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On a class of discontinuous operators in Hilbert spaces

Sebastiano Boscarino

Abstract. We construct a class of discontinuous operators in infinite-dimensional separa-
ble Hilbert spaces, answering a natural question which arises in comparing a fixed point
theorem of Altman and Shinbrot ([1], [4]) with its improvement obtained by Ricceri ([2],
[3]).
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In [4], M. Shinbrot gave a proof of the following fixed point theorem which was
previously announced (without proof) by M. Altman in [1]:

Theorem A. Let (H, 〈·, ·〉) be a separable real Hilbert space, and Ψ : H → H a

sequentially weakly continuous operator. Assume that there is some r > 0 such
that

〈Ψ(x), x〉 ≤ r2

for all x ∈ H satisfying ‖x‖ = r.

Then, there exists x∗ ∈ H such that x∗ = Ψ(x∗) and ‖x‖ ≤ r.

In [3] (see also [2]), B. Ricceri obtained an extension of Theorem A to a class
of discontinuous operators. His result was as follows:

Theorem B. Let (H, 〈·, ·〉) be an infinite-dimensional separable real Hilbert
space; V the linear hull of an orthonormal base {en} of H ; X ⊆ H a closed,

bounded, convex set, with 0 ∈ int(X). Further, let Ψ : X → H be an operator

satisfying the following conditions:

(i) for each y ∈ V , the set

{x ∈ X ∩ V : 〈x −Ψ(x), y〉 ≤ 0}

is finitely closed (that is, its intersection with any finite-dimensional linear
subspace of H is closed);

(ii) for each n ∈ N, the set

{x ∈ X : 〈x −Ψ(x), en〉 = 0}
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is weakly closed;

(iii) for each x ∈ V ∩ ∂X , one has

〈Ψ(x), x〉 ≤ ‖x‖2.

Then, there exists x∗ ∈ X such that x∗ = Ψ(x∗).

It is clear that the most natural (though less general) way to check (i) and (ii)
is to assume that, for each n ∈ N, the functional x → 〈Ψ(x), en〉 be sequentially
weakly continuous in X . To see this, take into account that, since H is separable
and X is weakly compact, the relative weak topology on X can be deduced by
a metric.

On the other hand, the most natural condition ensuring the sequential weak
continuity of each functional x → 〈Ψ(x), en〉 (n ∈ N) is the sequential weak
continuity of the operator Ψ, just as required in Theorem A.

Then, it is natural to ask whether there exist operators Ψ : X → H which,
though not sequentially weakly continuous, satisfy condition (iii) and, at the same
time, are such that, for each n ∈ N, the functional x → 〈Ψ(x), en〉 is sequentially
weakly continuous.

The aim of this paper is to provide an affirmative answer to such a question.

Our main result is as follows:

Theorem 1. Let (H, 〈·, ·〉) be an infinite-dimensional separable real Hilbert space
and {en} an orthonormal base of H . Put

Y = {x ∈ H : 〈x, e1〉 = 0}.

Then, there exists an operator Φ : H → H which has the following properties:

(a) Y ⊆ Φ−1(0);
(b) for each n ∈ N, the functional x → 〈Φ(x), en〉 is weakly continuous;
(c) 〈Φ(x), x〉 = 0 for all x ∈ H ;

(d) lim sup‖x‖→0 ‖Φ(x)‖ = +∞.

Proof: For each n ∈ N, define αn : R → R by

αn(t) =















t−4 if |t| > n− 1
2 ,

n2 if (2n)−
1

2 ≤ |t| ≤ n− 1
2 ,

2
1

2n
5

2 |t| if |t| < (2n)−
1

2 .

Note that each function αn is continuous and non-negative. Moreover, for each
n ∈ N, t ∈ R, one has

αn(t) ≤ αn+1(t)
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as well as
sup
n∈N

αn(t) < +∞.

Now, put

ϕn(t) = (αn(t)− αn−1(t))
1

2

with α0(t) = 0. Also, for each x ∈ H , n ∈ N, set

γn(x) =

{

−ϕn+1

2

(〈x, e1〉)〈x, en+1〉 if n is odd,

ϕn

2
(〈x, e1〉)〈x, en−1〉 if n is even.

Fix x ∈ H . Clearly, the series

|〈x, e2〉|
2 + |〈x, e1〉|

2|+ |〈x, e4〉|
2 + |〈x, e3〉|

2 + . . .

is convergent and the sequence

|ϕ1(〈x, e1〉)|
2, |ϕ1(〈x, e1〉)|

2, |ϕ2(〈x, e1〉)|
2, |ϕ2(〈x, e1〉)|

2 . . .

is bounded. So, by a classical result, the series

|γ1(x)|
2 + |γ2(x)|

2 + |γ3(x)|
2 + |γ4(x)|

2 + . . .

= |ϕ1(〈x, e1〉)|
2|〈x, e2〉|

2 + |ϕ1(〈x, e1〉)|
2|〈x, e1〉|

2

+ |ϕ2(〈x, e1〉)|
2|〈x, e4〉|

2 + |ϕ2(〈x, e1〉)|
2|〈x, e3〉|

2 + . . .

is convergent. Then, by the Riesz-Fischer theorem, for each x ∈ H , the series

γ1(x)e1 + γ2(x)e2 + γ3(x)e3 + γ4(x)e4 + . . .

is convergent in H . For each x ∈ H , put

Φ(x) =

∞
∑

n=1

γn(x)en.

So, for each n ∈ N, one has

γn(x) = 〈Φ(x), en〉.

Let us now prove that the operator Φ : H → H just defined has properties (a)–
(d). Property (a) follows at once observing that ϕn(0) = γn(0) = 0 for all n ∈ N.
Concerning (b), the weak continuity of each functional γn follows at once from
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the continuity of ϕn and the weak continuity of any continuous linear functional
on H . For each x ∈ H , one has

〈Φ(x), x〉 =

∞
∑

n=1

γn(x)〈x, en〉

= − ϕ1(〈x, e1〉)〈x, e2〉〈x, e1〉+ ϕ1(〈x, e1〉)〈x, e1〉〈x, e2〉

− ϕ2(〈x, e1〉)〈x, e4〉〈x, e3〉+ ϕ2(〈x, e1〉)〈x, e3〉〈x, e4〉+ . . .

Observe that
∑2k

n=1 γn(x)〈x, en〉 = 0 for each k ∈ N, and so 〈Φ(x), x〉 = 0. That
is, (c) is satisfied. Finally, let us check that (d) is satisfied too. To this end, fix
M > 0 and r ∈]0, 1[ . We shall prove that there is x ∈ H , with ‖x‖2 = r, such

that ‖Φ(x)‖2 > M . Fix p ∈ N, with p > Mr−
3

2 . For each n ∈ N, put

ηn =







(

r
2p

)
1

2
if n ≤ 2p,

0 if n > 2p.

Finally, set

x =

∞
∑

n=1

ηnen.

Clearly, ‖x‖2 = r. Also, one has

‖Φ(x)‖2 =
r

p

p
∑

n=1

ϕn

(

(

r

2p

)
1

2

)

=
r

p
αp

(

(

r

2p

)
1

2

)

= r
3

2 p > M.

This concludes the proof. �

Remark 1. Observe that, by (d), the operator Φ is even discontinuous with
respect to the strong topology.

Applying Theorem B, via Theorem 1, we then get the following extension of
Theorem A:

Theorem 2. Let (H, 〈·, ·〉) be an infinite-dimensional separable real Hilbert
space, X ⊆ H a closed, bounded, convex set, with 0 ∈ int(X), and Ψ : X → H a

sequentially weakly continuous operator such that

〈Ψ(x), x〉 ≤ ‖x‖2

for all x ∈ ∂X .

Then, for each operator Φ : H → H as in Theorem 1, the operator Φ + Ψ is
not sequentially weakly continuous and admits a fixed point in X .

From Theorem 2, in particular, we get the following surjectivity result:
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Theorem 3. Let Φ : H → H be an operator as in Theorem 1. Then, the operator
x → x − Φ(x) is surjective.

Proof: Fix y ∈ H and choose r > ‖y‖. Let X = {x ∈ H : ‖x‖ ≤ r}, and put
Ψ(x) = y for all x ∈ X . Then, since, for each x ∈ ∂X , one has

〈Ψ(x), x〉 ≤ ‖y‖‖x‖ ≤ ‖x‖2,

one can apply Theorem 2, and so there exists x∗ ∈ X such that x∗ = y + Φ(x∗),
as claimed. �

We conclude observing that, when Ψ : H → H is an affine operator, Theorem B
coincides substantially with Theorem A. In fact, we have the following result:

Theorem 4. Let H , {en}, and X be as in Theorem B, and let Ψ : H → H be a

linear operator such that, for each, the set

{x ∈ X : 〈x −Ψ(x), en〉 = 0}

is closed.

Then, Ψ is continuous.

Proof: First, observe that, if A ⊆ H is a linear subspace such that A ∩ X is
closed, then A is closed. Indeed, fix r > 0 so that {x ∈ H : ‖x‖ ≤ r} ⊆ X . Let
x ∈ A \ {0}, and let {xn} be any sequence in A \ {0} converging to x. Then, the

sequence
{

rxn

‖xn‖

}

lies in A ∩ X and converges to rx
‖x‖
. Since A ∩ X is closed, it

follows that rx
‖x‖

∈ A∩X , and so x ∈ A, as claimed. Consequently, by assumption,

for each n ∈ N, the hyperplane

{x ∈ H : 〈x − Ψ(x), en〉 = 0}

is closed, and hence the functional x → 〈x − Ψ(x), en〉 is continuous. Then, by
Osgood’s lemma, there is a non-empty open set Ω ⊂ H such that

sup
x∈Ω
sup
n∈N

n
∑

i=1

|〈x −Ψ(x), ei〉|
2 < +∞.

On the other hand, by Parseval’s identity, we have

sup
n∈N

n
∑

i=1

|〈x −Ψ(x), ei〉|
2 = ‖x −Ψ(x)‖2

and so
sup
x∈Ω

‖x −Ψ(x)‖ < +∞.

From this, of course, the continuity of Ψ follows. �
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