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Mittag-Leffler type expansions of ∂̄-closed

(0, n − 1)-forms in certain domains in Cn

Telemachos Hatziafratis

Abstract. In this paper we will prove a Mittag-Leffler type theorem for ∂̄-closed (0, n−1)-
forms in Cn by addressing the question of constructing such differential forms with
prescribed periods in certain domains.
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1. Introduction

Let us recall that given a sequence ck, k = 0, 1, 2, . . . , of complex numbers,
there exists a holomorphic function f(z) defined for z ∈ C − {0} so that

∫

|z|=r

zkf(z) dz = ck, k = 0, 1, 2, . . . (r > 0),

if and only if
∞
∑

k=0

|ck|s
k < ∞, for every s > 0,

and that, moreover, such a function is of the form

f(z) =
1

2πi

∞
∑

k=0

ck
1

zk+1
+ a holomorphic function in C.

More generally, if D ⊂ C is an open set, A = {αl : l = 1, 2, 3, . . .} is a discrete
subset of D and if for each l we are given a sequence cl

k of complex numbers which
satisfies the condition

∞
∑

k=0

|cl
k|s

k < ∞, for every s > 0,
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then there exists f ∈ O(D − A) so that

∫

|z−αl|=rl

(z − αl)kf(z) dz = cl
k, k = 0, 1, 2, . . . , l = 1, 2, 3, . . . ,

where rl > 0 are sufficiently small. And, moreover, such a function f is unique
up to a holomorphic function in D.
In Cn, we may consider systems (f1, . . . , fn) of C

∞ functions, which satisfy the
differential equation

n
∑

j=1

(−1)j−1
∂fj

∂z̄j
= 0.

This means that the (0, n − 1)-form

θ =

n
∑

j=1

fjdz̄1 ∧ . . . (j) . . . ∧ dz̄n

is ∂̄-closed, and therefore
d[θ(z) ∧ ω(z)] = 0,

where ω(z) = dz1 ∧ . . . ∧ dzn.
By Stokes’s theorem, this implies that

∫

S1

θ(z) ∧ ω(z) =

∫

S2

θ(z) ∧ ω(z),

where S1 and S2 are (2n−1)-dimensional closed surfaces, homotopic in the domain
where θ is defined and ∂̄-closed.
Thus such ∂̄-closed (0, n − 1)-forms play, in certain cases, roles of holomorphic
functions.
Also, again by Stokes’s theorem,

∫

S

θ(z) ∧ ω(z) = 0,

if the (0, n − 1)-form θ is ∂̄-exact in a neighborhood of the (2n − 1)-dimensional
closed surface S. Thus the ∂̄-exact (0, n − 1)-forms are, in a sense, negligible, at
least as far as their periods are concerned.

As for the notation, we will denote by Z
(0,q)

∂̄
(D) the set of ∂̄-closed (0, q)-forms

with C∞ coefficients in an open set D and by O(D) the set of holomorphic
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functions in D. Also we will denote by B
(0,q)

∂̄
(D) the set of (0, q)-forms which are

∂̄-exact in D and H
(0,q)

∂̄
(D) = Z

(0,q)

∂̄
(D)/B

(0,q)

∂̄
(D).

In this paper we will prove a Mittag-Leffler type theorem for ∂̄-closed (0, n−1)-
forms in Cn by addressing the question of constructing such differential forms with
prescribed periods in certain domains. More precisely we will prove the following
theorems.

Theorem 1. Suppose that for each k = (k1, . . . , kn), where kj are non-negative

integers, we are given a complex number ck = ck1,...,kn
. Then there exists θ ∈

Z
(0,n−1)

∂̄
(Cn − {0}) with

∫

|z|=r

zk1
1 · · · zkn

n θ(z) ∧ ω(z) = ck1,... ,kn
, for every k

(where r > 0), if and only if the sequence ck1,... ,kn
satisfies the condition

(∗)
∑

k1,... ,kn≥0

|ck1,... ,kn
|sk1
1 . . . skn

n < ∞, for every s1, . . . , sn > 0.

Theorem 2. Let D be an open set in Cn and A a discrete subset of D. Suppose
that for each α ∈ A, we are given a sequence cα

k ∈ C which satisfies condition (∗).

Then there exists θ ∈ Z
(0,n−1)

∂̄
(D − A) so that

(∗∗)

∫

|z−α|=rα

(z1−α1)
k1 . . . (zn−αn)

knθ(z)∧ω(z) = cα
k1,... ,kn

, for every k and α,

where rα > 0 are sufficiently small.
If, moreover, D is pseudoconvex, the differential form θ which satisfies (∗∗) is
unique up to a ∂̄-exact (0, n − 1)-form in D − A.

Before we prove Theorem 1, let us observe that the sequence ck1,... ,kn
satisfies

condition (∗) if and only if

(1)

∑

k1,... ,kn≥0

n(n+ 1) · · · (n+ k1 + · · ·+ kn − 1)

k1! . . . kn!
|ck1,... ,kn

|sk1
1 . . . skn

n < ∞

for every s1, . . . , sn > 0.

Indeed, first, (1) implies (∗) because of the inequalities

n · · · (n+ k1 − 1)

k1!
≥ 1, . . . ,

(n+ k1 + · · ·+ kn−1) · · · (n+ k1 + · · ·+ kn − 1)

kn!
≥ 1.
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To prove the other direction, let us set N = n+ k1 + · · ·+ kn − 1 and notice that

(2)

n(n+ 1) · · · (n+ k1 + · · ·+ kn − 1)

k1! . . . kn!

≤
∑

0≤p1,...,pn≤N

N !

p1! . . . pn!(N − p1 − · · · − pn)!

= (n+ 1)N = (n+ 1)n−1(n+ 1)k1 . . . (n+ 1)kn .

This gives that the sum in (1) is

≤ (n+ 1)n−1
∑

k1,... ,kn≥0

|ck1,...,kn
|[(n+ 1)s1]

k1 . . . [(n+ 1)sn]
kn .

Therefore (∗) implies (1).

2. Proof of Theorem 1

For the one direction, let us consider a sequence ck of complex numbers which

satisfies (∗). We will construct a θ ∈ Z
(0,n−1)

∂̄
(Cn − {0}) so that

∫

|z|=r

zk1
1 · · · zkn

n θ(z) ∧ ω(z) = ck, for every k.

For z 6= w, set

M(z, w) =
βn

|z − w|2n

n
∑

j=1

(−1)j−1(z̄j − w̄j)dz̄1 ∧ . . . (j) . . . dz̄n,

where βn = (−1)n(n−1)/2(n−1)!/(2πi)n, and, as in [1], for each k = (k1, . . . , kn),
define

ηk(z) =
∂k1+···+knM(z, w)

∂wk1
1 · · · ∂wkn

n

∣

∣

∣

∣

w=0

= βnn(n+ 1) · · · (n+ k1 + · · ·+ kn − 1)
z̄k1
1 · · · z̄kn

n

|z|2(n+k1+···+kn)
×

×
n

∑

j=1

(−1)j−1z̄jdz̄1 ∧ . . . (j) . . . ∧ dz̄n.
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Then ηk ∈ Z
(0,n−1)

∂̄
(Cn − {0}). Also, by the Bochner-Martinelli formula, for

f ∈ O(Cn),

(3)

∫

|z|=r

f(z)ηk1,... ,kn
(z) ∧ ω(z) =

∂k1+···+knf(w)

∂wk1
1 · · · ∂wkn

n

∣

∣

∣

∣

w=0
.

But the sequence ck satisfies (1), since as we pointed out, (∗) implies (1). Writing

the factor
z̄k1
1 · · · z̄kn

n

|z|2(n+k1+···+kn)
of ηk1,... ,kn

(z) in the form

1

|z|2n

(

z̄1
|z|2

)k1

· · ·

(

z̄n

|z|2

)kn

,

we see that (1) implies that the series

θ(z) =
∑

k1,... ,kn≥0

ck1,... ,kn

k1! . . . kn!
ηk1,... ,kn

(z)

converges and defines a ∂̄-closed (0, n−1)-form with C∞ coefficients in Cn −{0}.
Also (1) implies that

∫

|z|=r

z
p1
1 · · · zpn

n θ(z) ∧ ω(z)

=
∑

k1,... ,kn≥0

ck1,... ,kn

k1! . . . kn!

∫

|z|=r

z
p1
1 · · · zpn

n ηk1,... ,kn
(z) ∧ ω(z).

Applying (3) with f(z) = zp1
1 · · · zpn

n , we find that
(4)
∫

|z|=r

zp1
1 · · · zpn

n ηk1,... ,kn
(z)∧ω(z) =

{

p1! . . . pn! if (k1, . . . , kn) = (p1, . . . , pn)

0 otherwise.

This gives that
∫

|z|=r

z
p1
1 · · · zpn

n θ(z) ∧ ω(z) = cp1,... ,pn

and completes the proof of the theorem in this direction.
To prove the other direction of the theorem, we consider (as in [3]) the function
F (ζ) defined by the integral

F (ζ) =

∫

|z|=r

e〈ζ,z〉θ(z) ∧ ω(z), ζ ∈ C
n,



352 T.Hatziafratis

where 〈ζ, z〉 =
∑

ζjzj . It is easy to see that F is an entire holomorphic function
and that

ck =

∫

|z|=r

zk1
1 · · · zkn

n θ(z) ∧ ω(z) =
∂k1+···+knF (ζ)

∂ζk1
1 · · ·∂ζkn

n

∣

∣

∣

∣

ζ=0
.

Since r (in the definition of F ) can be arbitrarily small, it follows that the func-
tion F satisfies the following: For every δ > 0 there exists a constant Cδ > 0 so
that

|F (ζ)| ≤ Cδ e
δ|ζ| for every ζ ∈ C

n.

Therefore, by Cauchy’s inequalities, applied to the entire function F (ζ), the co-
efficients ck satisfy the inequality: For δ > 0,

|ck1,... ,kn
|

k1! . . . kn!
≤ Cδ

eδ(R1+···+Rn)

Rk1
1 . . . Rkn

n

, for every R1, . . . , Rn > 0.

Applying this inequality with R1 = k1/δ, . . . , Rn = kn/δ we obtain that for every
δ > 0,

|ck1,... ,kn
|

k1! . . . kn!
≤ Cδ

(δ e)k1+···+kn

kk1
1 . . . kkn

n

, for all k1, . . . , kn.

(In case some kj = 0, the above inequality also holds with the convention k
kj

j = 1.)

Thus

|ck1,... ,kn
| ≤ Cδ(δ e)

k1+···+kn , for all k1, . . . , kn, and for all δ > 0.

Therefore

∑

k1,... ,kn≥0

|ck1,... ,kn
|sk1
1 . . . skn

n ≤ Cδ

∑

k1,... ,kn≥0

(δ e s1)
k1 . . . (δ e sn)

kn < ∞,

provided that δ < min{1/(e sj) : j = 1, . . . , n}. Thus the sequence ck satisfies (∗).
The proof of the theorem is now complete.

3. Remark

According to Theorem 1, to each θ ∈ Z
(0,n−1)

∂̄
(Cn −{0}), we may associate an

entire function Tθ defined by the formula:

Tθ(ζ) =
∑

k1,... ,kn≥0

ck1,... ,kn
ζk1
1 . . . ζkn

n , ζ = (ζ1, . . . , ζn) ∈ C
n,
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where

ck1,... ,kn
=

∫

|z|=r

zk1
1 · · · zkn

n θ(z) ∧ ω(z).

Then the transform T : Z
(0,n−1)

∂̄
(Cn − {0}) → O(Cn), θ → Tθ, is linear and its

kernel is the set of ∂̄-exact forms, i.e.,

kerT = B
(0,n−1)

∂̄
(Cn − {0}).

(This follows from Lemma 2, below).
Thus T induces an isomorphism of linear spaces:

T̃ : H
(0,n−1)

∂̄
(Cn − {0})→ O(Cn), defined by T̃ ([θ]) = T (θ),

for [θ] ∈ H
(0,n−1)

∂̄
(Cn − {0}).

In particular we may transfer, in a natural way, the multiplication structure from

O(Cn) to H
(0,n−1)

∂̄
(Cn − {0}):

[θ1] · [θ2] = T̃−1(T (θ1) · T (θ2)), for [θ1], [θ2] ∈ H
(0,n−1)

∂̄
(Cn − {0}).

According to this multiplication,

[ηk1,... ,kn
] · [ηp1,... ,pn ] =

k1! . . . kn!p1! . . . pn!

(k1 + p1)! . . . (pn + kn)!
[ηk1+p1,... ,kn+pn

].

This follows from (4) and the fact that

(ζk1
1 . . . ζkn

n ) · (ζ
p1
1 . . . ζpn

n ) = ζ
k1+p1
1 . . . ζkn+pn

n .

For the proof of Theorem 2, we will need the following lemmas. The proof of
Lemma 1 is based on a classical idea of a “patching” process, using a partition of
unity, and a “correction” process, using a solution of an appropriate differential
equation. (The case n = 1 is in [4, p. 13]). Lemma 2 is a generalization of a case
of [2, Lemma 5].

Lemma 1. Let D be an open set in Cn and Vl, l = 1, 2, 3, . . . , a sequence of
open subsets of D with D =

⋃

l Vl. Suppose that, for each pair (l, m) ∈ N × N,

we are given a differential form θlm ∈ Z
(0,n−1)

∂̄
(Vl ∩ Vm) (here we assume that

Z
(0,n−1)

∂̄
(∅) = {0}) in such a way that

θlm + θmp + θpl = 0 in Vl ∩ Vm ∩ Vp, for every l, m, p ∈ N.
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Then there exist θl ∈ Z
(0,n−1)

∂̄
(Vl), l ∈ N, so that

θl − θm = θlm in Vl ∩ Vm, for every l, m ∈ N.

Proof: First, let us notice that the assumptions, imposed on θlm, imply that

θll = 0 in Vl and θlm + θml = 0 in Vl ∩ Vm, for every l, m ∈ N.

Then, let us consider a partition of unity subordinate to the cover {Vl}, i.e.,
we consider functions χl ∈ C∞(D), with the following properties: 0 ≤ χl ≤ 1,
supp(χl) ⊂ Vl, the family {supp(χl) : l ∈ N} should be locally finite, and

∑

χl = 1
in D.
For l ∈ N, we define the (0, n − 1)-forms

Θl =
∑

m∈N

χmθlm, with C∞ coefficients in Vl.

Here, the differential form χmθlm is defined to be 0 in Vl − Vm. Writing the set
Vl as the union of the open sets Vl ∩ Vm and Vl − supp(χm), and observing that,
according to the above definition of the differential form χmθlm, χmθlm = 0 in
Vl−supp(χm), we see that, indeed, the sum

∑

m χmθlm has C
∞ coefficients in Vl.

A computation shows that

Θl − Θm =
∑

p∈N

χpθlp −
∑

p∈N

χpθmp =
∑

p∈N

χp(θlp − θmp)

=
∑

p∈N

χpθlm = θlm, in Vl ∩ Vm.

But θlm ∈ Z
(0,n−1)

∂̄
(Vl ∩ Vm), i.e., ∂̄θlm = 0, and therefore

∂̄Θl = ∂̄Θm, in Vl ∩ Vm.

Since H
(0,n)

∂̄
(D) = 0, it follows that there exists a (0, n − 1)-form Θ with C∞

coefficients in D, so that
∂̄Θ = ∂̄Θl, in Vl.

Thus if we set θl = Θl − Θ, we obtain differential forms θl ∈ Z
(0,n−1)

∂̄
(Vl) which

satisfy the equations

θl − θm = (Θl − Θ)− (Θm − Θ) = θlm in Vl ∩ Vm, for every l, m ∈ N.

This completes the construction of the lemma. �
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Lemma 2. Let D be an open pseudoconvex set in Cn, A a discrete subset of D

and θ ∈ Z
(0,n−1)

∂̄
(D − A). Then the following are equivalent:

(I) θ is ∂̄-exact in D − A;

(II)
∫

|z−α|=rα
e〈ζ,z〉 θ(z)∧ω(z) = 0, for every α ∈ A and ζ ∈ Cn (where rα > 0

are sufficiently small);
(III)

∫

|z−α|=rα
f(z)θ(z) ∧ ω(z) = 0, for every α ∈ A and for every f ∈ O(Cn);

(IV)
∫

|z−α|=rα
(z1−α1)

k1 · · · (zn−αn)
knθ(z)∧ω(z) = 0, for every k and α ∈ A.

Proof: Since the set of linear combinations of the functions e〈ζ,z〉, ζ ∈ Cn, is
dense in O(Cn), it is clear that (II)⇔(III).
Also, since every entire function can be expanded in a power series with center α,
it follows that (III)⇔(IV).
The implication (I)⇒(III) follows from Stokes’s theorem.
Thus it remains to show that (III)⇒(I). The proof of this is based on the Cauchy-
Leray formula and it is similar to the proof of [2, Lemma 5].
First, let us notice that we may find a sequence Gν ⊂⊂ D, ν = 1, 2, 3, . . . , of
strictly pseudoconvex sets with smooth boundary, which exhaust the pseudocon-
vex set D, and in such a way that (∂Gν) ∩ A = ∅, for every ν. This is possible,
since A is discrete in D. Then each set Gν will contain finitely many points from
the set A. It follows that the set D−A can be exhausted by a sequence of compact
sets of the form

K = Ḡ − [B(α1, ε1) ∪ . . . ∪ B(αN , εN )],

where G ⊂⊂ D is strictly pseudoconvex with smooth boundary, αl ∈ A, εl > 0,
l = 1, 2, . . . , N , and the closures of the balls

B(αl, εl) = {z ∈ C
n : |z − αl| < εl}

are pair-wise disjoint.
Fixing such a set K, we consider the map γ : (∂K) × int(K) → Cn as follows:
For (ζ, z) ∈ (∂K)× int(K), {γj(ζ, z)}n

j=1 is defined to be a Henkin-Ramirez map

of the strictly pseudoconvex set G, if ζ ∈ ∂G, and

γj(ζ, z) =
∂ρl

∂ζj
(z) if ζ ∈ {ρl = 0},

where ρl(ζ) = |ζ − αl|2 − (εl)2.
(For exhaustions of pseudoconvex sets by strictly pseudoconvex domains and con-
structions of Henkin-Ramirez maps, see [5] and [6].)
Then

n
∑

j=1

(ζj − zj)γj(ζ, z) 6= 0, for (ζ, z) ∈ (∂K)× int(K),
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and therefore we may write down the Cauchy-Leray formula:

(5) u = ∂̄z(Tq−1u) + Tq(∂̄u) + Lγ
q (u),

for (0, q)-forms u in a neighborhood of K

(notation is as in [2, p. 912]).

Now if θ ∈ Z
(0,n−1)

∂̄
(D−A) satisfies (III), it follows as in the proof of [2, Lemma 5]

that Lγ
n−1(θ) = 0, and therefore (5) gives

θ = ∂̄z(Tn−2θ), in int(K).

Now the conclusion that θ is ∂̄-exact in D − A, follows from [2, Lemma 4], and
this completes the proof of the implication (III)⇒(I).
The proof of the lemma is complete. �

4. Proof of Theorem 2

First, with D being an arbitrary open set in Cn, we will use Lemma 1 in order

to construct a θ ∈ Z
(0,n−1)

∂̄
(D − A) which satisfies (∗∗).

Let αl, l = 1, 2, 3, . . . , be an enumeration of the set A. By Theorem 1, for each

l = 1, 2, 3, . . . , there exists θl ∈ Z
(0,n−1)

∂̄
(Cn − {αl}) so that

∫

|z−αl|=r
αl

(z1 − αl
1)

k1 · · · (zn − αl
n)

knθl(z) ∧ ω(z) = cαl

k1,... ,kn
, for every k.

Next we consider an open cover {V0, V1, V2, . . . } of D, which is of the form: V0 =

D−A, and, for l ≥ 1, Vl is a small ball centered at the point α
l, so that Vl∩Vm = ∅

for l 6= m, l, m ≥ 1.

For each pair (l, m) with l, m ≥ 0, we define θlm ∈ Z
(0,n−1)

∂̄
(Vl ∩ Vm) in the

following way:

θ00 = 0, θlm = 0 if l, m ≥ 1, and θ0l = −θl0 = θl

in V0 ∩ Vl = Vl − {αl} for l ≥ 1.

Then

θlm + θmp + θpl = 0 in Vl ∩ Vm ∩ Vp, for every l, m, p ≥ 0.

Therefore, from Lemma 1, there exist θ̃l ∈ Z
(0,n−1)

∂̄
(Vl), l ≥ 0, so that

θ̃l − θ̃m = θlm in Vl ∩ Vm, for every l, m ≥ 0.



Mittag-Leffler type expansions of ∂̄-closed (0, n − 1)-forms 357

In particular,

θ̃0 − θ̃l = θ0l = θl, in V0 ∩ Vl = Vl − {αl}, for l ≥ 1.

Define θ = θ̃0 ∈ Z
(0,n−1)

∂̄
(D − A). Since θ̃l ∈ Z

(0,n−1)

∂̄
(Vl), the (0, n − 1)-form

(z1 − αl
1)

k1 · · · (zn − αl
n)

kn θ̃l(z)

is also ∂̄-closed in Vl.

It follows that the differential form (z1−αl
1)

k1 · · · (zn−αl
n)

kn θ̃l(z)∧ω(z) is d-closed
in Vl, and therefore, by Stokes’s theorem,

∫

|z−αl|=r
αl

(z1−αl
1)

k1 · · · (zn−αl
n)

kn θ̃l(z)∧ω(z) = 0, for every k and l ≥ 1.

(Recall that the rα’s are assumed sufficiently small.) Since for each l ≥ 1,

θ = θl + θ̃l, in Vl − {αl},

it follows that θ satisfies (∗∗).
This completes the proof of the first part of the theorem.
Finally, assume that D is pseudoconvex and that two differential forms

θ, θ̂ ∈ Z
(0,n−1)

∂̄
(D − A) satisfy (∗∗). Then their difference θ − θ̂ satisfies the

following equations

∫

|z−αl|=r
αl

(z1 − α1)
k1 · · · (zn − αn)

kn [θ(z)− θ̂(z)] ∧ ω(z) = 0,

for every k and every α ∈ A.

It follows from Lemma 2, that θ− θ̂ is ∂̄-exact in D−A. This completes the proof
of the theorem. �

We close with the following remark. In the case D is pseudoconvex, Theorem 2

establishes a bijection from the ∂̄-cohomology group H
(0,n−1)

∂̄
(D − A) to the

set [O(Cn)]A of all maps A → O(Cn). Thus we have, in a natural way, an
isomorphism of linear spaces:

H
(0,n−1)

∂̄
(D − A) ≈ [O(Cn)]A.
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