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Characterizing polyhedrons and manifolds

Arthur Barkhudaryan

Abstract. In [5], W. Taylor shows that each particular compact polyhedron can be char-
acterized in the class of all metrizable spaces containing an arc by means of first order
properties of its clone of continuous operations. We will show that such a character-
ization is possible in the class of compact spaces and in the class of Hausdorff spaces
containing an arc. Moreover, our characterization uses only the first order properties of
the monoid of self-maps. Also, the possibility of characterizing the closed unit interval
of the real line and some related objects in the category of partially ordered sets and
monotonous maps will be illustrated.

Keywords: monoids of continuous maps, clones

Classification: 54H15, 08A68

1. Introduction

This paper is a result of research motivated by W. Taylor’s monograph [5].
In the named paper, among other results, each particular compact polyhedron is
characterized in the class of all metrizable spaces containing an arc by means of the
first order properties of its clone of continuous operations. In the present paper we
will see that such a characterization is possible in the class of all compact spaces
and in the class of spaces containing a homeomorphic copy of the unit interval.
Also, we will show that n-dimensional topological manifolds can be characterized
in the named classes. Moreover, our characterizations are monoid-theoretical.
Our starting point is the following result.

Proposition 1.1. There exists a monoid-theoretic formula Int1 valid in the
monoid M(I) of the closed unit interval I such that the following holds:

if the monoid of continuous self-maps M(X) of a space X satisfies

M(X) |= Int1,

then

(1) up to a bijection, X is a topology on I finer than the natural topology of
the interval;

(2) X is homogeneous in the sense that it is homeomorphic to any its subin-
terval (with the topology induced by X).

Financial support of the Grant Agency of the Czech Republic under the grant No 201/02/0148
and of MSM 113200007 is gratefully acknowledged.
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Proposition 1.1 was proved by the author in [1].
As immediate corollaries we obtain the following results:

Corollary 1.2. The monoid of continuous self-maps M(X) of a compact space
X satisfies

M(X) |= Int1

if and only if X is homeomorphic to the closed unit interval I of the real line.

By a compact space we mean a space with the finite subcover property, hence
Hausdorffness is not needed.

Corollary 1.3. The monoid of continuous self-maps M(X) of a space X con-
taining an arc satisfies

M(X) |= Int1

if and only if X is homeomorphic to I.

Note that a monoid-theoretical characterization of the interval was already
obtained by Magill and Subbiah in [3] for Tychonoff spaces containing an arc.
Actually, they prove the following proposition.

Proposition 1.4. A Tychonoff space X containing an arc is homeomorphic to I

if and only if M(X) has exactly two regular D-classes.

This probably needs more detailed explanation. Given a semigroup S, one
can define three equivalences on it known as Green’s relations. Say a, b ∈ S are
L-related, if they generate the same left ideal, and R-related, if they generate
the same right ideal. The relations L and R are known to commute, hence their
composition

D = L ◦ R

is again an equivalence. If a D-equivalence class contains a regular element, then
all its members are regular; such classes are named regular D-classes .
It is easy to see that Proposition 1.4 actually gives a first-order condition for

M(X): having two regular D-classes is equivalent to having two nonequivalent
regular elements to some of which any other regular element is D-related. The
latter is clearly a first order condition as both regularity and D-equivalence are
given in first order terms.

Remark 1.5. Note that the formula Int1 actually characterizes the unit interval
in the union of the class of compact spaces and the class of spaces containing an
arc.

Before going any further let us make a few conventions. The language of
the theory of monoids will be denoted Lm. It consists of one binary functional
symbol ◦, which will be often omitted in our formulas. Also parentheses will be
omitted in view of the associativity of monoids.
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The formula
Const(x) ≡ (∀ζ)(xζ = x)

characterizes constant self-maps of a space. Constants play quite a significant role
in our formulas. We will use abbreviations like Const(x, y) instead of
Const(x)& Const(y).
The first thing to do is to characterize the boundary of the closed unit interval.

Actually this is done in [1]: take

Bd(x, y) ≡ Const(x, y)& (∀f)[(∃u, v)(fu = x& fv = y)→

→ (∀z)(Const(z)→ (∃w)fw = z)].

Thus, Bd says that whenever x and y are in the range of f , then f is onto.
Clearly Bd(x, y) holds in M(I) if and only if x and y are constants pointing the
boundary of I, i.e. 0 and 1. Hence the formula

(1) Int(x, y) ≡ Int1 & Bd(x, y)

characterizes the closed unit interval of the real line together with its boundary
in the class of compact spaces and spaces containing an arc. This will be used in
Section 3, where we show the existence of monoid-theoretical characterizations of
compact polyhedrons and topological manifolds.
Section 4 illustrates the usefulness of our methods in a different category,

namely in the category of partially ordered sets and their monotonous mappings.
The main tool is developed in Section 2. We show how the first-order properties

of the monoid of a retract can be described by the first-order properties of the
monoid of the space itself. Actually, the notions and results in Section 2 are put
in a more general setting, which allows us to use them in Section 4. The following
definitions will be useful in Sections 2 and 4.
Let X be an object in an arbitrary category K. Suppose all the finite powers

of X exist in K. Following [5], we define the clone Cl(X) of X as the ω-sorted
algebra

〈Cn; e
(n)
i ;S

n
m〉,

where

• Cn = K(Xn, X) for n ∈ ω,

• e
(n)
i : Xn → X for i < n < ω are the product projections and

• Sn
m : Cn×(Cm)

n → Cm for n,m ∈ ω are heterogeneous operations defined
as follows:

Sn
m(f ; g1, . . . , gn) = f ◦ (g1△· · ·△gn).

(△ denotes the diagonal product of morphisms.)
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Thus, the clone Cl(X) of an object X is an extension of the monoid M(X) of
endomorphisms. Likewise, the language Lc of the theory of clones is an extension
of that of monoids.

So, Lc contains ω sorts of variables f
(n)
i , n, i ∈ ω, each f

(n)
i being of the n-th

sort; constant symbols e
(n)
i for i < n < ω (again e

(n)
i being of the n-th sort); and

operational symbols Sn
m of type n×mn → m.

The n-th sort terms are constructed by the following rules:

• each f
(n)
i is an n-th sort term;

• each e
(n)
i is an n-th sort term;

• whenever t is an n-th sort term and t1, . . . , tn are m-th sort terms, then
also Sn

m(t; t1, . . . , tn) is an m-th sort term.

Atomic formulas have the form t1 = t2 for terms t1 and t2 of the same sort.
Formulas are then constructed in the usual way:

• each atomic formula is a formula;

• whenever ϕ and ψ are formulas, so are also ¬ϕ, ϕ&ψ, (∀f
(n)
i )ϕ.

For topological spaces, the language of the theory of clones is actually stronger
than that of the theory of monoids. This was first proved in [6], where V. Trnková
showed that there exist topological spaces X and Y such that the monoidsM(X)
and M(Y ) are isomorphic but the clones Cl(X) and Cl(Y ) are not elementarily
equivalent. This result was further strengthened in [4].
In the present paper, however, all the topological characterizations will be done

in the language Lm of the theory of monoids.

2. Retracts

For the purposes of Section 3, the current section could deal with only monoids
and topological spaces. However, the concepts and results presented here will also
be used in Section 4 for partially ordered sets, which is why we present this section
in full generality. (Thanks go to J. Velebil for noting that the results presented
in this section work in arbitrary categories.)
Recall that Lc denotes the language of the theory of clones. Let L′

c = Lc ∪{h}
be the same language enriched with a new 1-st sort variable h. (One would like
it better to have a new constant but we will later want to quantify it, hence a
new variable is better suited. This new variable will be later interpreted as an
idempotent, but at this point that is not important.)

For each formula ϕ in the language Lc define its restriction ϕ
h on h according

to the following scheme:

• if ϕ is the atomic formula t1 = t2, where t1 and t2 are terms of sort n,
take

ϕh ≡ Sn
n(t1;S

1
n(h; e

(n)
0 ), . . . , S

1
n(h; e

(n)
n−1)) = S

n
n(t2;S

1
n(h; e

(n)
0 ), . . . , S

1
n(h; e

(n)
n−1));
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• if ϕ ≡ ¬ψ then ϕh ≡ ¬(ψh), if ϕ ≡ ψ& θ then ϕh ≡ (ψh)& (θh);

• if ϕ ≡ (∀f
(n)
i )ψ, then

ϕh ≡ (∀f
(n)
i )[S1n(h;S

n
n(f

(n)
i ;S1n(h; e

(n)
0 ), . . . , S

1
n(h; e

(n)
n−1))) =

= Sn
n(f

(n)
i ;S1n(h; e

(n)
0 ), . . . , S

1
n(h; e

(n)
n−1))→ ψh].

Let now K be a category andX,Y ∈ obj(K). Let r : X → Y be a retraction and
c : Y → X its corresponding coretraction (so r ◦ c = 1Y ). Put h = c ◦ r : X → X .
The morphism h : X → X will be the interpretation of the variable h of the
enriched language L′

c. Suppose that all the finite powers of X and Y exist in K,
so we can speak of the clone of X , which is the algebraic structure

Cl(X) = 〈Xn;Sn
m;π

(n)
i 〉.

For any morphism F : Xn → X let Fh : Y n → Y denote its restriction r ◦F ◦ cn

on Y . The clone of Y will be constructed as the restriction of Cl(X). In other
words, we will choose

p
(n)
i = [π

(n)
i ]

h

as the respective projections of the clone

Cl(Y ) = 〈Y n;Sn
m; p

(n)
i 〉.

A morphism F : Xk → X will be said to be h-invariant if

h ◦ F ◦ hk = F ◦ hk.

Note that each projection is h-invariant.

The following simple remarks will be useful in proving the Proposition 2.3.

Remark 2.1. For any m-th sort term t in the language Lc with free vari-

ables among f1, . . . , fn, where fi is an abbreviation for f
(ki)
ji
, and any collection

F1, . . . , Fn of h-invariant K-morphisms, Fi : X
ki → X , the morphism

tX(F1 . . . , Fn)

is also h-invariant. In other words, any composition of h-invariant maps is h-
invariant.
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Remark 2.2. For any m-th sort term t in the language Lc with free vari-

ables among f1, . . . , fn, where fi is an abbreviation for f
(ki)
ji
, and any collection

F1, . . . , Fn of h-invariant K-morphisms, Fi : X
ki → X , the following holds:

[tX(F1, . . . , Fn)]
h = tY (Fh

1 , . . . , F
h
n ).

Again, in human language, this says that the restriction of a composition is the
composition of restrictions.

Proposition 2.3. Let ϕ be a formula in the language Lc with free variables

among f1, . . . , fn, where fi is an abbreviation for f
(ki)
ji
. Let F1, . . . , Fn be h-

invariant K-morphisms, Fi : X
ki → X . Then

Cl(X) |= ϕh[F1, . . . , Fn] iff Cl(Y ) |= ϕ[Fh
1 , . . . , F

h
n ].

Proof: The proof goes by induction on the complexity of ϕ.
Suppose ϕ is the atomic formula t1 = t2, the terms t1 and t2 being of sort m.

Then, by Remarks 2.1 and 2.2,

tXi (F1, . . . , Fn) ◦ h
m = h ◦ tXi (F1, . . . , Fn) ◦ h

m

= c ◦ r ◦ tXi (F1, . . . , Fn) ◦ c
m ◦ rm

= c ◦ tYi (F
h
1 , . . . , F

h
n ) ◦ r

m.

Thus

Cl(X) |= ϕh[F1, . . . , Fn] iff

tX1 (F1, . . . , Fn) ◦ h
m = tX2 (F1, . . . , Fn) ◦ h

m iff

c ◦ tY1 (F
h
1 , . . . , F

h
n ) ◦ r

m = c ◦ tY2 (F
h
1 , . . . , F

h
n ) ◦ r

m iff

tY1 (F
h
1 , . . . , F

h
n ) = t

Y
2 (F

h
1 , . . . , F

h
n ) iff

Cl(Y ) |= ϕ[Fh
1 , . . . , F

h
n ].

(The third iff is because of c being a mono and r being an epi.)
If ϕ ≡ ¬ψ, then obviously

Cl(X) |= ϕh[F1, . . . , Fn] iff

Cl(X) 6|= ψh[F1, . . . , Fn] iff

Cl(Y ) 6|= ψ[Fh
1 , . . . , F

h
n ] iff

Cl(Y ) |= ϕ[Fh
1 , . . . , F

h
n ].
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Similarly, if ϕ ≡ ψ& θ, then

Cl(X) |= ϕh[F1, . . . , Fn] iff

Cl(X) |= ψh[F1, . . . , Fn] and Cl(X) |= θh[F1, . . . , Fn] iff

Cl(Y ) |= ψ[Fh
1 , . . . , F

h
n ] and Cl(Y ) |= θ[Fh

1 , . . . , F
h
n ] iff

Cl(Y ) |= ϕ[Fh
1 , . . . , F

h
n ].

Now let ϕ ≡ (∀f
(k)
i )ψ(f

(k)
i , f1, . . . , fn). Suppose

(2) Cl(X) |= ϕh[F1, . . . , Fn].

Let H : Y k → Y be arbitrary; set F = c ◦H ◦ rk. Then

Fh = r ◦ F ◦ ck = r ◦ c ◦H ◦ rk ◦ ck = H.

Also, F is h-invariant as h◦F ◦hk = h◦c◦H◦rk◦hk = c◦H◦rk◦hk = F ◦hk. Thus,
as Cl(X) |= ψh[F, F1, . . . , Fn] surely holds, we have the induction hypothesis that

Cl(Y ) |= ψ[H,Fh
1 , . . . , F

h
n ].

This proves the validity of

(3) Cl(Y ) |= ϕ[Fh
1 , . . . , F

h
n ].

Conversely, suppose (3) holds. Let F : Xk → F be any h-invariant morphism.
Then

Cl(Y ) |= ψ[Fh, Fh
1 , . . . , F

h
n ].

But by the induction hypothesis this exactly means that

Cl(X) |= ψh[F, F1, . . . , Fn].

As F was arbitrary h-invariant this proves that (2) holds. The proof is complete.
�

3. Manifolds and polyhedrons

Throughout this section we work with first order formulas in the language Lm.
Suppose X is a compact space and h : X → X is a retraction on an arc Y ⊆ X .

Then M(Y ) |= Int1. Hence, by Proposition 2.3,

M(X) |= Inth1 .
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On the other hand, if M(X) |= Inth1 , then

M(Y ) |= Int1 .

As the image of a compact space is compact, we get Y is an arc.
Now notice that retractions can be characterized by the formula

Ret(h) ≡ (h ◦ h = h).

Hence the formula
(∃h)Ret(h)& Inth1

characterizes in the class of compact spaces those having the closed interval as
their retract.
Note that replacing Inth1 by Int

h(x, y)& Const(x, y)& hx = x& hy = y in the
above formula we get characterizations of retractions on intervals with endpoints
x and y. Let us denote the formula thus obtained as I Ret(h, x, y).
Now we are ready to characterize more complicated objects in the class of

compact spaces. Take

Celln(f1, . . . , fn, g1, . . . , gn) ≡

{

n
∧

i=1

(Ret(fi)& Ret(gi))&

(∃h1) . . . (∃hn)(∃u1, v1) . . . (∃un, vn)[

n
∧

i=1

I Ret(hi, ui, vi)&

(∀x1) . . . (∀xn)(

n
∧

i=1

(Const(xi)& hixi = xi)→ (∃1x)(
n
∧

i=1

hix = xi))&

n
∧

i=1

(∀x)(Const(x)→ (fi ◦ x = x↔ hi ◦ x = ui)& (gi ◦ x = x↔ hi ◦ x = vi))]
}

,

where (∃1x) . . . means “there exists exactly one x such that . . . ”.

Proposition 3.1. For any compact space X and its continuous self-maps

F1, . . . , Fn, G1, . . . , Gn ∈M(X)

the following statements are equivalent:

(i) M(X) |= Celln(F1, . . . , Fn, G1, . . . , Gn),
(ii) X is homeomorphic to the n-cell In and the functions Fi and Gi are

projections on the respective edges.
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Proof: Clearly the formula holds for the n-cell and its projections on edges. So
the opposite direction should only be proved.
Suppose X is a compact space, Fi, Gi : X → X are continuous maps for

i = 1, . . . , n and suppose

M(X) |= Celln(F1, . . . , Fn, G1, . . . , Gn)

holds. The first raw in the above definition of Celln says that all the Fi’s and Gi’s
are retractions. The second raw acquires the existence of n retractions Hi : X →
X and 2n constants ui, vi ∈ X such that ui and vi lie in the range Yi = Hi(X) of
Hi and, moreover, each Yi is homeomorphic to the closed unit interval I, whereas
ui and vi are its boundary points.
At this point we can form the diagonal product of the maps Hi: let

H = H1△ . . .△Hn : X → Y = Y1 × · · · × Yn.

The third raw in the definition simply says that thus defined H is a bijection.
Hence we have a continuous bijection of the compact space X onto a Hausdorff
space Y . Clearly this bijection should be a homeomorphism. But each Yi is in
turn homeomorphic to I, consequently X is homeomorphic to the n-cell In.
Now it suffices to notice that the last raw in the definition of Celln only says

that the range of Fi (Gi) is the preimage of ui (vi, respectively) under Hi. Under
the homeomorphism H it transforms to the preimage of the boundary point ui

(vi) under the i-th projection

πi : Y1 × · · · × Yn → Yi.

So the homeomorphism H transforms X to the n-cell Y and transforms each Fi

and Gi to the projection onto the corresponding edge. This is what should have
been proved. �

Remark 3.2. For n = 0 one can take

Cell0 ≡ (∀x)(∀y)x = y.

This is clearly a characterization of the 0-cell — a singleton.

It is clear how one can build a formula

CellRetn(h; f1 . . . , fn, g1 . . . , gn)

from the above Celln which characterizes all the retractions of the space onto
an n-cell, with f1, . . . , fn and g1, . . . , gn being the corresponding retractions of
the whole space onto the edges of the cell. To be more precise, we want the
equivalence of the following statements:

• M(X) |= CellRetn(H ;F1 . . . , Fn, G1 . . . , Gn),
• H : X → X is a retraction with the range Y = H(X) being homeo-
morphic to the n-cell In and the maps Fi and Gi are retractions on the
corresponding edges of Y .
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Note that an n-cell can also be looked at as an n-simplex. To make also
the boundary “simplicial” we can glue up the second n-tuple of edges into one.
Formally, let

Simplexn(f1, . . . ,fn, fn+1) ≡ fn+1 ◦ fn+1 = fn+1&

(∃g1) . . . (∃gn)Celln(f1, . . . , fn, g1, . . . , gn)&

(∀x)(Const(x)→ (fn+1 ◦ x = x↔
n
∨

i=1

gi ◦ x = x)).

The formula Simplexn(F1, . . . , Fn+1) holds for a space X if and only if X is
an n-simplex and F1, . . . , Fn+1 are retractions onto all of its edges. Again we
can construct a new formula SimRetn(h; f1, . . . , fn+1) which characterizes the
retractions onto an n-simplex and retractions on its edges.
Now it is easy to characterize every particular compact polyhedron by a first-

order formula in the language of monoids in the class of all compact spaces.
Really, let a compact polyhedron K be given. Recall that any such K can be

triangulated by a finite simplicial complex. The latter is given by a finite set V
of vertices and a set S of non-empty subsets of V with the properties that

(i)
⋃

S = V ,
(ii) if s ∈ S and ∅ 6= r ⊆ s, then r ∈ S.

For such a polyhedron K define

ComplexK ≡ (∃h(s))s∈S(∃f
(s)
v )v∈s∈S{

∧

s∈S

SimRet|s|−1(h
(s); f

(s)
v )v∈s &

∧

s⊆r
s,r∈S

(∀x)(Const(x)→ (h(s) ◦ x = x↔
∧

v∈r\s

f
(r)
v ◦ x = x))&

∧

s∩r=∅
s,r∈S

(∀x)(Const(x)→ (h(s) ◦ x 6= x ∨ h(r) ◦ x 6= x))&

∧

s∩r=t
s,r,t∈S

(∀x)(Const(x)→ (h(t) ◦ x = x↔ (h(s) ◦ x = x& h(r) ◦ x = x)))&

(∀x)(Const(x)→
∨

s∈S

h(s) ◦ x = x)}.

The formula needs some explanation. First, the existence of |S| retractions is
required (so another way to write the first quantifier is

(∃h(s1))(∃h(s2)) . . . (∃h(s|S|)) . . . ).
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Then, for each s ∈ S we need the existence of |s| retractions on edges, which is
the meaning of the second quantifier. The most curious looks the subformula

SimRet|s|−1(h
(s); f

(s)
v )v∈s.

It has to say that h(s) is a retraction on a |s| − 1-dimensional simplex with

edges {f
(s)
v }v∈s, but we have no naturally defined order for the variables f

(s)
v .

Luckily this does not matter at all as the formula Simplexn(f1, . . . , fn+1) is
symmetric with respect to its variables (unlike Celln). This expresses the fact
that one can permute arbitrarily the edges of any simplex by affine maps.

As a conclusion, we can understand SimRet|s|−1(h
(s); f

(s)
v )v∈s as the formula

SimRet|s|−1(h
(s); f

(s)
v1 , . . . , f

(s)
v|s|), where v1, . . . , v|s| is an arbitrarily chosen enu-

meration of s.
It is easily seen that ComplexK characterizes the polyhedron K in the class

of all compact spaces. Really, the formula ComplexK is nothing else than the
definition of the topological representation of the complex 〈V, S〉. Let us formulate
this result as a

Proposition 3.3. For any compact space X , M(X) |= ComplexK if and only if
X is homeomorphic to K.

Now we characterize all the compact n-dimensional topological manifolds in
the class of all compact Hausdorff spaces (n ∈ ω). This will be done by the
following formula:

Mann ≡ (∀x){Const(x)→

(∃h)(∃f1) . . . (∃fn)(∃g1) . . . (∃gn)[Cell Retn(h; f1 . . . , fn, g1 . . . , gn)&

(∃u, v)(u ◦ v = 1& v ◦ u = 1& u ◦ x 6= x&

(∀y)(Const(y)→ (u ◦ y 6= y ↔ h ◦ y = y&
n
∧

i=1

(fi ◦ y 6= y& gi ◦ y 6= y))))]}.

(1 in the above formula is the unit of the monoid.)

Proposition 3.4. For any natural number n ≥ 1 and any compact Hausdorff
space X the following statements are equivalent:

(i) M(X) |= Mann,
(ii) X is an n-dimensional topological manifold.

Proof: We only need to translate the formula Mann into informal language. It
says “for any point x ∈ X there exists a retraction H : X → X such that the
image Y = H(X) is an n-cell with boundary ∂Y and the following holds: there
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exists a homeomorphism U of X onto itself, which moves precisely those points
of X which lie in Y , but not on its border ∂Y , and moves the point x”.
It is straightforward to prove that for Hausdorff spaces the above statement is

equivalent to the fact that each point has a neighborhood homeomorphic to R
n.
�

0-dimensional compact manifolds (i.e. finite discrete spaces) are characterized
much easier; for example by the formula

Discrete ≡ (∀x)[Const(x)→ (∃f)(∀y)(Const(y)→ (f ◦ y 6= y ↔ y = x))].

Remark 3.5. Note that one can similarly characterize all the n-dimensional
topological manifolds with boundary. Changes are minimal: just let the homeo-
morphism U move all the interior points of Y and also (the interior of) one edge
of it, leaving the rest of the space fixed.

Trying to carry the same considerations for the class of all spaces containing an
arc we come across a single difficulty: a retract of such a space need not contain
an arc (it can be e.g. a point). This difficulty, however, is easily removed by the
following well-known fact:

Lemma 3.6. Let X be a Hausdorff space and f : I → X a nonconstant contin-

uous map. Then f(I) contains an arc (it is even arcwise connected).

For the proof consult [2].

Consider the formula

Ret′(h) ≡ Ret(h)& (∀x, y)[(Const(x, y)& x 6= y)→ (∃f)(hf = f & fx 6= fy)].

Suppose X is a Hausdorff space containing an arc, h : X → X , and suppose

Cl(X) |= Ret′(h).

Then h is a retraction onto a subspace Y such that continuous maps from X to
Y separate the points in X . Lemma 3.6 then implies that Y contains an arc.
On the other hand, if X is a completely regular space containing an arc, then

Ret′(h) holds if and only if h is a retraction on a subspace containing an arc.
Thus, substituting Ret′ for Ret in the earlier formulas we obtain the following

result:

Proposition 3.7.

(a) For each compact polyhedron K there exists a monoid-theoretical first-
order formula Complex′K such that, for any Hausdorff space X that con-

tains an arc,M(X) |= Complex′K if and only if X is homeomorphic to K.
(b) For each natural number n ∈ ω there exists a monoid-theoretical first-

order formula Man′n such that, for any Hausdorff space X containing an
arc,

M(X) |= Complex′K if and only if X is an n-dimensional topological
manifold.
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4. Posets

In this section, we will try to illustrate the usefulness of the methods developed
in Section 2 in the category Poset of posets and monotonous maps.
Let P be a poset with order ≤. We will see how one can speak about the

order directly in the language of the theory of monoids (applied to the monoid of
monotone self-maps). The first thing to note is, that the category Poset contains
constant maps. So we can again speak about elements of posets in the language
of monoids and/or clones. For better readability of the formulas, variables like a,
b, c, x, y, z will be always relativized to constant functions.
Suppose a, b ∈ P are incomparable elements and let c, d ∈ P be such that

c ≥ d. Then we can define a map

f(x) =

{

c, if a ≤ x,

d, otherwise.

This is evidently a monotone map and witnesses for the following statement:
The points a, b ∈ P are incomparable if and only if they satisfy the following
formula:

Inc(a, b) ≡ (∃x, y)(∃f, g)[x 6= y& f ◦ a = x& f ◦ b = y&

g ◦ a = y& g ◦ b = x& ].

Denote Comp(a, b) ≡ ¬ Inc(a, b). Thus, Comp(a, b) holds if and only if a and
b are comparable.
Now suppose a < b and c ≤ d. Then there is a monotonous map taking a to c

and b to d. Really, one can take

g(x) =

{

d, if b ≤ x,

c, otherwise.

So the formula
x ≤

a,b
y ≡ (∃f)(f ◦ a = x& f ◦ b = y)

characterizes those pairs (x, y) which are in the same order as (a, b), in case a and
b are comparable. We will also use the abbreviation

x <
a,b

y ≡ x ≤
a,b

y& x 6= y.

Now we can start characterizing certain classes of posets. Non-discrete posets
are characterized by the formula

N Diskr ≡ (∃a, b)(a 6= b& Comp(a, b)).
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It is possible to characterize e.g. non-trivial lattices by

Lattice ≡ (∃a, b)[a 6= b& Comp(a, b)&

(∀x, y)(∃u)(u ≤
a,b

x& u ≤
a,b

y&(∀t)(t ≤
a,b

x& t ≤
a,b

y → t ≤
a,b

u)&

(∀x, y)(∃v)(x ≤
a,b

v& y ≤
a,b

v&(∀z)(x ≤
a,b

z& y ≤
a,b

z → v ≤
a,b

z))].

One sees how to characterize distributive lattices, modular lattices, Boolean alge-
bras etc. We will need the characterization of linear orders with a least element
a and a greatest element b:

Linear(a, b) ≡ Comp(a, b)& (∀x, y)(x ≤
a,b

y ∨ y ≤
a,b

x)& (∀x)(a ≤
a,b

x ≤
a,b

b).

Now, in a linearly ordered set with a least element a and a greatest element b
we can characterize the continuous monotonous maps f by the following formula
(cf. the formula Cont in [1]):

Cont(f) ≡ (∀x, y, z){[(a <
a,b

x& y <
a,b

f ◦ x)→ (∃a′)(a′ <
a,b

x& y <
a,b

f ◦ a′)] &

[(x <
a,b

b& f ◦ x <
a,b

z)→ (∃b′)(x <
a,b

b′& f ◦ b′ <
a,b

z)]}.

In the language Lc of the theory of clones one can similarly construct a formula
Cont2(f) characterizing continuous monotonous maps f : X

2 → X for a linearly
ordered set X . We will not write this formula down as it is lengthy and is not
particularly interesting.
A linear order is dense and complete if and only if it has no continuous and

monotonous 2-valued self-maps. Thus the following formula characterizes among
the linear orders those which are dense and complete (cf. Con in [1]):

Con ≡ (∀f))[(Cont(f)& (∃x, y)(f ◦ x 6= f ◦ y))→

(∀u, v)(∃x)(u 6= f ◦ x 6= v)].

Now, consider the clone-theoretic formula

Cen ≡ (∃f
(2)
0 )[Cont2(f

(2)
0 )& (∀x, y)(x <

a,b
y → x <

a,b
S20(f

(2)
0 ;x, y) <

a,b
y)].

It states that one can continuously (and monotonously) choose a point in every
open subinterval. The map

(x, y) 7→
x+ y

2
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witnesses the fact that the formula Cen holds in Cl(I). On the other hand, it was
proved in [1] that a dense and complete order with a least and greatest element,
where one can continuously choose points in open subintervals, is isomorphic to
the natural order of the closed unit interval (see [1], the two paragraphs before
Theorem 1). In other words, the clone-theoretic formula

Interval ≡ (∃a, b)(a 6= b& Linear(a, b)& Con & Cen)

characterizes the interval in the category Poset.
Using the methods of Section 2 one can now characterize any finite power of I

(in the category Poset). Also it is possible to characterize some posets that arise
as amalgamations of those posets, e.g. the “circle”

{(x, y) ∈ R
2;x2 + y2 = 1} with (x, y) ≤ (x′, y′) iff x ≤ y and yy′ ≥ 0,

the “triode”

KKKKKK

•
ssssss

ordered “from left to right”, more generally each finite topological tree (i.e. a
finite tree made of intervals and ordered from root to leaves) etc.
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