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In search for Lindelöf Cp’s

Raushan Z. Buzyakova

Abstract. It is shown that if X is a first-countable countably compact subspace of ordi-
nals then Cp(X) is Lindelöf. This result is used to construct an example of a countably
compact space X such that the extent of Cp(X) is less than the Lindelöf number of
Cp(X). This example answers negatively Reznichenko’s question whether Baturov’s
theorem holds for countably compact spaces.
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1. Introduction

We prove that Cp(X) is Lindelöf for every first-countable countably compact
subspace of ordinals. Thus, we widen the class of all spaces X for which it is
known that Cp(X) is Lindelöf. This result gives some possible directions where
one might find other spaces with Lindelöf Cp’s (see questions in Section 3). Using
the main result we construct an example of a countably compact space X such
that l(Cp(X)) 6= e(Cp(X)). In the above equality l(Y ) stands for Lindelöf num-
ber , that is, the smallest infinite cardinal τ such that every open covering of Y

contains a subcovering of cardinality ≤ τ . And e(Y ) is the extent of Y defined as
the supremum of cardinalities of closed discrete subsets. This example answers
Reznichenko’s question whether Baturov’s theorem [BAT] holds for countably
compact spaces. Recall that Baturov’s theorem states that l(Y ) = e(Y ) for every
Y ⊂ Cp(X), where X is a Σ-Lindelöf space. A counterexample to Reznichenko’s
question also answers negatively the question posed in [BUZ] whether Cp(X) is
a D-space if X is countably-compact. The notion of D-space was introduced by
Eric van Douwen [DOU].

A neighborhood assignment for a space X is a function ϕ from X to the topol-
ogy of X such that x ∈ ϕ(x) for any x ∈ X . A space X is a D-space, if for any
neighborhood assignment ϕ for X there exists a closed discrete subset D of X

such that X =
⋃

d∈D ϕ(d).

Throughout the paper, all spaces are assumed to be Tychonov. By R we denote
the space of all real numbers endowed with standard topology. In notation and
terminology we will follow [ARH] and [ENG].
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2. Main result

Let τω = {α ≤ τ : cf(α) ≤ ω}. Since in this section we deal only with τω’s and
their function spaces, let us agree that for any α, β ∈ (τ +1), by the interval [α, β]
we mean the set {γ ∈ τω : α ≤ γ ≤ β} (the same concerns open and half-open
intervals). This agreement significantly simplifies our notation but is valid only
within this section. If U is a standard open set of Cp(X) we say that U depends
on a finite set {x1, . . . , xn} ⊂ X if there exist B1, . . . , Bn open in R such that
U = {f ∈ Cp(X) : f(xi) ∈ Bi for i ≤ n}.

Definition 2.1. Let A ⊂ τω. We say that B is an ω-support of A if B is

countable and the following conditions are satisfied:

(1) 0 ∈ B;

(2) A ⊂ B;

(3) if b ∈ B is non-isolated in τω then b is an accumulation point for B.

Lemma 2.2. If A ⊂ τω is countable, then there exists an ω-support B of A.

Proof: For each a ∈ A non-isolated in τω, fix a countable strictly increasing
sequence Xa of isolated ordinals converging to a. Let B = A ∪ {0} ∪ (

⋃

a∈A Xa).
The set B is countable as a countable union of countable sets. Conditions (1)

and (2) are met by definition. Let us verify (3). Take any b ∈ B non-isolated in
τω . Since all Xa’s consist of isolated ordinals, we have b ∈ A. Therefore, b is an
accumulation point for Xb ⊂ B and, as a consequence, for B as well. �

Notice that if An ⊂ τω is an ω-support of itself for each n, then
⋃

n An is an
ω-support of itself as well.

Definition 2.3. Let A ⊂ τω be countable and an ω-support of itself. Let f ∈
Cp(τω). Define cf,A as follows: cf,A(x) = f(ax), where ax = sup({a ∈ Ā : a ≤
x}).

First notice that the set {a ∈ Ā : a ≤ x} is not empty for every x because
0 ∈ A (see the definition of ω-support). Since Ā is countable and τω contains all
ordinals not exceeding τ of countable cofinality, ax exists for each x. And since
the supremum is unique, cf,A is a well-defined function of τω to R. Also, notice

that cf,A coincides with f on Ā as ax = x for each x ∈ Ā.

Lemma 2.4. Let A ⊂ τω be countable and an ω-support of itself. Let f ∈
Cp(τω). Then cf,A ∈ Cp(τω).

Proof: To show continuity of cf,A it is enough to show that for each xn → x in
τω one can find a subsequence {xm} ⊂ {xn} such that cf,A(xm) → cf,A(x). If

xn ∈ Ā for infinitely many of n’s then we are done since cf,A = f on Ā.

Otherwise, we can assume that all xn’s are not in Ā and are distinct. For each
y ∈ τω, put by = τ if (y, τ ] ∩ Ā = ∅ and by = inf{b ∈ A : b > y} otherwise. For
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each xn, consider [axn
, bxn
), where axn

is from the definition of cf,A. Notice that
either by = τ or by is an isolated ordinal. Indeed, if by 6= τ then by = inf{b ∈ A :
b > y} ∈ A. And since A is an ω-support of itself, by is an isolated ordinal (see
condition (3) in Definition 2.1).
The intervals [axn

, bxn
) are either disjoint or coincide. Assume they coincide

for infinitely many of m’s with [ax3 , bx3). If bx3 is isolated then x ∈ [ax3 , bx3) and
cf,A([ax3 , bx3)) is a singleton. Therefore, cf,A(xm) → cf,A(x). Otherwise bx3 is

not isolated and equal to τ . In this case (ax3 , τ ] ∩ Ā = ∅ and cf,A([ax3 , bx3 ]) is a
singleton again.
If the intervals are mutually disjoint then axn

→ x ∈ Ā. And now use the facts
that f = cf,A on Ā and cf,A(xn) = f(axn

). �

Lemma 2.5. Let A ⊂ τω be countable and an ω-support of itself and B be a
base of R. Let f ∈ Cp(τω). Let U ⊂ Cp(τω) be open and contain cf,A. Then

there exist sequences {[a1, b1], . . . , [an, bn]} and {B1, . . . , Bn} with the following
properties:

(1) ai ∈ A;

(2) bi ∈ A for i < n and bn = τ ;

(3) Bi ∈ B;
(4) cf,A ∈ {g ∈ Cp(τω) : g([ai, bi)) ⊂ Bi if ai 6= bi and g(ai) ∈ Bi if ai = bi}

⊂ U .

Proof: Without loss of generality, there exist c1 < .. < cl ∈ τω and V1, .., Vl ∈ B
such that U = {g ∈ Cp(τω) : g(ci) ∈ Vi}. We may assume that cl ≥ sup(Ā).

Step 1.

Let m = min{i : ci ≥ sup(Ā)}. Find B1 ∈ B such that cf,A(cm) ∈ B1 ⊂
Vm∩Vm+1 ∩· · ·∩Vl. Note that such a B1 exists since cf,A is constant starting

from sup(Ā). Find a1 ∈ A such that cf,A([a1, τ ]) ⊂ B1 and a1 > ci for all
i < m. Due to continuity of cf,A, such an a1 can be found somewhere close to

sup(Ā) (if sup(Ā) ∈ A, it can serve as a1). Put b1 = τ .

Step k ≤ l.
If ci ≥ ak−1 for all i, stop construction. Let m = max{i : ci < ak−1}. Let
a′k = sup({a ∈ A : a ≤ cm}) and bk = inf({a ∈ A : cm ≤ a}). Obviously
bk ∈ A. If bk = cm = a′k put ak = cm and Bk = Vm. Otherwise, find Bk ∈ B
such that cf,A([a

′

k, bk)) ⊂ Bk ⊂ Vm. Such a Bk exists because cf,A([a
′

k, bk)) =

f(a′k) = cf,A(cm). If a′k = cm−1 we also require that Bk ⊂ Vm ∩ Vm−1. If

a′k ∈ A put ak = a′k. Otherwise a′k is an accumulation point for A. And, due

to continuity, we can find an ak ∈ A such that [ak, a′k) contains no ci’s and
cf,A([ak, bk)) ⊂ Bk.

Re-enumerate B1, . . . , Bn and corresponding intervals in reverse order. Properties
(1)–(4) hold by our construction. �
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Theorem 2.6. Cp(τω) is Lindelöf for any τ .

Proof: Let B be a countable base of R. Let U be an arbitrary open covering of
Cp(τω). We will choose a countable subcovering {Un} inductively. From Step 2,
we will follow our induction using elements in S1 defined at Step 1. However,
at each Step n we might need to enlarge our inductive set by new elements. To
ensure that every old element keeps the old tag we agree to enumerate S1 by
prime numbers while new elements added at Step n by numbers pn+1, where p is
any prime.

Step 1.

Take any U1 ∈ U . The set U1 depends on finite X1. Let A1 be an ω-support
of X1. Let S1 consist of all pairs ({[a1, b1], . . . , [ak, bk]}, {B1, . . . , Bk}), where
Bi ∈ B, ai ∈ A1, bi ∈ A1 for i < k, bk = τ , and k is any natural number.
Enumerate S1 by prime numbers.

Step n.

If U1 ∪ · · · ∪ Un−1 covers Cp(τω) stop induction. Otherwise, take the first
S = ({[a1, b1], . . . , [ak, bk]}, {B1, . . . , Bk}) ∈ Sn−1 such that there exist f and
Un ∈ U containing f and the following property is satisfied.

Property. f ∈ {g ∈ Cp(τω) : g([ai, bi)) ⊂ Bi if ai 6= bi and g(ai) ∈ Bi if
ai = bi} ⊂ Un.

If no such an S exists, just take any Un ∈ U such that Un \
⋃

i<n Ui 6= ∅.
The set Un depends on Xn. Let An be an ω-support of An−1 ∪ Xn. Let
Sn be the set of all pairs ({[a1, b1], . . . , [ak, bk]}, {B1, . . . , Bk}), where Bi ∈ B,
ai ∈ An, bi ∈ An for i < k, bk = τ , and k is any natural number. Enumerate
Sn \ Sn−1 by numbers pn+1, where p is any prime number. Enumeration on
Sn−1 is left unchanged.

Let us show that
⋃

n Un covers Cp(τω). Take any f ∈ Cp(τω). Let A =
⋃

n An.
The set A is an ω-support of itself. Consider the function cf,A. Since U covers
Cp(τω) there exists U ∈ U that contains cf,A.

By Lemma 2.5, there exists a pair S = ({[a1, b1], . . . , [ak, bk]}, {B1, . . . , Bk})
with the following properties:

(1) ai ∈ A;
(2) bi ∈ A for i < k and bk = τ ;
(3) Bi ∈ B;
(4) cf,A ∈ {g ∈ Cp(τω) : g([ai, bi)) ⊂ Bi if ai 6= bi and g(ai) ∈ Bi if ai =

bi} ⊂ U .

That is, S ∈ Sn for some n. Therefore, starting from some Step pn+1, S must
satisfy the Property and eventually it will be the first such. Therefore, cf,A must
be covered by some Um chosen at Step m. However, Um depends on Xm ⊂ Am ⊂
A while cf,A coincides with f on Ā. Therefore, Um covers f . �
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Since any first-countable countably compact subspace of ordinals is homeomor-
phic to τω for some τ we can restate our result as follows.

Theorem 2.7. Let X be a first-countable countably compact subspace of ordi-

nals. Then Cp(X) is Lindelöf.

3. Corollaries and related questions

Many papers are devoted to finding classes of spaces with Lindelöf Cp’s. How
good a space should be to have such a nice covering property as Lindelöfness
in its function space? It is known that even a linearly orderable first countable
compactum is not such unless it is metrizable. This fact follows from the theo-
rem of Nahmanson in [NAH] (a detailed proof is in [ARH]). His theorem states
that if X is a linearly ordered compactum then the Lindelöf number of Cp(X)
equals the weight of X . Even first-countable compacta with metrizable closures
of countable sets do not have to have Lindelöf Cp’s. Again this follows from the
Nahmanson theorem and existence of non-metrizable first countable linearly or-
dered compacta in which closures of countable sets are metrizable (an example of
such a compactum is Aronszajn continuum).
However, what happens if we strengthen the requirement of metrizable closures

to countable closures? Notice that spaces in our main result (Theorem 2.7) are
first-countable countably compact and, the closures of countable sets are count-
able. Therefore, the following questions might be of interest.

Question 3.1. Let X be countably compact and first countable. Assume also

that the closure of any countable set is countable in X . Is then Cp(X) Lindelöf?

Question 3.2. Let X be first-countable and countably compact. Assume also

that the closure of any countable set is countable in X . Is then Cp(X)
ω Lindelöf?

Question 3.3. Let X = X1 ⊕ · · · ⊕ Xn ⊕ . . . , where each Xn is first-countable

and countably compact. Assume also that the closure of any countable set is

countable in Xn. Is then Cp(X) Lindelöf?

Notice that spaces in Question 3.3 can be obtained from spaces in Question 3.1
by removing a point of countable character. Therefore the following question
might worth consideration.

Question 3.4. Suppose that Cp(X) is Lindelöf for a space X . Let x ∈ X have

countable character in X . Is Cp(X \ {x}) Lindelöf? What if X is first countable

(countably compact)?

So we throw away a point and are hoping that what is left still has a decent Cp.
Why do not we add one point? In general, adding a point can spoil Cp. For
example, Cp(ω1) is Lindelöf by Theorem 2.7, while Cp(ω1+1) is not by Asanov’s
theorem [ASA]. Asanov’s theorem implies that if Cp(X) is Lindelöf then the
tightness ofX is countable (the tightness t(X) of a space X is the smallest infinite
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cardinal number τ such that for any A ⊂ X and any x ∈ Ā there exists B ⊂ A

of cardinality not exceeding τ such that x ∈ B̄). That is, by adding one point
{ω1} we loose Lindelöfness of the function space. This observation motivates the
following question.

Question 3.5 (Arhangelskii). Let Cp(X \{x}) be Lindelöf and let x have count-

able tightness in X . Is Cp(X) Lindelöf? What if X is first countable?

Our next corollary is an answer to the Reznichenko’s question whether Ba-
turov’s theorem [BAT] holds for countably compact spaces. Baturov’s theorem
states that l(Y ) = e(Y ) for every Y ⊂ Cp(X), where X is a Σ-Lindelöf space.
We answer Reznichenko’s question by constructing a countably compact space

X where the above equality fails to hold.
In the following example, by [α, β]X we denote the set [α, β]∩X , where α, β ∈ τ

and X ⊂ τ .

Example 3.6. Let X = {α ≤ ω2 : cf(α) 6= ω1}. Then l(Cp(X)) = ω2 while
e(Cp(X)) = ω.

Proof of e(Cp(X)) = ω:

It suffices to show that any F ⊂ Cp(X) of cardinality ω1 has a complete
accumulation point in Cp(X). Due to cofinality, there exists γ < ω2 such that
f is constant on [γ, ω2]X for each f ∈ F . We can also choose γ with countable
cofinality.
For each f ∈ F let f∗ ∈ Cp(γω) be such that f∗ = f on [0, γ]γω

. Since Cp(γω)
is Lindelöf (Theorem 2.6), there exists h∗ ∈ Cp(γω) a complete accumulation
point for F ∗ = {f∗ : f ∈ F}. Define a function h as follows:

h(x) =

{

h∗(x) if x ∈ [0, γ]X ,

h∗(γ) if x ∈ [γ, ω2]X .

No doubts, h ∈ Cp(X). Let us show that h is a complete accumulation point
for F . Let h ∈ U = {g ∈ Cp(X) : g(ci) ∈ Bi}, where c1 < · · · < cn ∈ X and
B1, . . . , Bn are open in R. We need to show that F ∩ U is uncountable. It does
not hurt if we make U smaller by assuming that ck = γ for some k ≤ n. Since h

is constant on [γ, ω2]X we may assume that Bj = Bk for all j ≥ k.
The set U∗ = {g ∈ Cp(γω) : g(ci) ∈ Bi, i ≤ k} is an open neighborhood of

h∗. Since h∗ is a complete accumulation point for F ∗, F ∗ ∩U∗ is uncountable. If
f∗ ∈ U∗ ∩ F ∗ then f∗(ck) ∈ Bk. Therefore, for j > k, f(cj) = f(ck) ∈ Bj . And
f(cj) ∈ Bj for j ≤ k because f coincides with f∗ on [0, γ]X = [0, γ]γω

. Therefore,
f ∈ F ∩ U and F ∩ U is uncountable. �

Proof of l(Cp(X)) = ω2:

Asanov’s theorem [ASA] implies that t(X) ≤ l(Cp(X)). Since t(X) = ω2,
l(Cp(X)) ≥ ω2. And we actually have equality because the weight of X is ω2.

�
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In [BUZ], the author proves that Cp(X) is hereditarily a D-space if X is com-
pact. This result motivated the D-version of Reznichenko’s question whether
Cp(X) is a hereditary D-space if X is countably compact. From the definition of
aD-space it is easy to conclude that l(X) = e(X) for everyD-spaceX . Therefore,
Example 3.6 serves as a counterexample to this question.
One of the central questions on D-spaces posed by van Douwen is whether

every Lindelöf space is a D-space. In search for a counterexample (if there exists
one) it might be worth to consider the following question.

Question 3.7. Is Cp(τω) a D-space for τ ≥ ω2?

Note that all theorems on D-spaces known so far do not cover the spaces in the
above question.

After-Submission Remarks. After this paper was submitted, A. Dow and
P. Simon answered Question 3.1 in negative. Therefore, it is reasonable to assume
now that Cp(X) in Question 3.2 and Cp(Xn)’s in Question 3.3 are Lindelöf.

Acknowledgment. The author would like to thank the referee for valuable re-
marks and suggestions.
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