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Notes on cfp-covers

Shou Lin, Pengfei Yan

Abstract. The main purpose of this paper is to establish general conditions under which
T2-spaces are compact-covering images of metric spaces by using the concept of cfp-
covers. We generalize a series of results on compact-covering open images and sequence-
covering quotient images of metric spaces, and correct some mapping characterizations
of g-metrizable spaces by compact-covering σ-maps and mssc-maps.

Keywords: cfp-covers, compact-covering maps, metrizable spaces, g-metrizable spaces,
σ-maps, mssc-maps

Classification: 54E40, 54E18, 54C10

In 1964, E. Michael introduced the concept of compact-covering maps. Let
f : X → Y . f is called a compact-covering map, if every compact subset of Y is
the image of some compact subset of X under f . Because many important kinds
of maps are compact-covering maps, such as closed maps on paracompact spaces,
many topologists have aimed to seek the characterizations of certain compact-
covering images of metric spaces since the seventies last century. E. Michael,
K. Nagami, Y. Tanaka and some Chinese topologists have obtained the charac-
terizations of images of metric spaces under the following maps: compact-covering
and open maps, compact-covering and open s-maps, sequence-covering (quotient)
s-maps, compact-covering (quotient) s-maps, compact-covering (quotient) com-
pact maps. The key to prove these results is to construct compact-covering maps
on metric spaces, but there is no method to unify these proofs. The purpose
of this paper is to develop the concept of cfp-covers, and give some consistent
methods to construct compact-covering maps.
We assume that all spaces are T2, and maps are continuous and onto.

1. Compact-covering images of metric spaces

In 1960, V. Ponomarev proved that every first-countable space is an open image
of some Baire zero-dimension metric space (Proposition 2.4.4 in [10]). Now, we
generalize the Ponomarev’s method. Let P be a network of X , P = {Pα}α∈Λ, let
Λ be endowed with discrete topology and M = {α = (αi) ∈ Λ

ω : {Pαi
}i∈N forms

a network at some point xα in X}, then M is a metric space, and xα is unique
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for each α ∈ M . Define f : M → X by f(α) = xα. Then (f, M, X,P) is called
a Ponomarev’s system. The following lemma can be easily obtained by using the
Ponomarev’s method (Proposition 2.4.3 in [10]).

Lemma 1 ([14]). Let (f, M, X,P) be a Ponomarev’s system.

(1) f is a map if there exists a countable subset of P which forms a network
at x for every x ∈ X .

(2) f is an open map if P is a countable local base of X .
(3) For every non-empty subset C of X , f−1(C) is a separable subspace of

M if C meets only with countably many elements of P . �

To ensure that f in the Ponomarev’s system is a compact-covering map, P
must have some properties. Recall the concept of cfp-covers ([20]). Let K be a
subset of X . F is called a cfp-cover (i.e., compact-finite-partition-cover) of K, if
F is a cover of K in X such that it can be precisely refined by some finite cover
of K consisting of compact subsets of K.
Let P be a collection of subsets of X , and K be a subset of X . We say that

P has the cc-property on K, if whenever C is a non-empty compact subset of K,
and V a neighborhood of C in X , then there exists a subset F of P such that F
is a cfp-cover of C and

⋃
F ⊂ V .

The cc-property is related to the concept of strong k-networks posed by Chuan
Liu and Mumin Dai ([11]).

Theorem 2. Let (f, M, X,P) be a Ponomarev’s system. If K is a non-empty
compact subset of X such that some countable subset P(K) of P has the cc-
property on K, then there exists a compact subset L of M satisfying f(L) = K.

Proof: Let P = {Pα}α∈Λ, and K be a non-empty compact subset of X . P(K)
is countable, hence there are only countably many cfp-covers of K by elements of
P(K). Let {Pi} enumerate these cfp-covers and Pi = {Pα}α∈Γi

. Then Pi can be
precisely refined by some finite cover Fi = {Fα}α∈Γi

of K consisting of compact
subset of K with each Fα ⊂ Pα.
Let L = {(αi) ∈

∏
i∈N
Γi :

⋂
i∈N

Fαi
6= ∅}. Then

(2.1) L is a closed subset of the compact set
∏

i∈N
Γi, so L is a compact subset

of Λω. Put α = (αi) ∈
∏

i∈N
Γi − L. Then

⋂
i∈N

Fαi
= ∅. From the compactness

of K, there exists i0 ∈ N such that
⋂

i≤i0
Fαi
= ∅. Let W = {(βi) ∈

∏
i∈N
Γi :

βi = αi for each i ≤ i0}. Then W is an open subset of
∏

i∈N
Γi such that α ∈ W

and W ∩ L = ∅. Therefore, L is a closed subset of
∏

i∈N
Γi.

(2.2) L ⊂ M and f(L) ⊂ K. Let α = (αi) ∈ L, then
⋂

i∈N
Fαi

6= ∅. Pick
x ∈

⋂
i∈N

Fαi
. Then it will suffice to show that {Pαi

}i∈N is a network of x in X .
In this case, α ∈ M and f(α) = x ∈ K, so L ⊂ M and f(L) ⊂ K.
Let V be a neighborhood of x in X . Since K is a regular subspace of X , there

exists an open neighborhood W of x in K such that W = clK(W ) ⊂ V . Now W
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is a compact subset of K and P(K) has the cc-property on K, so there exists a
finite collection P ′ of P(K) such that P ′ is a cfp-cover of W and

⋃
P ′ ⊂ V . On

the other hand, K −W is a compact subset of K satisfying K −W ⊂ X −{x}, so
there exists a finite collection P ′′ of P(K) such that P ′′ is a cfp-cover of K −W
and

⋃
P ′′ ⊂ X − {x}. Put P∗ = P ′ ∪ P ′′. Then P∗ is a cfp-cover of K, so

Pk = P∗ for some k ∈ N. But x ∈ Fαk
⊂ Pαk

∈ Pk, thus Pαk
∈ P ′ and Pαk

⊂ V .
Hence {Pαi

}i∈N is a network of x in X .

(2.3) K ⊂ f(L). Let x ∈ K. For each i ∈ N, pick αi ∈ Γi such that x ∈ Fαi
. Put

α = (αi). Then α ∈ L and f(α) = x by the proof of (2.2). So K ⊂ f(L).

In words, L is a compact subset of M such that f(L) = K. �

The cc-property provides that the compact subset K of X is the image of
some compact subset of a metric space. “cc” means an abbreviation of “compact-
covering”. Next, we shall give some corollaries of Theorem 2.
The first corollary is an inner characterization of compact-covering and open

images of metric spaces obtained by E. Michael and K. Nagami in 1973. Recall the
concept of outer bases ([14]). A collection B of open subsets of a space X is called
an outer base of a subset A in X , if there exists Bx ∈ B such that x ∈ Bx ⊂ U
for every x ∈ A and an open neighborhood U of x in X . Michael and Nagami
proved the following property of outer bases.

Lemma 3 ([14]). Let K be a compact and metrizable subset of a space X . If
K has a countable neighborhood base in X , then there exists a countable outer
base of K in X . �

Lemma 4. Let K be a subset of X . If B is an outer base of K, then B has the
cc-property on K.

Proof: Let C be a compact subset of K and V a neighborhood of C in X . For
each x ∈ C, there exists Bx ∈ B such that x ∈ Bx ⊂ V . From the regularity of
C, we can choose a relatively open set Vx of C such that x ∈ Vx ⊂ V x ⊂ Bx.
{Vx}x∈C is a relatively open cover of C, thus it has a finite subcover {Vxi

}i≤n.

Hence, C =
⋃

i≤n V xi
⊂

⋃
i≤n Bxi

⊂ V , and {V xi
}i≤n is a precise refinement of

{Bxi
}i≤n. This implies that B has the cc-property on K. �

Corollary 5 ([14]). A space X is a compact-covering and open image of a metric
space if and only if every compact subset of X is a metrizable subspace and has
a countable neighborhood base in X .

Proof: Let f : M → X be a compact-covering and open map, where M is
a metric space. Suppose K is a compact subset of X . Then there exists a
compact subset L of M such that f(L) = K. Since L is a compact subset of M ,
f |L : L → M is a perfect map, whereas metrizability is persevered by perfect
maps (Theorem 2.2.1 in [10]), so K is a metrizable space. On the other hand,
from the metrizability ofM , L has a countable neighborhood base {Vn}n∈N

inM ,
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and f is an open map, thus {f(Vn)}n∈N
is a countable neighborhood base of K

in X .
Conversely, suppose every compact subset of X is metrizable and has a count-

able neighborhood base. For each compact subset K of X , in view of Lemma 3,
K has a countable outer base U(K) in X . U(K) has the cc-property on K by
Lemma 4. U =

⋃
{U(K) : K is a compact subset of X} is a countable local base

of X . Let (f, M, X,U) be a Ponomarev’s system. Then f is a compact-covering
and open map by Lemma 1 and Theorem 2. So X is a compact-covering and open
image of a metric space. �

The second corollary concludes inner characterizations of compact-covering s-
images of metric spaces given by Pengfei Yan and Shou Lin in 1999 and compact-
covering open s-images of metric spaces given by E. Michael and K. Nagami in
1973. Recall the concept of cfp-networks ([19]). Let P be a cover of a space X .
P is called a cfp-network of X , if for every compact subset K of X and a neigh-
borhood V of K in X there exists F ⊂ P such that F is a cfp-cover of K and⋃
F ⊂ V . Obviously, cfp-networks are related to k-networks introduced by
P. O’Meara in 1971. Let P be a collection of subsets of X . P is called a k-
network, if for every compact subset K and a neighborhood V of K in X there
exists a finite subset F of P such that K ⊂

⋃
F ⊂ V . It is easy to see that every

k-network consisting of closed sets is a cfp-network, and every cfp-network is a
k-network.

Lemma 6. Every base of a space X is a cfp-network of X .

Proof: Let B be a base of X . For each compact subset K of X and a neigh-
borhood V of K in X , since B is an outer base of K, by Lemma 4, there exists
a finite subset F of B such that F is a cfp-cover of K and

⋃
F ⊂ V . So B is a

cfp-network of X . �

Certain point-countable covers can be used to characterize various s-images of
metric spaces. The following cfp-property of point-countable collections is similar
to the famous Mǐsčenko’s lemma. For every subset A of X , F is called a minimal
cfp-cover of A, if F is a cfp-cover of A, and F − {F} is not a cfp-cover of A for
every F ∈ F .

Lemma 7 ([19]). Suppose P is a point-countable collection of subsets of a
space X . Then every compact subset of X has only countably many minimal
cfp-covers by elements of P . �

Corollary 8 ([19]). A space X is a compact-covering s-image of a metric space
if and only if X has a point-countable cfp-network.

Proof: Necessity. Suppose X is a compact-covering s-image of a metric space
M . M is a metrizable space, thus M has a σ-locally finite base P . By Lemma 6,
P is a cfp-network of M . Since cfp-networks are preserved by compact-covering
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maps, f(P) is a cfp-network of X . f is an s-map, so f(P) is a point-countable
collection. Hence f(P) is a point-countable cfp-network of X .

Sufficiency. Suppose X has a point-countable cfp-network P and let (f, M, X,P)
be a Ponomarev’s system. Then f : M → X is an s-map by Lemma 1. In view
of Theorem 2, to prove that f is a compact-covering map, it will suffice to show
that there exists a countable subset P(K) of P with cc-property on K for every
compact subset K of X .
By Lemma 7, if {Pi}i∈N

is a collection of minimal cfp-covers of K by elements
of P , then P(K) =

⋃
i∈N

Pi is countable and has the cc-property on K. In fact,
for each non-empty compact subset C of K and a neighborhood V of C in X ,
since K is a compact subset of X , K is a normal subset of X , so there exists an
open neighborhoodW of C in K such thatW ⊂ V . P is a cfp-network of X , thus
there is a finite subset P ′ of P such that P ′ is a cfp-cover of W and

⋃
P ′ ⊂ V .

On the other hand, K −W ⊂ X −C, so we can pick a finite subset P ′′ of P such
that P ′′ is a cfp-cover of K − W and

⋃
P ′′ ⊂ X − C. Let P∗ = P ′ ∪ P ′′. Then

P∗ is a cfp-cover of K and Pk ⊂ P∗ for some k ∈ N. Suppose Pk = {Pα}α∈Γ is
precisely refined by the finite cover {Kα}α∈Γ of K consisting of compact subsets
of K and put F = {Pα ∈ Pk : Kα ∩ C 6= ∅}. Then F is a cfp-cover of C such
that

⋃
F ⊂ V . Hence P(K) has the cc-property on K.

Summarizing, f is a compact-covering s-map. �

Corollary 9 ([14]). A space X is a compact-covering and open s-image of a
metric space if and only if X has a point-countable base.

Proof: It is easy to show that open s-images of metric spaces have point-
countable bases. Let B be a point-countable base of X and (f, M, X,B) be a
Ponomarev’s system. In view of Lemma 1, f is an open s-map. f is a compact-
covering map by Lemma 6 and Corollary 8. �

The third corollary is the inner characterization of sequence-covering and quo-
tient s-images of metric spaces proved by Y. Tanaka in 1987. Recall the concepts
of sequence-covering maps and cs∗-networks. A map f : X → Y is called a
sequence-covering map ([6]), if each convergent sequence of Y is the image of
some compact subset of X under f . A collection P of subsets of X is called a
cs∗-network ([5]), if whenever {xn} is a sequence converging to a point x ∈ U
with U open in X , then {x}∪{xni

: i ∈ N} ⊂ P ⊂ U for some subsequence {xni
}

of {xn} and some P ∈ P .
Obviously, every cfp-network of X is a cs∗-network of X .

Lemma 10. Let P be a point-countable cs∗-network, and K be a convergent

sequence (including its limit). Then there is a countable subset P(K) of P with
the cc-property on K.

Proof: Let P(K) = {P ∈ P : P ∩ K 6= ∅}. Since P is point-countable, P(K) is
a countable subset of P . Suppose C is a non-empty compact subset of K and V is
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a neighborhood of C in X . If C is a finite set, because X is a T2-space and P is a
network of X , there is a finite subset F of P such that the intersection of C with
elements of F includes only one point and C ⊂

⋃
F ⊂ V . So F is a cfp-cover

of C and
⋃
F ⊂ V . Suppose C is an infinite set, put C = {x} ∪ {xn : n ∈ N},

where {xn} converges to x, and P ′ = {P ∈ P : x ∈ P ⊂ V } = {Pi}i∈N. We
shall show that there exists a k0 ∈ N such that xn ∈

⋃
i≤k0

Pi for all but finitely

many n ∈ N. If not, we can pick a subsequence {xnk
} of {xn} such that each

xnk
∈ X −

⋃
i≤k Pi. So each Pi only includes finitely many elements of {xnk

}.
But P is a cs∗-network of X , hence there is a P ∈ P such that P ⊂ V and some
subsequence of {xnk

} is included in P , thus P = Pm for some m ∈ N. Hence Pm

includes infinitely many elements of {xnk
}, a contradiction.

So C −
⋃

i≤k0
Pi is a finite set and C ∩ Pi is a non-empty closed set. Without

losing generality, we can assume that C −
⋃

i≤k0
Pi is non-empty. Then there is a

finite subset P ′ of P such that P ′ is a cfp-cover of C −
⋃

i≤k0
Pi,

⋃
P ′ ⊂ V and

every element of P ′ meets with C. Let F = {Pi}i≤k0
∪P ′. Then F is a cfp-cover

of C and
⋃
F ⊂ V , so P(K) has the cc-property on K. �

Corollary 11 ([6], [17]). The following are equivalent for a space X :

(1) X is a quotient s-image of a metric space;
(2) X is a sequence-covering and quotient s-image of a metric space;
(3) X is a sequential space with a point-countable cs∗-network.

Proof: (1) ⇒ (3). Let f : M → X be a quotient s-map, where M is a metric
space. Suppose B is a σ-locally finite base of M , P = f(B). Since f is a quotient
s-map and sequentiality of spaces is preserved by quotient maps, X is a sequential
space and P is a point-countable cs∗-network of X .
(3)⇒(2). Suppose P is a point-countable cs∗-network ofX and let (f, M, X,P)

be a Ponomarev’s system. In view of Lemma 1, f : M → X is an s-map. f is a
sequence-covering map by Lemma 10 and Theorem 2. X is a sequential space, so
the sequence-covering map f is a quotient map.
(2)⇒ (1). It is trivial. �

2. The characterizations of g-metrizable spaces

Recall the definition of g-metrizable spaces. A collection P =
⋃

x∈X Px of
subsets of a space X is called a weak base of X , if P satisfies that (1) Px is
a network of x in X ; (2) For each U, V ∈ Px, there exists W ∈ Px such that
W ⊂ U ∩ V ; (3) G ⊂ X is open iff for each x ∈ G, there exists P ∈ Px such that
P ⊂ G.

Px is called a weak neighborhood base of x in X . X is gf -countable if X has
a weak base

⋃
x∈X Px, where each Px is countable. Also, X is g-metrizable if X

is a regular space with a σ-locally finite weak base.
Obviously, every metric space is g-metrizable. L. Foged obtained the following

theorem for g-metrizable spaces.



Notes on cfp-covers 301

Lemma 12 ([3], [4]). The following are equivalent for a regular space X :

(1) X is a g-metrizable space;
(2) X has a σ-discrete weak base;
(3) X is a gf -countable space with a σ-locally finite k-network. �

By Corollary 3.8.6 in [10], g-metrizable spaces are quotient and compact images
of metric spaces, but the converse is not true (see Example 15). To find out a
suitable map to characterize g-metrizable spaces, we need the concept of σ-maps
([8]). Let f : X → Y . f is called a σ-map, if there exists a base B of X such
that f(B) is a σ-locally finite collection in Y . Every map defined on a separable
metric space is a σ-map. In this section, we shall show that a regular space is g-
metrizable iff it is a compact-covering, quotient, compact and σ-image of a metric
space.
We extend the Ponomarev’s system to cover sequences of spaces. Let {Pi} be a

cover sequence of a space X . {Pi} is called a point-star network, if {st(x,Pi)}i∈N

is a network of x for each x ∈ X . Suppose {Pi} is a point-star network of X ,
for each i ∈ N, put Pi = {Pα}α∈Λi

and endow Λi with the discrete topology.

Then M = {α = (αi) ∈
∏

i∈N
Λi : {Pαi

}i∈N forms a network at some point xα

in X} is a metric space and xα is unique for each α ∈ M . Define f :M → X by
f(α) = xα. Then (f, M, X,Pi) is also called a Ponomarev’s system.

Lemma 13. Let (f, M, X,Pi) be a Ponomarev’s system.

(1) f is a compact map if {Pi} is a point-star network consisting of point-finite
covers.

(2) For a compact subset K of X , if some finite subset of Pi is a cfp-cover of
K for each i ∈ N, then there exists a compact subset L of M such that

f(L) = K.

Proof: Suppose {Pi} is a point-star network of X . For each i ∈ N, put
Pi = {Pα}α∈Λi

. Then (1) holds in view of [7]. (A similar proof can be seen

by Proposition 2.9.5(3) in [10].)
Next, we shall show that (2) is true. Let K be a non-empty compact subset of

X such that for each i ∈ N, there exists some finite subset P ′
i of Pi which forms a

cfp-cover of K. So there is a finite subset Γi of Λi such that P
′
i = {Pα}α∈Γi

can

be precisely refined by some finite cover {Kα}α∈Γi
ofK, whereKα is a non-empty

compact subset of K for each α ∈ Γi. Put L = {(αi) ∈
∏

i∈N
Γi :

⋂
i∈N

Kαi
6= ∅}.

Then

(13.1) L is a closed subset of the compact subset
∏

i∈N
Γi, so L is compact.

Suppose α = (αi) ∈
∏

i∈N
Γi−L. Then

⋂
i∈N

Kαi
= ∅. By the compactness of K,

there exists i0 ∈ N such that
⋂

i≤i0
Kαi

= ∅. Let W = {(βi) ∈
∏

i∈N
Γi : βi = αi

for each i ≤ i0}. ThenW is an open neighborhood of α in
∏

i∈N
Γi andW ∩L = ∅.

Hence L is a closed subset of
∏

i∈N
Γi.
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(13.2) L ⊂ M and f(L) ⊂ K. Suppose α = (αi) ∈ L. Then
⋂

i∈N
Kαi

6= ∅. Pick
x ∈

⋂
i∈N

Kαi
, then x ∈

⋂
i∈N

Pαi
, since {Pαi

}i∈N is a network of x in X , so
α ∈ M and f(α) = x ∈ K. Hence L ⊂ M and f(L) ⊂ K.

(13.3) K ⊂ f(L). For every x ∈ K and i ∈ N, pick αi ∈ Γi such that x ∈ Kαi
. If

α = (αi), then α ∈ L and f(α) = x by the proof of (13.2). So K ⊂ f(L).
In words, L is a compact subset of M such that f(L) = K. �

Theorem 14. A regular space is g-metrizable if and only if it is a compact-
covering, quotient, compact and σ-image of a metric space.

Proof: Let X be a g-metrizable space. By Lemma 12, X has a σ-discrete weak
base P . Since X is a regular space, we can assume that each member of P is a
closed set of X . Put P =

⋃
i∈N

Bi =
⋃

x∈X Px, where Bi is a discrete collection of
closed sets ofX , and Px is a weak neighborhood base of x in X . For each i ∈ N, let
Qi = {x ∈ X : Px∩Bi = ∅}, Ui = Bi∪{Qi}. Then Ui is a locally finite cover of X .
We shall show that for each non-empty compact subsetK ofX , there exists a finite
subset of Ui which forms a cfp-cover ofK. In fact, since Bi is a discrete collection,
K meets only finitely many members of Ui. Let Γi = {α : Bα ∈ Bi, Bα ∩K 6= ∅}.

For each α ∈ Γi, put Kα = Bα ∩ K, Ki = K −
⋃

α∈Γi
Kα. All Kα and Ki are

closed subset of K, and K = Ki ∪ (
⋃

α∈Γi
Kα). We only need to show Ki ⊂ Qi.

K is metrizable as a compact subset of a g-metrizable space. Pick x ∈ Ki. There
exists a sequence {xn} of K −

⋃
α∈Γi

Kα converging to x. If P ∈ Px ∩ Bi, then
P is a weak neighborhood of x, thus xn ∈ P whenever n > m for some m ∈ N.
Hence xn ∈ Kα for some α ∈ Γi, a contradiction. So Px ∩ Bi = ∅, and x ∈ Qi.
This implies that Ki ⊂ Qi and {Qi} ∪ {Bα}α∈Γi

is a cfp-cover of K.
For each x ∈ X and an open neighborhood U of x, pick P ∈ Px satisfying

P ⊂ U . Then P ∈ Bi for some i ∈ N. Thus st(x,Ui) = P ⊂ U and {st(x,Ui)}i∈N

is a network of x in X . So {Ui} is a point-star network of X . Let (f, M, X,Ui)
be a Ponomarev’s system. Then f : M → X is a compact-covering and compact
map by Lemma 13.
Since g-metrizable spaces are sequential spaces, and f is a compact-covering

map, it is easily checked that f is a quotient map. Next, we shall show that
f : M → X is a σ-map. For each i ∈ N, let Ui = {Uα}α∈Λi

. For every (αi) ∈ M
and n ∈ N, put B(α1, α2, . . . , αn) = {(γi) ∈ M : γi = αi for each i ≤ n}.
Then f(B(α1, α2, . . . , αn)) =

⋂
i≤n Uαi

. In fact, if γ = (γi) ∈ B(α1, α2, . . . , αn),

then f(γ) ∈
⋂

i∈N
Uγi

⊂
⋂

i≤n Uαi
, so f(B(α1, α2, . . . , αn)) ⊂

⋂
i≤n Uαi

. Let

z ∈
⋂

i≤n Uαi
. Since Ui is a cover of X for each i ∈ N, pick βi ∈ Λi such that

z ∈ Uβi
and the following holds: (1) βi = αi for every i ≤ n; (2) Uβi

∈ Bi whenever
z ∈

⋃
Bi (Uβi

is unique by the discreteness of Bi). Then β = (βi) ∈
∏

i∈N
Λi. If z

is an isolated point in X , then there exists m ∈ N and P ∈ Bm such that {z} = P ,
thus z /∈ Qm by the construction of Qm, so Uβm

= P and {Uβi
}
i∈N
is a network

of z in X . Suppose that z is an accumulation point in X . Since Pz is a weak
neighborhood base of z in X , Pz is an infinite set. Let U be a neighborhood of z
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in X . There exists P ∈ Pz∩Bm such that P ⊂ U for some m > n, thus Uβm
= P ,

and {Uβi
}
i∈N
is a network of z in X . So β ∈ B(α1, α2, . . . , αn) and z = f(β),

⋂
i≤n Uαi

⊂ f(B(α1, α2, . . . , αn)). We have shown that f(B(α1, α2, . . . , αn)) =⋂
i≤n Uαi

. Since {B(α1, α2, . . . , αn) : (αi) ∈ M, n ∈ N} is a base of M and
∧

i≤n Ui is a locally finite collection in X for every n ∈ N, f is a σ-map.
Conversely, let M be a metric space and f : M → X be a compact-covering,

quotient, compact and σ-map. Since f is a σ-map, f(B) is a σ-locally finite
collection in X for some base B of M . B is a k-network of M and k-networks
are preserved by compact-covering maps, so f(B) is a σ-locally finite k-network.
Also, X is a gf -countable space as a quotient compact image of a metric space
(see Theorem 2.9.14 in [10]). This implies that X is a g-metrizable space by
Lemma 12. �

In 1977, E. Michael defined σ-locally finite maps to characterize σ-spaces ([13]).
The definition of σ-locally finite maps is similar to σ-map’s. A map f : X → Y
is called σ-locally finite if for every σ-locally finite cover P of X , there exists
a refinement B of P such that f(B) is a σ-locally finite collection. E. Michael
proved the following results in [13]: (1) A regular space X is a σ-space if and only
if X is a σ-locally finite image of a metric space; (2) f is a σ-locally finite map if
there exists a network B of X such that f(B) is a σ-locally finite collection of Y .
So every σ-map is a σ-locally finite map, but the converse is not true. See the
following example.

Example 15. There exist a metric spaceM and a compact-covering, open, com-
pact and σ-locally finite map f :M → X such that X is not g-metrizable.
Let X be the non-normal space from Example 2.5 in [2] which can be repre-

sented as a union of two open metric subspaces. Since X is first-countable but
not metrizable, X is not a g-metrizable space ([15]). Suppose thatM is the topo-
logical sum of a cover of X consisting of two open metric subspaces. Then M is
metrizable. Let f : M → X be a natural map. Then f is a finite-to-one open
map, thus f is a compact-covering map (see Corollary 1.2 in [12]). Also X is the
union of countable many closed metric subspaces. So there exists a network B
of M such that f(B) is a σ-locally finite collection. Hence f is a σ-locally finite
map. By Theorem 14, f is not a σ-map.
A completely regular, non-normal space which is the open and finite-to-one

image of a metric space under f is given directly in Example 3.2 in [16]. It can
be showed that f is a compact-covering and σ-locally finite map. �

The idea of Theorem 14 is inspired by a question posed by Y. Tanaka. For a
metric space (X , d), f : X → Y is called a π-map, if d(f−1(y), X − f−1(V )) > 0
for each y ∈ Y and a neighborhood V of y in Y . Obviously, every compact map
on metric spaces is a π-map. The following result is proved in [8]: A regular space
X is g-metrizable if and only if X is a compact-covering, quotient, π and σ-image
of a metric space. In 2001, Y. Tanaka asked the first author of this paper the
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following question: Is the result above true? In the proof of the result above,
the following lemma was used (see Lemma in [8]): Let X be a metric space. If
f : X → Y is a quotient map, then Y is a symmetric space if and only if f is a
π-map. Next, we shall show that the lemma above is not true.

Example 16. There exist a metric space M and a quotient map f : M → X
such that X is a symmetric space, but f is not a π-map.

By Example 2.9.8 and Theorem 2.9.7 in [10], we can find out a symmetric space
X such that X is not any quotient π-image of a metric space M .

LetM be the topological sum of all convergent sequences in X , and f :M → X
the natural map. Then M is a metric space and f is a quotient map, so f is not
a π-map. �

This wrong lemma is a modification of Proposition 1.3 in [18]. (Proposition 1.3:
IfX is a symmetric space and f : X → Y a quotient map, then Y is the symmetric
space iff f is a π-map for some equivalent symmetric on X .) By Example 16,
this modification to replace symmetrics by metrics is not true. On the other
hand, since the quotient π-images of metric spaces are gf -countable spaces (see
Lemma 2.9.4 in [10]), in view of Theorem 14, a regular space X is g-metrizable
iff X is the compact-covering, quotient, π and σ-image of a metric space.

The first author of this paper proved the following mapping theorem on g-
metrizable spaces in [9] by using the wrong lemma above: For a regular space X ,
X is g-metrizable iff X is the compact-covering, quotient, π and mssc-image of a
metric space. Recall the concept ofmssc-maps ([9]). Let f : X → Y , where X is a
subspace of a product space

∏
i∈N

Xi. f is called a stratified strong compact map
or ssc-map, if for each y ∈ Y there exists a sequence {Vi} of open neighborhoods

of y in Y satisfying that pi(f−1(Vi)) is a compact subspace of Xi for each i ∈ N,
where pi :

∏
i∈N

Xi → Xi is the projective map. f is called a metrizable stratified
strong compact map or mssc-map if f is an ssc-map and Xi is a metric space for
each i ∈ N.

Lemma 17. mssc-maps are σ-maps.

Proof: Let f : X → Y be an mssc-map. Then there exists a sequence {Xi} of
metric spaces satisfying the conditions of mssc-maps. For each i ∈ N, Xi has a
σ-locally finite base Pi =

⋃
j∈N

Pij , where Pij is a locally finite collection of Xi.

Put Bij = {X ∩ (
⋂

k≤i p−1
k
(Pkj)) : Pkj ∈ Pkj , k ≤ i}, B =

⋃
i,j∈N

Bij . Then B is

a base of X . For each y ∈ Y , there exists a sequence {Vi} of open neighborhoods

of y in Y such that pi(f−1(Vi)) is a compact subspace of Xi for each i ∈ N. For
each i, j ∈ N, pi(f

−1(Vi)) meets only elements of some finite subset Fij of Pij .

Since pi(f
−1(Vi))∩P 6= ∅ if and only if f−1(Vi)∩ p−1i (P ) 6= ∅, Fij ∈ Fij for each

i ≤ n if (
⋂

i≤n f−1(Vi))∩ (
⋂

i≤n p−1i (Fij)) 6= ∅. For each n ∈ N, let V =
⋂

i≤n Vi.

Then {Q ∈ f(Bnj) : V ∩ Q 6= ∅} is a finite set, thus f(Bnj) is a locally finite
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collection of Y , so f(B) is a σ-locally finite collection of Y . Hence f is a σ-map.
�

Generally, σ-maps need not be mssc-maps. For example, let Y be a non-locally
compact, separable metric space and put Xi = Y for each i ∈ N. Then X1 is
a subspace of

∏
i∈N

Xi. Let f : X1 → Y be the identical map. Since X1 is a
separable metric space, f is a σ-map. If f is an mssc-map, then for each y ∈ Y ,

there exists a sequence {Vi} of open neighborhoods of y in Y such that pi(f−1(Vi))

is a compact subspace of Xi for each i ∈ N, thus p1(f−1(V1)) = f−1(V1) is a
compact subset of X1, so X1 is a locally compact space, a contradiction. Hence
f is not an mssc-map.
Next, we shall show that the σ-map f in Theorem 14 is an mssc-map. For

each x ∈ X and i ∈ N, since Ui is a locally finite cover of X , there exists an open
neighborhood Vi of x in X such that Vi only meets with finitely many elements
in Ui. Let △i = {α ∈ Λi : Uα ∩ Vi 6= ∅}. Then △i is a finite subset and

pi(f−1(Vi))(⊂ △i) is a compact subset of Λi, so f is an mssc-map. The following
corollary holds by the above-mentioned discussions.

Corollary 18. The following are equivalent for a regular space X :

(1) X is a g-metrizable space;
(2) X is a compact-covering, quotient, compact and mssc-image of a metric
space;

(3) X is a compact-covering, quotient, π and mssc-image of a metric space;
(4) X is a compact-covering, quotient, π and σ-image of a metric space. �

Question 19. Let {Xi} be a sequence of locally compact metric spaces and let
X be a subspace of

∏
i∈N

Xi. If f : X → Y is a σ-map, is f an mssc-map?
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