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Topological characterization of the small cardinal i

Antonio de Padua Franco-Filho

Abstract. We show that the small cardinal number i = min{|A| : A is a maximal
independent family} has the following topological characterization: i = min{κ ≤ c :
{0, 1}κ has a dense irresolvable countable subspace}, where {0, 1}κ denotes the Cantor
cube of weight κ. As a consequence of this result, we have that the Cantor cube of
weight c has a dense countable submaximal subspace, if we assume (ZFC plus i = c), or
if we work in the Bell-Kunen model, where i = ℵ1 and c = ℵω1

.
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1. Introduction

In this paper we will explore the relationship between the independent families
of the power set of ω and the canonical subbasis of the Cantor cubes of weight
≤ c. Let {0, 1}I be the Cantor cube of weight ℵ0 ≤ |I| ≤ c. The elements of the
canonical basis of this topological product space will be denoted by W (p), which

by definition, is W (p) = {s ∈ I2 : s ↾ dom(p) = p}, for each p ∈ Fn(I, 2), where
Fn(I, 2) is the set of all finite partial functions from the set I into 2.

Let us recall the definitions of independent families and irresolvable spaces.

Definition 1.1. A ⊂ P(ω) is an independent family if and only if for all n,m ∈ ω
and all pairwise distinct elements a0, . . . , an, b0, . . . , bm of A we have |a0 ∩ · · · ∩
an ∩ (ω \ b0) ∩ · · · ∩ (ω \ bm)| = ω.
We will always assume |A| > ω and we say that A is a maximal independent

family if for all x ∈ P(ω) \ A, A∪ {x} is not an independent family.

Definition 1.2. Let (X, τ) be a Hausdorff dense-in-itself space. X is an irresolv-
able space if and only if for all dense subset D ⊂ X we have int(D) 6= ∅.

Definition 1.3. Let us define the following small cardinal numbers:

i = min{|A| : A ⊂ P(ω) is a maximal independent family} and
λ = min{κ ≤ c : ∃A ⊂ {0, 1}κ dense irresolvable countable subspace}.
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2. Main theorem

Definition 2.1. (1) If A = {Ai : i ∈ I} is any family of subsets of ω, we define
the mapping ψA : ω −→ {0, 1}I by: (∀x ∈ ω) (∀ i ∈ I)

ψA(n)(i) =

{

0 if n ∈ Ai

1 if n ∈ ω \Ai.

(2) If A = {an : n ∈ ω} ⊂ {0, 1}I , let A∗(A) = {Ai : i ∈ I}, where Ai = {n :
an(i) = 0}.

To show that i = λ we need to prove the following lemma.

Lemma 2.2. (a) If A ⊂ P(ω), then A∗(ψA(ω)) = A.
(b) If A = {an : n ∈ ω} ⊂ {0, 1}I , then ψA∗(A)(ω) = A.

(c) A is dense in {0, 1}I if and only if A∗(A) is an independent family. Fur-
ther, if A is dense, then |I| = |A∗(A)|.

(d) A is dense and irresolvable if and only if A∗(A) is maximal independent.

Proof: (a) We define A = {ψA(n) : n ∈ ω}. Given any Ai ∈ A, then we have
Ai = {n : ψA(n)(i) = 0}.

(b) As ψA∗(A)(n)(i) = an(i), ∀ i ∈ I we have that ψA∗(A)(n) = an.

(c) Assume that A is dense in {0, 1}I .
Given n,m ∈ ω and B = {U1, . . . , Un, V1, . . . , Vm} a set of pairwise distinct el-
ements of A∗(A), pick p ∈ Fn(I, 2) such that: dom(p) = {i ∈ I : Ai ∈ B},
and

p(i) =

{

0 if Ai ∈ {U1, . . . , Un}

1 if Ai ∈ {V1, . . . , Vm}.

Since A is dense in {0, 1}I we have |W (p) ∩A| = ω and

{n ∈ ω : an ∈ W (p)} = U1 ∩ · · · ∩ Un ∩ (ω \ V1) ∩ · · · ∩ (ω \ Vm)

which shows that A∗(A) is independent.
If A is not dense, there is p ∈ Fn(I, 2) such that W (p) ∩ A = ∅. Then

⋂

{Ai :
p(i) = 0}∩

⋂

{Ai : p(i) = 1} = ∅, which shows that if A∗(A) is independent, then

A is dense in {0, 1}I . If A is dense, then Ai 6= Aj whenever i 6= j. Indeed, if i 6= j
and Ai = Aj , then an(i) = an(j) for each n ∈ ω, hence A is not dense.

(d) Assume that there exist two dense subsets D0, D1 in the space A such that
D0 ∪D1 = A and D0 ∩D1 = ∅. Then, for instance, {n : an ∈ D0} /∈ A∗(A) and
A∗(A) ∪ {{n : an ∈ D0}} = B would be an independent family.
Now suppose that B ⊂ ω, B /∈ A∗(A) and A∗(A) ∪ {B} is an independent

family. Then for all p ∈ Fn(I, 2) \ {∅} we have W (p) ∩ {an : n ∈ B} 6= ∅ 6=
W (p) ∩ {an : n ∈ A \B}.
This shows that the space A is resolvable if and only if the independent family

A is not maximal. �
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Theorem 2.3. i = λ.

Proof: We first prove i ≤ λ. Pick A ⊂ {0, 1}λ a countable dense irresolvable
subspace of the Cantor cube of weight λ. By Lemma 2.2(d), we have that A∗(A)
is a maximal independent family of cardinality |A∗(A)| = λ, hence i ≤ λ.
Now we prove λ ≤ i. Let A ⊂ P(ω) be a maximal independent family of car-

dinality |A| = i. By Lemma 2.2(d), A = ψA(ω) is a dense, countable, irresolvable
subspace of the Cantor cube {0, 1}i. Hence λ ≤ i. �

3. Submaximal spaces

We say that a topological space (X, τ) is a submaximal space if and only if
every dense subset of X is open in X .
In [ASTTW] the authors show that the Tychonoff cube [0, 1]c in a model of

ZFC plus BL (Booth’s Lemma or equivalently p = c), has a dense countable
submaximal subspace. It is well known that p ≤ i and that it is consistent that
p < i. In [Ma], Malykhin shows that in the Bell-Kunen’s model, the Cantor cube
of weight ω1 has a dense countable irresolvable subspace. Thus, in this model, by
Theorem 2.3, it is true that i = ω1. Also we will show that the Cantor cube of
weight c = ℵω1 has a dense countable submaximal subspace. Hence the existence
of these dense countable subspaces of these cubes is independent of i = c or p = c.
Let A be an independent family of P(ω). Follows from Lemma 2.2(c) that

ψA(ω) is the dense subspace of the Cantor cube {0, 1}
A.

Definition 3.1. We say that M ⊂ ω is dense (open) in A if ψA(M) is dense
(open) in ψA(ω).

Lemma 3.2. (a) D is dense in A if and only if ∀ p ∈ Fn(A, 2) \ {∅} holds
D ∩ V (p) 6= ∅.
(b) G is open in A if and only if for each x ∈ G there exists p ∈ Fn(A, 2) such
that x ∈ V (p) ⊂ G.

Proof: Let X = (ω, τ) be the topological space whose basis of open set is:
{V (p) : p ∈ Fn(A, 2) \ {∅}}, and each V (p) is defined by:

V (p) =
⋂

{V : p(V ) = 0} ∩
⋂

{ω \ V : p(V ) = 1}.

By Lemma 2.2(c), ψA is a continuous open mapping from X onto the dense

subspace ψA(ω) of {0, 1}
A. �

The following example is important for construction subsets of ω which are
dense and open in a given independent family, like in Lemma 3.5 and Lemma 3.7(ii).

Example 3.3. Let Z = {z ∈ 2ω : {n : z(n) = 1} is finite}; Z is a countable
dense subspace of the Cantor set.
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Choose s ∈ 2ω such that |{n : s(n) = 0}| = |{n : s(n) = 1}| = ω, and define
the family A = {Aα : α ∈ ω}, where Aα = {z ∈ Z : z(α) = s(α)}, ∀α ∈ ω.
Then follows easily from the definition, that A satisfies:

⋂

A = ∅ and
⋃

A = Z.
Now we define the independent family T = {Tα : α ∈ ω}, where for each α ∈ ω,
Tα = {n ∈ ω : zn ∈ Aα} and Z = {zn : n ∈ ω} is an enumeration of the set Z.

Lemma 3.4. Let A ⊂ B be two independent families. Then

(i) D ⊂ ω, dense in B, implies D is also dense in A,
(ii) G ⊂ ω, open in A, implies G is also open in B.

Proof: If we pick p ∈ Fn(B, 2) such that dom(p) ⊂ A, then both (i) and (ii)
follow easily from the Lemma 3.2. �

Lemma 3.5. Let D be a subset of ω such that:

(i) D =
⋃

n∈ωDn and for all n ∈ ω, |Dn| ≥ 1,
(ii) n 6= m =⇒ Dn ∩Dm = ∅.

Let T be the independent family of Example 3.3. Define D = {Vα : α < ω},
where Vα =

⋃

{Dn : n ∈ Tα}. Then the family D is independent as the family T
is independent; D is open in D as

⋃

T = ω.

Lemma 3.6. Let A be an independent family and suppose that |A| < i. If
D ⊂ ω is dense in A, then there exists a sequence {Dn : n ∈ ω} of subsets of D
such that:

(i) for each n ∈ ω , Dn is dense in A,
(ii) n 6= m =⇒ Dn ∩Dm = ∅,
(iii)

⋃

n∈ωDn = D.

Proof: Follows from the Main Theorem, |A| < i =⇒ |A| < λ and hence any

dense countable subset of {0, 1}A is resolvable. �

Lemma 3.7. Let D ⊂ ω be dense in A and suppose that |A| < i. Then there
exists an independent family B ⊂ P(ω) such that:

(i) A ⊂ B and |B \ A| = ω,
(ii) D is dense and open in B.

Proof: Let {Dn : n ∈ ω} be a sequence of subsets of D, as in Lemma 3.6. By
Lemma 3.5, we may define an independent family D, such that D is open in D.
The family B = A∪D is independent by definition of D and density of each Dn,
which also imply that D is dense in B. �

Theorem 3.8 (i = c). There exists an independent family A ⊂ P(ω) such that:

(i) |A| = c and
(ii) if D ⊂ ω is dense in A, then D is open in A.



Topological characterization of the small cardinal i 749

Proof: Let {Eα : α < c} be an enumeration of all infinite subsets of ω with
E0 = ω, and choose an independent family A0 such that |A0| < c and

⋃

A0 = ω.
By transfinite induction on c \ {0}, we can choose a sequence of independent
families {Aα : α ∈ c \ {0}}, such that, by Lemma 3.7:

(i) Aα ⊂ Aα+1,
(ii) |Aα+1 \Aα| = ω,
(iii) if Eα is dense in Aα, then Eα is dense and open in Aα+1, and
(iv) if β is a limit ordinal, then Aβ =

⋃

α∈β Aα.

The independent family A =
⋃

α∈c Aα has |A| = c. Also, if D ⊂ ω is dense in
A then ∃α ∈ c such that D = Eα and this set is dense in Aα as it is dense in A,
by Lemma 3.4(i). Therefore by construction, it is open in Aα+1, so it is also open
in A, by Lemma 3.4(ii). �

Corollary 3.9 (i = c). The Cantor cube {0, 1}c has a dense countable submax-

imal subspace.

Proof: Let A be an independent family which satisfies Theorem 3.8 and let
ψA(ω) be a dense countable subspace of the Cantor cube of weight c. If D is
dense in A, then ψA

−1(D) is dense in A, so it is also open in A, which implies
that D is open in ψA(ω). �

4. Bell-Kunen’s model

Let M be a countable transitive model of ZFC plus GCH. In [BK], Bell and
Kunen construct in M an increasing family of partial ordered sets {Pα : α ≤ ω1}
such that:

(i) each Pα has c.c.c.,
(ii) if β is limit, Pβ =

⋃

{Pα : α < β},
(iii) if α is not a limit ordinal, then Pα is such that both MA (Martin’s axiom)

and 2ω = ℵα hold in M
Pα .

Let G = Gω1 be a Pω1 − generic overM and Gα = G∩Pα for each α ≤ ω1. In
Mω1 there is a transfinite increasing sequence of models {Mα =M [Gα] : α ≤ ω1},
and if α > 0 is a non-limit ordinal, then the assertion “MA plus c = ℵα ” is true
in Mα. Let us also note that, inMω1 , the power set of all subset of ω is the union
of the increasing sequence {P(ω) ∩Mα+1 : α < ω1}.

Theorem 4.1. In the Bell-Kunen’s model there is an independent family A ⊂
P(ω) such that every D ⊂ ω dense in A is also open in A. Further |A| = c.

Proof: By transfinite induction in Mω1 , we construct an increasing sequence of
independent families {Aα : α < ω1} such that, in Mα+1, the independent family
Aα satisfies Theorem 3.8. This is possible because MA holds in Mα+1, thus i =
c = ℵα+1. Now, we look at this family in Mα+2, and in this model we have that
|Aα+1| ≤ ℵα+1 < ℵα+2 = c. Then, by the prove of the Theorem 3.8, in Mα+2,
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we can choose an independent family Aα+2 ⊃ Aα+1, such that (in Mα+2) if D is
dense in Aα+2, then it is open too. (For a limit ordinal we take the union.) The
family A =

⋃

{Aα : α < ω1} is an independent family in Mω1 . Also, if D ⊂ ω is
dense in A, then ∃α < ω1 such that D ∈ P(ω) ∩Mα+1 and D is open in Aα+2

(in Mα+2), so it is open in A in Mω1 . Further, for each α ∈ ω1 we have that
|Aα+2| = c (in Mα+2) hence, follows |A| = c in Bell-Kunen’s model. �

Corollary 4.2. In the Bell-Kunen’s model there is a countable dense submaximal

subspace X of the Cantor cube {0, 1}c.

Proof: Let A be an independent family as in Theorem 4.1 and take X = ψA(ω)
be the countable dense submaximal subspace of {0, 1}c. �
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