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Contractive projections and Seever’s

identity in complex f-algebras

Fatma Hadded

Abstract. In this paper we give necessary and sufficient conditions in order that a con-
tractive projection on a complex f -algebra satisfies Seever’s identity.

Keywords: vector lattice, σ-Dedekind complete vector lattice, Dedekind complete vector
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1. Introduction

Let T be a contractive projection on C0(X), where X is a locally compact
Hausdorff space. Seever [11] showed that if T is positive, then T satisfies the
Seever’s identity, that is,

(S) T (fTg) = T (TfTg) for all f, g ∈ C0(X).

Some years later, Wulbert [16] proved that if X is compact and if the range of T
has a weakly separating quotient, then (S) holds. After that, Huijsmans and de
Pagter [6] extended the aforementioned Seever’s result to the more general case of
semiprime f -algebras satisfying the Stone condition. Recently, Triki [12] improved
this result by showing that the same result holds true for arbitrary Archimedean
f -algebras without any extra conditions. In [4] Friedman and Russo found a
necessary and sufficient condition in order that a contractive projection on C0(X)
verifies the Seever’s identity. They proved, in the same paper, that Wulbert’s
condition (the range of T has a weakly separating quotient) and therefore the
condition that T is positive, is not necessary. They gave the following example:
Let A = C([−2,−1] ∪ [1, 2]) and let χ = χ[1,2]. Then T defined by Tf(x) =
χ(x) f(x)−χ(−x) f(−x)

2 is a contractive projection which verifies (S), but the range
R(T ) does not have a weakly separating quotient.

In the present work we shall consider complex f -algebras, with additional hy-
potheses, and we shall give necessary and sufficient condition in order that (S)
holds.
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2. Preliminaries

For terminology and elementary properties of vector lattices and f -algebras we
refer to the standard works [9], [10] and [15]. All vector lattices and lattice-ordered
algebras under consideration are supposed to be Archimedean. The topologies
considered on these spaces are the order topology (cf. [9, Sections 16 and 65]) and
the (relatively) uniform topology (cf. [9, Sections 16 and 63]).
The (real) algebra A is called a lattice-ordered algebra (briefly, ℓ-algebra) if A

is simultaneously a vector lattice such that the ordering and the multiplication
are compatible (i.e., f, g ∈ A+ implies fg ∈ A+). The ℓ-algebra A is called an
f -algebra whenever f ∧ g = 0 and 0 ≤ h ∈ A imply fh ∧ g = hf ∧ g = 0. Since
every Archimedean f -algebra is commutative, we deal only with commutative f -
algebras in this paper. The ℓ-algebra A is said to be semiprime if 0 is the only
nilpotent element of A. Every unital f -algebra is semiprime.
Let A and B be vector lattices. The operator π : A → B is called order

bounded if the image under π of an order bounded set is again an order bounded
set (notation π ∈ Lb(A, B)). The operator π : A → B is said to be positive if
π(A+) ⊂ B+.
Let A be a uniformly complete semiprime f -algebra. According to [2], for all

elements f = a + ib in the complexification AC = A + iA of A, the familiar
modulus

|f | = sup {a cos θ + b sin θ : 0 ≤ θ ≤ 2π}
is equal to

√
a2 + b2. This implies several properties of the complexification. We

list some of them:

(i) |fg| = |f ||g| for all f, g ∈ AC. In particular
∣∣∣fk

∣∣∣ = |f |k for all f ∈ AC

(k = 1, 2, . . . ).

(ii) AC is a “complex f -algebra”, that is, |f | ∧ |g| = 0 implies |hf | ∧ |g| =
|fh| ∧ |g| = 0 for all h ∈ AC.

(iii) |f | ∧ |g| = 0 if and only if fg = 0.

It is said that the sequence (fn, n = 1, 2, . . . ) in AC is order convergent to
the element f ∈ AC whenever there exists a sequence pn ↓ 0 in A such that
|fn − f | ≤ pn holds for all n. This will be denoted by fn → f .
If T is a linear operator on A, then T has a unique extension as a linear

operator on AC by defining

T (f + ig) = Tf + iT g

for all f and g in A. It follows that all the results proved in this paper hold true
for real operators. The linear operator T = T1+iT2 on AC is called order bounded
(notation T ∈ Lb(AC)) if T1, T2 ∈ Lb(A). An operator T ∈ Lb(AC) is said to
be order continuous (or σ-order continuous) whenever T1, T2 are so. For further
details on complex f -algebras we refer the reader to [2] and [15].
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Finally, we recall that a linear map T on a semiprime complex f -algebra AC is
said to be contractive if |f |2 ≤ |f | implies |T (f)|2 ≤ |T (f)|. Obviously, if A has
a unit element e, then T is contractive whenever |f | ≤ e implies |T (f)| ≤ e.

3. Seever’s identity in unital complex f-algebras

We begin this section by recalling the Seever’s identity. We say that a linear
operator T on a complex f -algebra AC satisfies the Seever’s identity (S), if

(S) T (fTg) = T (TfTg), for all f, g ∈ AC.

The main topic of this paper is the connection between contractive projections
and operators satisfying (S). Our first proposition in this context is the following.

Proposition 1. Let A be a unital f -algebra and T be an operator on AC satis-

fying (S). Then T 2 is a projection that verifies (S).

Proof: Let e denote the unit element of A and f, g ∈ AC. It follows from

T 3f = T (eT 2f) = T (TeTf) = T (eTf) = T 2f

that T 2 is projection.
On the other hand

T 2(T 2fT 2g) = T 2(TfT 2g) = T 2(fT 2g)

and thus T 2 satisfies the Seever’s identity. �

Remark 1. An operator T , which satisfies (S), needs not be a projection (al-
though T 2 is projection). Take, for instance, A = R

3 with the pointwise opera-
tions and T : A → A (x, y, z) 7−→ (0, x, z).

Let A be a σ-Dedekind complete f -algebra with unit element e and T be a
σ-order continuous contractive projection on AC. So, T (e) = a + ib for some
a, b ∈ A. We put

u = inf{
(
a+

)n
: n = 1, 2, . . . }

which exists in A because A is σ-Dedekind complete. This infimum satisfies the
following.

Lemma 1. (i) u is idempotent (i.e., u2 = u).
(ii) uTf ∈ A+ for all f ∈ A+.

Proof: (i) Since a+ ≤ |Te| ≤ e, it follows that the sequence ((a+)n, n = 1, 2, . . . )
is decreasing and then

u2 = inf{
(
a+

)2n
: n = 1, 2, . . .} = inf{

(
a+

)n
: n = 1, 2, . . .} = u
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where the first equality is obtained by using the fact that the multiplication by a
positive element in A is order continuous.

(ii) We prove first that u = uTe. To this end, denote by Bu the band generated

by u in A. Since A = Bu + Bd
u (recall that A is σ-Dedekind complete and

therefore it verifies the principal projection property [9, Theorem 25.1]), there

exist a1, b1 ∈ Bu and a2, b2 ∈ Bd
u such that a = a1+a2 and b = b1+ b2. It follows

from |a1 + ib1| ∧ |a2 + ib2| = 0 that

|Te| = |(a1 + a2) + i (b1 + b2)| = |a1 + ib1|+ |a
2
+ ib

2
| .

Hence
a21 + b21 = |a1 + ib1|2 ≤ |Te|2 ≤ e.

So
(ua1)

2 + (ub1)
2 ≤ u.

Moreover
ua = u (a1 + a2) = ua1 and ub = u (b1 + b2) = ub1,

then
(ua)2 + (ub)2 ≤ u.

Observe that au = (a+ − a−)u = u. This together with the last inequality yields
(ub)2 = 0 and so ub = 0, as A is semiprime. Thus u = uTe, as required. Now, we

define T̃ : AC → (Bu)C by putting T̃ f = uTf for all f ∈ AC. Obviously, T̃ is an
order bounded contractive operator mapping e, the unit element of A, onto u the

unit element of Bu. Hence, according to [13, Proposition 4.1], T̃ is positive. This
implies the desired result. �

Lemma 2. Let A be a σ-Dedekind complete f -algebra with unit element e and
let T be a σ-order continuous contractive projection on AC. If T satisfies Seever’s
identity and if we put Te = a+ ib (a, b ∈ A), then

(i) T (bn) = 0 for all n ∈ {1, 2, . . .};
(ii) T (ambn) = 0 for all n, m ∈ N such that n ≥ 1;
(iii) Te = T (an) for all n ∈ N.

Proof: First, we note that since T is a projection, by setting g = e in the Seever’s
identity, we get

Tf = T (eTf) = T (fTe)

for all f ∈ AC. It follows that

(1) Tf = T (f(Te)n)

for all f ∈ AC and all n ∈ N.
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(i) The proof is by induction on n. Since A is an f -algebra, we have

(2)
∣∣∣(Te)n(e − |Te|2)

∣∣∣ =
∣∣∣|Te|n − |Te|n+2

∣∣∣ .

The sequence (|Te|n)n∈N is order convergent in A, because A is σ -Dedekind
complete and |Te| ≤ e. Then it follows from (2) that

(Te)n (e − |Te|2) −→ 0.

Hence the σ-order continuity of T implies that

T ((Te)n (e − |Te|2))→ 0.

Therefore (1) implies that T (e−|Te|2) = 0. Consequently, again by using (1) (for
n = 1) we get

Te = T (Te)

and so Tb = 0. This shows that (i) holds for n = 1. Assume now that
T (bn) = 0 (for every operator satisfying the hypothesis of this lemma) and prove

that T (bn+1) = 0. To this end, define the mapping T̃ : AC → AC by T̃ (f) =

T (Tef) for all f ∈ AC. It is straightforward to show that T̃ is a σ-order continu-

ous contractive projection satisfying Seever’s identity and T̃ (e) = Te = a+ ib. It

follows that T̃ (bn) = 0 and therefore

(3) T (abn)− iT (bn+1) = 0.

On the other hand, it follows from T (bn) = 0 and

T (bn) = T (bnTe) = T (bn(a+ ib))

that

(4) T (abn) + iT (bn+1) = 0.

Combining (3) and (4), we infer that T (bn+1) = 0, which finishes the induction
step.

(ii) We proceed again by induction. Since T (bn) = T (abn) + iT (bn+1) for all
n ∈ N, by (i) we get T (abn) = 0 for all n ∈ {1, 2, . . .}. Now let m ∈ N and assume
that T (ambn) = 0 for all n ∈ {1, 2, . . .}. We shall prove that T (am+1bn) = 0 for
all n ∈ {1, 2, . . .}. We have

T (ambn) = T (ambnTe) = T (ambn(a+ ib))

= T
(
am+1bn

)
+ iT

(
ambn+1).
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This implies the desired result.

(iii) It follows from (i) that T (e) = T (a). Using (ii), we deduce that

T (a) = T (a(Te)n) = T
(
a

n∑

k=0

ak(ib)n−k
)
= T

(
an+1)

for all n ∈ N. This completes the proof. �

For the sake of simplicity, we introduce the following definition that will be
used for later purposes.

Definition 1. Let A be an f -algebra and T a projection on AC. We say that T
is almost positive if there exists an order projection πT on AC such that

T (πT Tf) = Tf for all f ∈ AC

and

πT Tf ∈ A+ for all f ∈ A+.

In this case, we say that T is an almost positive projection with an order
projection πT .

Of course, a positive projection is almost positive.
The proposition below gives another characterization of almost positive pro-

jections. Its proof is easy and consequently omitted.

Proposition 2. Let A be an f -algebra and let T be a projection on AC. Then T
is almost positive if and only if T can be written in the form T = T1+ T2, where

(i) T1 is a positive projection given by T1 = πT , where π is an order projec-
tion;

(ii) T2 is a linear operator on AC such that T1T2 = 0 and T 22 = 0.

The following result shows that an almost positive projection T is uniquely
determined by its range R(T ) and the positive projection T1 = πT T .

Proposition 3. Let A be an f -algebra and let T , T ′ be almost positive projec-

tions on AC with order projections πT and πT ′ respectively. If R(T ) = R
(
T ′

)

and if πT , πT ′ satisfy πT T = πT ′T ′, then T = T ′.

Proof: We have

T = TπT T = TπT ′T ′ = T (T ′ − (I−πT ′)T ′),

where I is the identity mapping. From R(T ) = R
(
T ′

)
, it follows that TT ′ = T ′.

Hence

(1) T = T ′ − T (I−πT ′)T ′
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multiplying by (I−πT ′)T ′, we get

T (I−πT ′)T ′ = T ′(I−πT ′)T ′ − T (I−πT ′)T ′(I−πT ′)T ′

= 0.

Thus (1) implies that T = T ′. �

Remark 2. Recall that if A is a unital f -algebra, then order projections on AC

are multiplications by idempotent elements in A. Thus a projection T on AC is
almost positive if and only if there exists u ∈ A such that u2 = u, T (uTf) = Tf
for all f ∈ AC and uTf ∈ A+ for all f ∈ A+.

We are now in a position to prove the main result of this section.

Theorem 1. Let A be a σ-Dedekind complete f -algebra, with unit element and
let T be a σ-order continuous contractive projection on AC. Then T satisfies the
Seever’s identity if and only if T is almost positive.

Proof: Suppose that T verifies the Seever’s identity (S) and let e denote the
unit element of A. Put Te = a+ ib (a, b ∈ A). By Lemma 1, u = inf{(a+)n : n =
1, 2, . . . } verifies u2 = u and uTf ∈ A+ for all f ∈ A+. We claim that Tu = Te.
Indeed, since A is σ-Dedekind complete and a− ≤ e, there exists v ∈ A+ such
that

(
a−

)n ↓ v. Consequently

a2n =
(
a+

)2n
+

(
a−

)2n → u+ v

and
a2n+1 =

(
a+

)2n+1 −
(
a−

)2n+1 → u − v.

Thus the σ-order continuity of T together with (iii) of Lemma 2 imply Tv = 0
and so Tu = Te. Hence Tf = T (T (u)f) = T (uTf). So by Remark 2, T is almost
positive.

Conversely, we consider the operator T̃ : AC → AC defined by T̃ f = uTf for

all f ∈ AC. Then the hypothesis imply that T̃ is a positive contractive projection.

Thus by [12, Theorem 3.4] Seever’s identity holds for T̃ . Therefore

T̃ (fT̃ g) = T̃ (T̃ ef T̃ g) = T̃ (u2TefTg)

= T̃ (uTefTg) = T̃ (T̃ efT g)

= T̃ (fTg) = uT (fTg)

for all f, g ∈ AC.
Similarly,

T̃ (T̃ f T̃ g) = uT (TfTg).
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Then the identity (S) for T̃ yields

uT (fTg) = uT (TfTg).

Applying T and using the hypothesis, we get

T (fTg) = T (TfTg)

and we are done. �

The assumption that T is σ-order continuous in the above theorem cannot be
dropped as it is shown in the next example.

Example 1. Let A be the Dedekind completion of C([−1, 1]). Then there exists
a one-one lattice homomorphism ϕ : A → R

[−1,1] such that ϕ preserves the unit
element of A (see [15, Theorem 83.18] and its proof). In view of [7, Corollary 5.5],
ϕ is an algebra homomorphism and consequently A can be embedded as a sub-

f -algebra in R
[−1,1]. Let T : A → A be the operator defined by Tf = f(1)g1 −

f(−1)g2, where g1 and g2 are given respectively by:

g1(x) =

{
0 for − 1 ≤ x ≤ 1/3
3

2
x − 1
2

for 1/3 ≤ x ≤ 1

and

g2(x) =






4

3
x+
1

3
for − 1 ≤ x ≤ 0

−1
3

x+
1

3
for 0 ≤ x ≤ 1.

It is an easy task to verify that T is a contractive projection satisfying the Seever’s
identity. Assume that there exists u ∈ A such that u2 = u, uTf ∈ A+, for all
f ∈ A+, and T (uTf) = Tf for all f ∈ A. Put u = χS , S ⊂ [−1, 1]. Let n ∈ N

and consider fn the positive function in A defined by:

fn(x) =

{
n2x2 for − 1 ≤ x ≤ 0
nx for 0 ≤ x ≤ 1.

Then the inequality χSTfn ≥ 0 implies χS(x)g1(x) ≥ nχS(x)g2(x), for all x ∈
[−1, 1]. This being true for all n ∈ N, the Archimedean property yields S ⊂ [−1, 0[
∪ {1}, as g2(x) > 0 for all x ∈ [0, 1[ . Hence we deduce from the equality

χS = sup{f ∈ C[−1, 1] 0 ≤ f ≤ χS}

that χS(1) = 0. Therefore

f(1) = T (f)(1) = T (χSTf)(1) = 0

for all f ∈ A, which is wrong.
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4. Seever’s identity for nonunital complex f-algebras

In this section we give a nonunital version of Theorem 1. To this end, we make
some preparations. First we recall some definitions and properties of orthomor-
phisms.
Let A be a vector lattice. The order bounded operator π : A −→ A is called

orthomorphism if |f | ∧ |g| = 0 implies |π(f)| ∧ |g| = 0. The collection Orth(A) of
all orthomorphisms on A is an Archimedean f -algebra with respect to the usual
vector spaces operations and composition as multiplication. Besides, the identity
mapping I on A is the unit element of Orth(A). The principal order ideal in
Orth(A) generated by the identity mapping I is called the center of A and is
denoted by Z(A). If A is Dedekind complete then Orth(A) and Z(A) are likewise
Dedekind complete. If A is a semiprime f -algebra, then the mapping ρ defined
from A into Orth(A) by ρ(f) = πf , where πf (g) = fg for all g ∈ A, is an injective
f -algebra homomorphism. Throughout this section a semiprime f -algebra A will
be identified with ρ(A). If T is a linear operator on a semiprime complex f -
algebra, then T is contractive if and only if |T (f)| ≤ I whenever |f | ≤ I. We
shall denote by Ab the subalgebra of all bounded elements in A, i.e., Ab = {f ∈
A, |f | ≤ α I;α ∈ R

+}. More details about orthomorphisms can be found in [15].
Now recall that a vector sublattice F of a vector lattice E is order dense if

x = sup{y : 0 ≤ y ≤ x, y ∈ F} for every x ∈ E+ (cf. [3, Section 14]). It follows
from [8, Proposition 2.1] that Ab is order dense in Z(A).
To prove the first proposition in this section, we need the following result for

the proof of which we refer to [3, Theorem 17.B].

Theorem 2. Let E and G be vector lattices and F an order dense vector sub-
lattice of E. Suppose that T : F → G is a positive order continuous linear map
such that

T̃ x = sup {Ty : y ∈ F, 0 ≤ y ≤ x}

exists in G for every x ∈ E+. Then T has a unique extension to a positive order
continuous linear map from E to G.

Proposition 4. Let A be a semiprime Dedekind complete f -algebra and let
T : AC −→ AC be an order continuous contractive operator. Then there exists

an order continuous contractive operator T̃ : (Z(A))C −→ (Z(A))C such that

T̃ f = Tf for all f ∈ (Ab)C.

Proof: First, consider the case that T is positive. Let Tb denote the restriction
of T to Ab, Tb : Ab → Z(A)f 7−→ Tf . Since Z(A) is Dedekind complete and T is
contractive,

sup {Tf : f ∈ A, 0 ≤ f ≤ π}

exists in Z(A) for every π ∈ Z(A)+. Moreover Ab is order dense in Z(A). Then,
by Theorem 2, Tb extends to an order continuous operator from Z(A) into Z(A).
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There exists, therefore, an order continuous operator T̃ from (Z(A))C into (Z(A))C
such that T̃ f = Tf for all f ∈ (Ab)C. Now consider the case where T is arbitrary.
Then

T = T1 + iT2 = (T
+
1 − T−

1 ) + i(T+2 − T−

2 )

where T+i , T
−

i (i ∈ {1, 2}) are positive contractive and order continuous operators.
Therefore applying the above result for each of T+i and T−

i , we prove the existence

of an order continuous operator T̃ : (Z(A))C→(Z(A))C such that T̃ f = Tf for

all f ∈ (Ab)C. It remains to show that T̃ is contractive. Let π ∈ (Z(A))C such
that |π| ≤ I. It follows from the order density of Ab in Z(A) that there exists a
directed system {aj j ∈ J} in A+ for which 0 ≤ aj ↑ I. Then

∣∣πaj − π
∣∣ ↓ 0 and∣∣πaj

∣∣ ≤ I. Hence the order continuity of T̃ together with the contractivity of T

imply that
∣∣∣T̃ π

∣∣∣ ≤ I and so T̃ is contractive. �

We are now in a position to prove our main result.

Theorem 3. Let A be a semiprime Dedekind complete f -algebra and let T be
an order continuous contractive projection on AC. Then T satisfies the Seever’s
identity if and only if T is almost positive.

Proof: First, suppose that T satisfies Seever’s identity. By Proposition 4 there

exists an order continuous contractive operator T̃ : (Z(A))C→(Z(A))C such that
T̃ f = Tf for all f ∈ (Ab)C. It follows from the order density of Ab in Z(A)

and the order continuity of T̃ that T̃ is a projection satisfying Seever’s identity.

Therefore by Theorem 1 (applied to the pair (Z(A), T̃ )), there exists π ∈ Z(A)
such that π2 = π, πT̃ f ∈ Z(A)+ for all f ∈ Z(A)+ and T̃ (πT̃ f) = T̃ f for all
f ∈ (Z(A))

C
. Then using the order density of Ab in A and the order continuity

of T , we get the desired result.
The proof of the “only if” part follows the same lines as the proof of the “if”

part and therefore is omitted. �

5. The case where A has a point separating order dual

Throughout this section A′ will denote the order dual of A. Recall that if
A is an f -algebra with point separating order dual, then a multiplication can be
introduced in the complexfication of the order bidual A′′ of A (the so called Arens
multiplication). Which is accomplished in three steps: Given x, y ∈ A, f ∈ A′

and F, G ∈ A′′, we define f · x ∈ A′, G · f ∈ A′ and F · G ∈ A′′ by the equations

(f · x)(y) = f(xy)(1)

(G · f)(x) = G(f · x)(2)

(F · G)(f) = F (G · f).(3)
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Then A′′ is a Dedekind complete f -algebra with respect to this multiplication
(see [5, Theorem 2.8]). The band of all order continuous linear functionals on
A′ (denoted by (A′)′n) is also a Dedekind complete f -algebra ([8, Theorem 4.4]).
From now on, A denotes an f -algebra with point separating order dual A′.
Let the map σ : A → A′′ denote the canonical evaluation map, that is,

σ(g)(µ) = µ(g) where µ ∈ A′. Then σ is an injective algebra homomorphism.
The extension of σ as a linear operator from AC into A′′

C
is also denoted by σ.

We have σ(AC) ⊂ ((A′)′n)C. If T = T1+ iT2 is an order bounded operator on AC,
then the biadjoint T ′′ (T ′′ = T ′′

1 + iT ′′

2 ) verifies T ′′ ◦σ = σ ◦T . Moreover T ′′ maps
((A′)′n)C into itself. The restriction of T

′′ to ((A′)′n)C is also denoted by T ′′.

Proposition 5. The operator T satisfies the Seever’s identity if and only if T ′′

does.

Proof: Suppose that T verifies (S) and let F, G ∈ A′′

C
(or ((A′)′n)C). Then

(1) T ′′(F · T ′′G)(f) = F (T ′′G · T ′f) for all f ∈ A′

C
.

(2) (T ′′G · T ′f)(a) = G(T ′(T ′f · a)) for all a ∈ AC

T ′(T ′f · a)(b) = (T ′f · a)(Tb) = f(T (aT b))

= f(T (TaT b)) = T ′(T ′f · Ta)(b)

for all b ∈ AC. This implies that T ′(T ′f · a) = T ′(T ′f · Ta).
Then (2) implies that

(T ′′G · T ′f)(a) = G(T ′(T ′f · Ta)) = (T ′′G · T ′f)(Ta)

= T ′(T ′′G · T ′f)(a).

for all a ∈ AC. Consequently

T ′′G · T ′f = T ′(T ′′G · T ′f).

Combining this with (1) we get

T ′′(F · T ′′G)(f) = F (T ′(T ′′G · T ′f)) = T ′′F (T ′′G · T ′f)

= T ′′(T ′′F · T ′′G)(f)

for all f ∈ A′

C
. Thus

T ′′(F · T ′′G) = T ′′(T ′′F · T ′′G)
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and we are done.
Conversely, suppose that T ′′ satisfies the identity (S). Then

σ(T (fTg)) = T ′′(σ(f) · T ′′(σ(g)))

= T ′′(T ′′(σ(f)) · T ′′(σ(g)))

= T ′′(σ(TfTg)) = σ(T (TfTg))

for all f, g ∈ AC, where we use that σ ◦ T = T ′′ ◦ σ. Since σ is injective, we infer
that T (fTg) = T (TfTg), which completes the proof. �

Recall that an upward directed net {aj j ∈ J} is said to be a weak approximate
unit if

f(b) = sup{f(ajb) : j ∈ J}

for all b ∈ A+ and all f ∈ (A′)+ (cf. [8, Definition 7.1]). If A is a semiprime
f -algebra, such that A has a weak approximate unit, then (A′)′n is semiprime
([14, Theorem 4.3]). We recall also that if T : AC −→ AC is order bounded, then
T ′′ : ((A′)′n)C −→ ((A′)′n)C is order continuous (see [15, Section 97]).
Now combining Proposition 5 and Theorem 3, we get the following theorem.

Theorem 4. Let A be a semiprime f -algebra with point separating order dual,
and such thatA has a weak approximate unit. Suppose that T is an order bounded
contractive projection on AC. Then T satisfies the Seever’s identity if and only if
the restriction of T ′′ to ((A′)′n)C is almost positive.

Let A = C0(X) be the collection of all continuous functions on a locally com-
pact Hausdorff spaceX with values in a field F which is either the real or complex
numbers and let T be a contractive projection on A. In the proof of [4, Theorem 1]
Friedman and Russo have defined an order projection M on A′′, which verifies
T ′′MT ′′ = T ′′. In the same paper they proved that T satisfies the Seever’s iden-
tity (S) if and only if MT ′′ is positive (see [4, Theorem 3]). Thus the authors
proved that if T verifies (S), then T ′′ is almost positive. Since A = C0(X) sat-
isfies the hypothesis of Theorem 4 and A′′ = (A′)′n, we can see clearly that the
aforementioned Friedman and Russo’s result is a consequence of Theorem 4.
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