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Semilinear elliptic problems with

nonlinearities depending on the derivative

David Arcoya, Naira del Toro

Abstract. We deal with the boundary value problem

−∆u(x) = λ1u(x) + g(∇u(x)) + h(x), x ∈ Ω

u(x) = 0, x ∈ ∂Ω

where Ω ⊂ R
N is an smooth bounded domain, λ1 is the first eigenvalue of the Laplace

operator with homogeneous Dirichlet boundary conditions on Ω, h ∈ Lmax{2,N/2}(Ω)
and g : R

N −→ R is bounded and continuous. Bifurcation theory is used as the right
framework to show the existence of solution provided that g satisfies certain conditions
on the origin and at infinity.

Keywords: nonlinear boundary value problems, elliptic partial differential equations,
bifurcation, resonace

Classification: 35J65, 35B32, 35B34

1. Introduction

We consider the semilinear elliptic boundary value problem:

(1)
−∆u(x) = λ1u(x) + g(∇u(x)) + h(x), x ∈ Ω

u(x) = 0, x ∈ ∂Ω

where Ω ⊂ R
N is a bounded domain with sufficiently smooth boundary ∂Ω,

h ∈ Lmax{2,N/2}(Ω), g : RN −→ R is a continuous nonlinearity and λ1 is the first
eigenvalue of the Laplace operator with zero Dirichlet boundary condition on Ω.
In contrast with the case in which the nonlinearity g depends on the solution

u (instead of the derivatives of u), the literature on this kind of problems is not
very large. Specifically, it has been studied in [2], [6], [7], [9], [10], [15], [16], [17],
[20], [23]. Indeed, all of them except [6], [10], [23] are only for the one-dimensional
case, either with Dirichlet boundary value conditions [7], [9], [16], [17] or Neumann
and periodic boundary conditions [2], [7], [15], [20]. In [7] it was considered the
problem

(2)
−u′′(x) = u(x) + g(u′(x)) + h(x), x ∈ [0, π]

u(0) = u(π) = 0.
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Splitting h(x) = h sin(x)+ h̃(x),
∫ π
0 h̃(x) sin(x)dx = 0 and assuming that the non-

linearity g has finite limits g(+∞) = limξ→+∞ g(ξ) and g(−∞) = limξ→−∞ g(ξ)
with g(+∞) + g(−∞) = 0 (without loss of generality), the authors show that for
every fixed h̃ ∈ C[0, π] there exist a, b ∈ R, a ≤ 0 ≤ b such that (2) has no solution
if h /∈ [a, b] while (2) has at least one solution if h ∈ (a, b) ∪ ({a, b} − {0}). This
result was improved in [16] where existence of at least two solutions is proved
provided that h ∈ (a, b) − {0}. However, we have to remark that in the above
results nothing is said about the nondegeneration of the interval [a, b]. In prin-
ciple, it could be a single point. In order to overcome this possibility, following
[17], Habets and Sanchez [16] prove that a < 0 < b provided that, in addition, g
is C1 with g(0) = 0 6= g′(0).
The scope of this paper is to make clear how bifurcation theory gives a right

framework which enables us to study the P.D.E. case, i.e. problem (1). Specifi-
cally, we see that the existence of solution of this problem is heavily supported
on sufficient conditions that means a balance between the linearized problem at
infinity

−∆w(x) = λw(x), x ∈ Ω
w(x) = 0, x ∈ ∂Ω

and the linearized problem at zero

−∆w(x) = λw(x) +∇g(0) · ∇w(x), x ∈ Ω
w(x) = 0, x ∈ ∂Ω.

Indeed, it is worthwhile noting that the role of the linearized problem at zero
seems to be not very well understood in the previous references. We can illustrate
easily the meaning of the asymptotic behaviour at infinity of the nonlinearity g in
(1) by considering firstly a simpler model with bounded nonlinearity g depending

on x and on ∂u
∂x1
. More clearly, let us assume that Ω is a symmetric domain in the

Steiner sense (i.e. symmetric with respect to the hyperplane x1 = 0 and convex
in the variable x1) and consider for λ ∈ R, the boundary value problem

(3)
−∆u(x) = λu(x) + g(x,

∂u

∂x1
(x)) + h(x), x ∈ Ω

u(x) = 0, x ∈ ∂Ω.

It is well-known ([13]) that in this case a positive eigenfunction ϕ1 associated to

λ1 is symmetric with respect to x1 = 0 with
∂φ1
∂x1

< 0 for x1 > 0 (and ∂φ1
∂x1

> 0 for

x1 < 0). Using ϕ1 as test function in (3) we get that

(4) (λ1 − λ)

∫

Ω
uϕ1 =

∫

Ω
g(x,

∂u

∂x1
)ϕ1 +

∫

Ω
hϕ1.



Semilinear elliptic problems with nonlinearities depending on the derivative 415

Therefore, if we assume that there exists the limits g±∞(x) = lims→±∞ g(x, s)
(unif. in x ∈ Ω) with

(5)

∫

x1>0
g+∞(x)ϕ1 +

∫

x1<0
g−∞(x)ϕ1 < −

∫

Ω
hϕ1 <

∫

x1>0
g−∞(x)ϕ1

+

∫

x1<0
g+∞(x)ϕ1

then, observing that every sequence (λn, un) of solutions of (3) with λn tending
to λ1 and ‖un‖ tending to +∞ satisfies that the normalized sequence un/‖un‖
converges either to ϕ1 or to −ϕ1, we easily deduce that for such a sequence we
have (∫

Ω
unϕ1

) (∫

Ω
g(x,

∂un

∂x1
)ϕ1 +

∫

Ω
hϕ1

)
> 0, ∀n >> 0.

Hence, identity (4) implies that the existing bifurcation from infinity at λ = λ1
has to be to the left, or equivalently, there exists an a priori estimate of the norm
of every solution u of (3) for λ ∈ (λ1, λ1 + ε) (ε > 0 small enough). From this a
priori bound, the existence of a sequence (λ, un) of solutions of (3) with λn ↓ λ1
and un converging to a solution of the resonant problem, i.e. of problem (3) for
λ = λ1, follows.
In this way, the hypothesis (5) (or the dual hypothesis obtained by reversing

the inequalities) can be considered as an extension of the classical Landesman-
Lazer condition [18] for nonlinearities g(x, u). See [6], [10], [23] for similar results
in this direction.
However, notice that if we suppose that g is autonomous (i.e., g = g( ∂u

∂x1
))

or, more general, if the limits at ±∞ do not depend on x (for instance they are
zero) then the previous existence result is meaningless. Precisely, we study here
the case in which lim|ξ|→+∞ g(ξ) = 0 and obtain the following extension of the

results in [7], [16].

Theorem 1.1. If g(0) = 0, g is differentiable at zero with ∇g(0) 6= 0 and
lim|ξ|→+∞ g(ξ) = 0 then there exists ε > 0 for which

(i) problem (1) has at least one solution provided that
∫
Ω hϕ1 = 0 and ‖h‖2 <

ε,
(ii) problem (1) has at least two solutions provided that

∫
Ω hϕ1 6= 0 and

‖h‖2 < ε.

To prove this theorem, as above and following [4], [21], we embed (1) into a
one-parameter family of b.v.p., namely

(Ph
λ )

−∆u(x) = λu(x) + g(∇u(x)) + h(x), x ∈ Ω
u(x) = 0, x ∈ ∂Ω.
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We study the problem (Ph
λ ) in the next section. We have to point out that

the main difficulty for this bifurcation problem consists in the fact that, on the
contrary with the previous results for nonlinearities g depending either on u or
only on the first derivatives of u, here it is not possible to determine the side of
the bifurcation from infinity at λ = λ1 of (P

h
λ ). Certainly, we shall prove that

in our case the bifurcation from infinity occurs on both sides of λ = λ1. Thus,
we have no a priori estimates on the norm of solutions u of (Ph

λ ) for λ near λ1.
Consequently, to show that the continuum emanating from infinity at λ1 crosses
the line λ = λ1, some additional arguments based on the Leray-Schauder degree
theory are needed. Specifically, we prove Theorem 2.6 below which gives an
estimate from below of the number of solutions of (Ph

λ ) as λ < λ1 + |∇g(0)|2/16.
In this way, Theorem 1.1 is a direct corollary of Theorem 2.6.
Finally, in Section 3 we also show (see Theorem 3.1 below) that problem (1)

has no solution provided that
∣∣∫
Ω hϕ1

∣∣ is large enough.

2. A one-parameter family of problems

As it has been mentioned in the previous section, we devote this one to the
study of problem (Ph

λ ). A few words about some notation are in order: we consider

the Sobolev space H10 (Ω), equipped with the norm ‖v‖ = ‖∇v‖2, (v ∈ H10 (Ω)),

where ‖ · ‖2 is the usual norm of L2(Ω). On the other hand, it is well-known
that λ1 is simple and its eigenspace is spanned by a positive function ϕ1 ∈ H10 (Ω)

which will be chosen so that ‖ϕ1‖ = 1. To study (Ph
λ ), firstly, we transform it into

the problem of looking for the zeros of a suitable operator Fλ defined on H10 (Ω)
by

Fλ(u) = u − λLu − L(g(∇u) + h) = 0, u ∈ H10 (Ω),

where we denote by L := (−∆)−1 : L2(Ω) → H10 (Ω) the inverse of the Laplace
operator with homogeneous Dirichlet boundary conditions.
Now we recall a result about the regularity of solutions which will be useful

in the sequel. It is based on a result of Brézis and Kato [5] together with an
application of the Calderon-Zygmund inequality.

Proposition 2.1. Let us assume that the boundary ∂Ω is of class C2. Then
every solution u of (Ph

λ ) satisfies u ∈ C1,α(Ω) for all 0 ≤ α < 1. Moreover, there
exists K = K(Ω, N, α) such that

‖u‖1,α ≤ K‖u‖

where ‖ · ‖1,α denotes the usual norm of C1,α(Ω).
Proof: Let us consider the problem

(6)
−∆u(x) = λu(x) + g(∇u(x)) + h(x), x ∈ Ω

u(x) = 0, x ∈ ∂Ω
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and observe that v(x) := g(∇u(x)) + h(x) ∈ Lmax{2,N/2}(Ω). If we set

g̃(x, u) = λu(x) + v(x)

then
g̃(x, u) = a(x)(1 + |u|)

where a(x) =
λu(x)+v(x)
1+|u(x)|

∈ Lmax{2,N/2}(Ω). Taking into account [5] (see also

Lemma B.3 in [26]) we have that u ∈ Lq(Ω) for all q < ∞ with

‖u‖q ≤ C1‖u‖

for a certain constant C1 = C1(Ω, N, q), where ‖ · ‖q denotes the usual norm

of Lq(Ω). Thus, we use that ∂Ω ∈ C2 together with the Calderon-Zygmund
inequality (see [14]) to prove that u ∈ W 2,q(Ω) ∩ H10 (Ω) with ‖u‖2,q ≤ C2‖u‖q

for a certain constant C2 = C2(Ω, N, q), where ‖ · ‖2,q denotes the usual norm of
the Sobolev space W 2,q(Ω). Finally, using the classical embedding theorems for
the Sobolev spaces we can guarantee that u ∈ C1,α(Ω) for all α < 1 and certain
values of the parameter q. Thus, if we fix a suitable value for q, we have that
‖u‖1,α ≤ C3‖u‖2,q ≤ C4‖u‖, where C4 = C4(Ω, N, α). This concludes the proof.

�

Next, we give two lemmas. In the first, we prove an a priori estimate of the
norm of a solution. In the second, we show that the problem (P 0λ ) has only the
trivial solution provided that λ < 0.

Lemma 2.2. If λ < λ1 then every solution u ∈ H10 (Ω) of (P
h
λ ) satisfies

‖u‖ ≤
√

λ1
λ1 − λ

[
‖g‖∞|Ω|1/2 + ‖h‖2

]
.

Proof: Suppose that u ∈ H10 (Ω) is a solution of (P
h
λ ). Using u as test function,

we obtain

‖u‖2 = λ

∫

Ω
u2 +

∫

Ω
g(∇u)u+

∫

Ω
hu.

By using the variational characterization of the first eigenvalue λ1 and Hölder
inequality we deduce that

(
1− λ

λ1

)
‖u‖2 ≤

∫

Ω
g(∇u)u+

∫

Ω
hu

≤ ‖g(∇u)‖2‖u‖2 + ‖h‖2‖u‖2

≤ ‖u‖√
λ1

[
‖g‖∞|Ω|1/2 + ‖h‖2

]
,

from which the assertion of the lemma clearly follows. �
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Lemma 2.3. If λ < 0 then the unique solution of (P 0λ ) is the zero solution.

Proof: Let us assume that u is a solution of

(7)
−∆u(x) = λu(x) + g(∇u(x)), x ∈ Ω

u(x) = 0, x ∈ ∂Ω

for some λ < 0. It follows from Proposition 2.1 that u ∈ C1(Ω). It suffices prove
that minΩ u = 0 = maxΩ u. We just show here that minΩ u = 0 (the proof of the
equality maxΩ u = 0 is similar, so that we leave the details to the reader). Let us
assume that, on the contrary,

min
Ω

u = u(x1) < 0, x1 ∈ Ω.

In this case, we claim that there exists r > 0 such that

(8)

∫

Ω
∇u∇ϕ > 0 for all ϕ ∈ C∞

0 (B(x1, r)) and ϕ ≥ 0

where B(x1, r) denotes the ball of center x1 and radius r. Indeed, otherwise,
for every r > 0 there would be a function ϕr ∈ C∞

0 (B(x1, r)) with ϕr ≥ 0 and
satisfying ∫

Ω
∇u∇ϕr ≤ 0.

Without loss of generality we may assume that

1

|B(x1, r)|

∫

Ω
ϕr = 1

where |·| denotes the Lebesgue measure in R
N . It follows from the fact that u is

a solution of (P 0λ ) that

λ

∫

Ω
uϕr +

∫

Ω
g(∇u)ϕr =

∫

Ω
∇u∇ϕr ≤ 0.

Thus, if we divide by |B(x1, r)|, we obtain

λ
1

|B(x1, r)|

∫

Ω
uϕr +

1

|B(x1, r)|

∫

Ω
g(∇u)ϕr ≤ 0.

Taking into account that since u ∈ C1(Ω) and ∇u(x1) = 0,

(9)

lim
r→0

1

|B(x1, r)|

∫

Ω
uϕr = lim

r→0
[u(x1) +

1

|B(x1, r)|

∫

Ω
(u − u(x1))ϕr ] = u(x1)

lim
r→0

1

|B(x1, r)|

∫

Ω
g(∇u)ϕr = lim

r→0

1

|B(x1, r)|

∫

Ω
(g(∇u)− g(∇u(x1)))ϕr = 0,
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we get from the above inequality that λu(x1) ≤ 0. This contradicts the fact that
λ < 0 by hypothesis and u(x1) < 0.
Therefore (8) holds and we can now use the Strong Maximun Principle (The-

orem 8.19 of [14]) for the Laplace operator in the ball B(x1, r) to obtain

u(x) = u(x1) for all x ∈ B(x1, r).

Hence, for all ϕ ∈ C∞
0 (B(x1, r)) which satisfies ϕ ≥ 0 we have

∫

Ω
∇u∇ϕ = 0,

which contradicts (8). This ends the proof. �

Lemma 2.4. For every λ < λ1 +
|∇g(0)|2

16 there exist ε, δ > 0 such that if

t ∈
[
1
2 , 1

]
, λ ≤ λ and ‖h‖2 < ε, then the problem

(10) u = tλLu+ L (tg(∇u) + (2t − 1)h)

has no solution u ∈ H10 (Ω) with ‖u‖ = δ.

Proof: We split the proof in two steps.

Step 1: There exists δ > 0 such that the unique solution u ∈ H10 (Ω) of (10) with
h ≡ 0 and ‖u‖ ≤ δ is the zero constant.

Step 2: Conclusion for a general term h.

Proof of Step 1: Take h ≡ 0. By applying Lemma 2.3 we can suppose without
loss of generality that 0 ≤ λ ≤ λ. We argue by contradiction assuming that there
exists sequences {tn} ⊂

[
1
2 , 1

]
, {λn} ⊂ [0, λ] and {un} ⊂ H10 (Ω) such that for

h ≡ 0 and t = tn, un is a solution of (10) satisfying 0 < ‖un‖ ≤ 1
n . Denote

wn = un/‖un‖ and observe that it verifies the equation

wn = tnλnLwn + L(tn∇g(0) · ∇wn) + L

(
tn

g(∇un)

‖un‖
− tn∇g(0) · ∇wn

)
.

By using that g is differentiable at zero and the Lebesgue dominated convergence
theorem, we derive that (passing to a subsequence if necessary),

lim
n→+∞

∥∥∥∥
g(∇un)

‖un‖
− ∇g(0) · ∇wn

∥∥∥∥
2
= 0

and it is deduced from the continuity of L that

lim
n→+∞

∥∥∥∥L

(
tn

g(∇un)

‖un‖
− tn∇g(0) · ∇wn

)∥∥∥∥ = 0.
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This together to the compactness of L, Proposition 2.1 and the boundedness of
wn in H10 (Ω) implies that, passing again to a subsequence if necessary, we can
assume that

lim
n→+∞

(tn, λn) = (t∗, λ∗) ∈
[
1

2
, 1

]
× [0, λ],

lim
n→+∞

‖wn − w‖ = 0,

with (t∗, λ∗, w) satisfying the b.v.p.

−∆w = t∗λ∗w + t∗∇g(0) · ∇w, x ∈ Ω
w = 0, x ∈ ∂Ω.

By using [3] we find that necessarily λ ≥ t∗λ∗ ≥ λ1 +
|t∗∇g(0)|2

4 ≥ λ1 +
|∇g(0)|2

16 ,
a contradiction. Thus, Step 1 is proved.

Proof of Step 2: Consider the number δ given by Step 1. To prove the
assertion of this step, we use again a contradiction argument. Let us suppose
that there exists sequences {tn} ⊂

[
1
2 , 1

]
, {λn} ⊂ (−∞, λ], {un} ⊂ H10 (Ω) and

{hn} ⊂ L2(Ω) such that un is a solution of (10) with t = tn, λ = λn, h = hn and

‖un‖ = δ, ‖hn‖2 ≤
1

n
.

Then, from Lemma 2.2, the condition ‖un‖ = δ implies that λn is bounded from
below and, consequently, by the compactness of the operator L and applying
Proposition 2.1 (passing to a subsequence if necessary) we can assume that there

exist (t∗, λ∗) ∈ [12 , 1]× (−∞, λ] and u ∈ H10 (Ω) for which

lim
n→+∞

(tn, λn) = (t∗, λ∗),

lim
n→+∞

‖un − u‖ = 0,

−∆u = t∗λ∗u+ t∗g(∇u), x ∈ Ω.

By observing that necessarily ‖u‖ = δ and t∗λ∗ ≤ λ, we obtain, from Step 1,
a contradiction proving Step 2 and hence the lemma. �

In order to prove our existence result (Theorem 2.6 below), we use in addition
to the above lemmas the following classical result about continuation property of
the topological degree:
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Theorem 2.5 (Leray-Schauder [19] (see also [11], [24])). Consider λ < λ, U an
open bounded subset of a Banach space X and, for λ ∈ [λ, λ], let T (λ, ·) : U ⊂
X −→ X be a family of compact operators such that the equation

x = T (λ, x)

has no solution in the boundary ∂U for any λ ∈ [λ, λ]. If the degree

deg(I − T (λ, ·), U, 0) 6= 0,

then there exists a continuum (connected and closed) C in the solution set Σ ≡
{(λ, x) ∈ [λ, λ]× X : x = T (λ, x)} such that

C ∩ ({λ} × U) 6= ∅, C ∩ ({λ} × U) 6= ∅.
�

Theorem 2.6. If g(0) = 0, g is differentiable at zero with ∇g(0) 6= 0 and
lim|ξ|→+∞ g(ξ) = 0 then for every λ < λ1 +

|∇g(0)|2

16 there exists ε > 0 such that

for ‖h‖2 < ε and λ ≤ λ, problem (Ph
λ ) has at least one solution. If, in addition,∫

Ω hϕ1 6= 0, then there is also η > 0 such that (for ‖h‖2 < ε)

(i) problem (Ph
λ ) has at least three solutions provided that λ1 − η < λ < λ1,

(ii) problem (Ph
λ1
) has at least two solutions,

(iii) problem (Ph
λ ) has at least three solutions provided that λ1 < λ < λ1 + η.

Proof: Clearly, to show the theorem we can suppose that λ1 < λ < λ1+
|∇g(0)|2

16 .
Let us consider the positive numbers ε and δ given by Lemma 2.4. We assume in
all the proof that ‖h‖2 < ε. We split again the proof in two steps:

Step 1: For λ ≤ λ, there exists at least one solution of (Ph
λ ) with norm smaller

than δ.

Step 2: Multiplicity of solutions provided that
∫
Ω hϕ1 6= 0.

Proof of Step 1: It suffices to prove that for every λ < 0, if λ ∈ [λ, λ] the pro-

blem (Ph
λ ) has a solution. Hence, fix λ < 0. Take U =

{
u ∈ H10 (Ω) : ‖u‖ < δ

}
and

T (λ, u) = λLu+L(g(∇u)+h). In order to verify the hypotheses of Theorem 2.5,
we observe that by Lemma 2.4 if λ ∈ [λ, λ] the equation

u = T (λ, u)

has no solution in ∂U =
{
u ∈ H10 (Ω) : ‖u‖ = δ

}
. Moreover, we claim that

deg(I − T (λ, ·), U, 0) = 1.
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Indeed, to show this, we define H : [0, 1]× U −→ H10 (Ω) and y : [0, 1] −→ H10 (Ω)
by setting

H(t, u) = tT (λ, u), t ∈ [0, 1], u ∈ H10 (Ω)

y(t) =

{
−tLh, t ∈

[
0, 12

)

(t − 1)Lh, t ∈
[
1
2 , 1

]
.

Since L : U ⊂ H10 (Ω) −→ H10 (Ω) is compact, H is also a compact map. In
addition, y is continuous and, from Lemmas 2.3 and 2.4, it satisfies

y(t) /∈ (I − H(t, ·))(∂U), ∀t ∈ [0, 1].

Hence, by the homotopy invariance of the degree,

deg(I − T (λ, ·), U, 0) = deg(I − H(1, ·), U, y(1))

= deg(I − H(0, ·), U, y(0))

= deg(I, U, 0) = 1.

This proves the claim.

Therefore, by Theorem 2.5, there exists a solution in U of problem (Ph
λ ) for

every λ ≤ λ ≤ λ, provided that ‖h‖2 < ε.

Proof of Step 2: It is well-known [25] that a continuum of solutions of (Ph
λ )

emanates from infinity at λ = λ1 with the next global property: either it contains
another bifurcation point from infinity (so greater than λ1) or its projection on
the axis λ is unbounded (recall that, since

∫
Ω hϕ1 6= 0, u = 0 is not a bifurcation

point from zero). Now we need to study the local behaviour of the bifurcation
from infinity. Thus, consider a sequence (λn, un) with Fλn

(un) = 0, ‖un‖ → ∞
and λn → λ1. We may set

wn =
un

‖un‖
for all n big enough. We observe that by taking v = ϕ1 as test function in (P

h
λn
),

we deduce that

(11) (λ1 − λn)

∫

Ω
unϕ1 =

∫

Ω
g(∇un)ϕ1 +

∫

Ω
hϕ1.

Taking subsequences (if necessary) we may assume that wn is converging in

H10 (Ω) to some w, which, by taking limits in the equation (Ph
λn
) divided by ‖un‖,

satisfies

−∆w = λ1w, x ∈ Ω
w = 0, x ∈ ∂Ω,
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i.e. w = ±ϕ1. Let us remark explicitly that both possibilities, either +ϕ1 or −ϕ1,
may occur provided that the sequence (λn, un) is properly chosen. Indeed, similar
arguments to those in [1] prove that λ = λ1 is a bifurcation point from infinity
for the problem

−∆u = λu+ + g(∇u) + h, x ∈ Ω,

u = 0, x ∈ ∂Ω.

For this problem, it is easily seen that every sequence (λn, un) with a solution un

for λ = λn such that ‖un‖ → ∞ and λn → λ1 has to satisfy

un

‖un‖
→ +ϕ1.

Now, Proposition 2.1 implies that un solves (P
h
λn
) provided that n is large enough

and, consequently, the first possibility occurs. On the other hand, the second
possibility is showed by considering the problem

−∆u = λu− + g(∇u) + h, x ∈ Ω,

u = 0, x ∈ ∂Ω.

Passing again to subsequences (if necessary) we can claim that

∇un(x)

‖un‖
= ∇wn(x)→ ±∇ϕ1(x) a.e. x ∈ Ω.

On the other hand, the following unique continuation property is true: the
measure of the set {x ∈ Ω : ∇ϕ1(x) = 0} is equal to zero. Indeed, for every
i = 1, 2, . . . , N , the derivative ∂ϕ1

∂xi
is a solution of −∆v = λ1v in Ω and, by

[12, Theorem 1.2], ∂ϕ1
∂xi
is a locally Ap-weight of Muckenhoupt [22] (see also [8]);

hence they cannot vanish on a set of positive measure. If we take into considera-
tion that lim|ξ|→+∞ g(ξ) = 0 we obtain

g(∇un(x))→ 0 a.e. x ∈ Ω

and we can use the Lebesgue dominated convergence theorem to prove that

lim
n→∞

∫

Ω
g(∇un)ϕ1 = 0,

and, consequently, by (11) we have that

lim
n→∞

(λ1 − λn)

∫

Ω
unϕ1 =

∫

Ω
hϕ1.
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Thus, if we denote c :=
∫
Ω hϕ1 we conclude that

• if c > 0 then wn =
un

‖un‖
converges to +ϕ1 (“bifurcation from +∞”) if and

only if λn < λ1 for n large enough, and wn converges to −ϕ1 (“bifurcation
from −∞”) if and only if λn > λ1 for n large enough;

• if c < 0 then wn =
un

‖un‖
converges to +ϕ1 (“bifurcation from +∞”) if and

only if λn > λ1 for n large enough, and wn converges to −ϕ1 (“bifurcation
from −∞”) if and only if λn < λ1 for n large enough.

We claim that in both cases, either c > 0 or c < 0, the continuum emanating
from infinity to the left of λ = λ1 cross the line λ = λ1 in a point (λ1, u) with
‖u‖ > δ (by Lemma 2.4). Otherwise, the global nature of the continuum means
that its projection on the λ-axis is (−∞, λ1). In this case, Lemma 2.2 and a
connectedness argument imply the existence in the continuum of a solution (λ, u)

of (Ph
λ ) with norm ‖u‖ = δ. This contradicts Lemma 2.4.

In conclusion, taking η > 0 sufficiently small we have:
• existence of at least three solutions if λ1−η < λ < λ1, one with norm smaller
than δ in the continuum given in Step 1 and other two solutions with norm
greater than δ in the continuum emanating from infinity to the left of λ1;

• existence of at least two solutions if λ = λ1, one with norm smaller than δ
in the continuum given in Step 1, and the other with norm greater than δ
in the continuum emanating from infinity to the left of λ1.

• existence of at least three solutions if λ1 < λ < λ1+η, one with norm smaller
than δ in the continuum given in Step 1, and other two solutions with norm
greater than δ in the continuum emanating from infinity to the right of λ1.

�

Remark 2.7. With respect to the existence of at least one solution of (Ph
λ ), the

above proof can be slightly modified in order to handle the more general case

λ < λ1 +
|∇g(0)|2

4 . Indeed, if λ < λ1 +
|∇g(0)|2

4 we choose 0 < r < 1 such that

λ < λ1 +
r2|∇g(0)|2

4 . We can prove in a way similar to that of Lemma 2.4 that

there exist ε, δ > 0 such that if t ∈ [r, 1], λ ≤ λ and ‖h‖2 < ε, then the problem

u = tλLu+ L

(
tg(∇u) +

(
t − 1

r
+ 1

)
h

)

has no solution u ∈ H10 (Ω) with ‖u‖ = δ, so that the proof of Step 1 in Theorem 2.6

can be extended to cover the case λ < λ1 +
r2|∇g(0)|2

4 instead of the previous one

λ < λ1 +
|∇g(0)|2

16 .

3. Final remark

Now we give a result about nonexistence of solutions. More precisely, we prove
that problem (1) has no solution provided that

∣∣∫
Ω hϕ1

∣∣ is large enough.
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Theorem 3.1. If
∣∣∫
Ω hϕ1

∣∣ > ‖g‖∞
∫
Ω ϕ1 then problem (1) has no solution.

Proof: Let us suppose that there exists a solution u ∈ H10 (Ω) of (1). Using ϕ1
as test function we get

0 =

∫

Ω
g(∇u)ϕ1 +

∫

Ω
hϕ1,

and we deduce that
∣∣∫
Ω hϕ1

∣∣ =
∣∣∫
Ω g(∇u)ϕ1

∣∣ ≤ ‖g‖∞
∫
Ω ϕ1, which concludes the

proof. �
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[9] Drábek P., Girg P., Roca F., Remarks on the range properties of certain semilinear prob-
lems of Landesman-Lazer type, J. Math. Anal. Appl. 257 (2001), 131–140.
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51 (1934), 45–78.

[20] Mawhin J., Some remarks on semilinear problems at resonance where the nonlinearity
depends only on the derivatives, Acta Math. Inform. Univ. Ostraviensis 2 (1994), 61–69.

[21] Mawhin J., Schmitt K., Landesman-Lazer type problems at an eigenvalue of odd multiplic-
ity, Results Math. 14 (1988), 138–146.

[22] Muckenhoupt B.,Weighted norm inequalities for the Hardy maximal function, Trans. Amer.
Math. Soc. 165 (1972), 207–226.

[23] Nagle R.K., Pothoven K., Singkofer K., Nonlinear elliptic equations at resonance where the
nonlinearity depends essentially on the derivatives J. Diff. Equations 38 (1980), 210–225.

[24] Nussbaum R., Uniqueness and nonuniqueness for periodics solutions of x′(t) = −g(x(t −
1)), J. Differential Equations 34 (1979), 24–54.

[25] Rabinowitz P.H., On bifurcation from infinity, J. Differential Equations 14 (1973), 462–475.
[26] Struwe M., Variational Methods. Application to Nonlinear Partial Differential Equations

and Hamiltonian Systems, Springer, 1990.
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