈ R

n \ Ω∗ : |Tb(x)| > λ})
+ w(Ω∗)

= I + II + III.
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The third term is readily estimated from the doubling property of the weight
w (see [5, p. 396]), (ii) and (3.11)

(3.15)

III ≤ C
∑

j

w(Qj)

≤ C
∑

j

w(Q)

|Q|
1

λ

∫

Qj

|f(x)| dx

≤ C
∑

j

1

λ

∫

Qj

|f(x)|w(x) dx

≤ C

λ

∫

Rn
|f(x)|w(x) dx.

For the first term, choosing any p > 1 and taking into account that w ∈ A1 ⊂
Ap, by Theorem 3.7 we have

(3.16)

I ≤ C

λp

∫

Rn

|Tg(x)|pw(x) dx

≤ C

λp

∫

Rn
|g(x)|pw(x) dx

≤ C

λ

∫

Rn
|g(x)|w(x) dx

≤ C

λ

∫

Rn
|f(x)|w(x) dx,

where the third inequality follows by (3.12) and the last one from (3.14).
Finally, for the second term we recall (3.13), the hypothesis (K4) and (3.11),

and we get

II ≤ C

λ

∫

Rn\Ω∗

|Tb(x)|w(x) dx

(3.17)

≤ C

λ

∫

Rn\Ω∗

∑

j

∫

Qj

∣∣∣∣∣

(
K(x − y)−

m∑

r=1

Br(x − yj)φr(y − yj)

)∣∣∣∣∣ |bj(y)| dyw(x) dx

≤ C

λ

∑

j

∫

x/∈Q∗

∫

Qj

∣∣∣∣∣

(
K(x − y)−

m∑

r=1

Br(x − yj)φr(y − yj)

)∣∣∣∣∣ |bj(y)| dyw(x) dx

≤ C

λ

∑

j

∫

Qj

(∫

x/∈Q∗

∣∣∣∣∣

(
K(x − y)−

m∑

r=1

Br(x − yj)φr(y − yj)

)∣∣∣∣∣w(x) dx

)
|bj(y)| dy
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≤ C

λ

∑

j

∫

Qj

|bj(y)|Mw(y) dy

≤ C

λ

∫

Rn

|b(y)|w(y) dy

≤ C

λ

∫

Rn

|f(y)|w(y) dy,

where the last inequality holds since b = f − g and (3.14).
From (3.15), (3.16) and (3.17) we deduce (3.7) and the theorem is proved. �
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