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Spaces with countable sn-networks

Ge Ying

Abstract. In this paper, we prove that a space X is a sequentially-quotient π-image of a
metric space if and only ifX has a point-star sn-network consisting of cs∗-covers. By this

result, we prove that a space X is a sequentially-quotient π-image of a separable metric
space if and only if X has a countable sn-network, if and only if X is a sequentially-
quotient compact image of a separable metric space; this answers a question raised
by Shou Lin affirmatively. We also obtain some results on spaces with countable sn-
networks.

Keywords: separable metric space, sequentially-quotient (π, compact) mapping, point-
star sn-network, cs∗-cover

Classification: Primary 54C05, 54C10; Secondary 54D65, 54E40

1. Introduction

In his book ([8]), Shou Lin proved that a space X is a quotient compact image
of a separable metric space if and only if X is a quotient π-image of a separable
metric space, if and only if X has a countable weak base. Then, are there similar
results on sequentially-quotient images of separable metric spaces? Related to
this question, Shou Lin and Yan proved that a space X is a sequentially-quotient
compact image of a separable metric space if and only if X has a countable sn-
network ([10]). But they do not know whether sequentially-quotient π-images of
separable metric spaces and sequentially-quotient compact images of separable
metric spaces are equivalent. So Shou Lin raised the following question ([12]).

Question 1.1. Has a sequentially-quotient π-image of a separable metric space
a countable sn-network?

In this paper, we give a characterization of sequentially-quotient π-images of
metric spaces to prove that a space X is a sequentially-quotient π-image of a
separable metric space if and only if X has a countable sn-network, which answers
the above question affirmatively. We also obtain some results on spaces with
countable sn-networks.
Throughout this paper, all spaces are assumed to be regular T1, and all map-

pings are continuous and onto. N and ω denote the set of all natural numbers and
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the first infinite ordinal respectively. Let x ∈ X , U be a collection of subsets of X ,
f be a mapping. Then st(x,U) =

⋃
{U ∈ U : x ∈ U}, f(U) = {f(U) : U ∈ U}.

The sequence {xn : n ∈ N}, the sequence {Pn : n ∈ N} of subsets and the sequence
{Pn : n ∈ N} of collections of subsets are abbreviated to {xn}, {Pn} and {Pn}
respectively. We use the convention that every convergent sequence contains its
limit point. For example, if we say that a sequence converging to x is eventually
in A, or frequently in A, it is to be understood that x ∈ A. (M, d) denotes a
metric space with metric d, B(a, ε) = {b ∈ M : d(a, b) < ε}. (αn) denotes a point
of a Tychonoff-product space, the n-th coordinate is αn. For terms which are not
defined here we refer to [1].

Definition 1.2 ([16]). Let (M, d) be a metric space. f : M −→ X is said to
be a π-mapping, if d(f−1(x), X − f−1(U)) > 0 for every x ∈ X and every open
neighborhood U of x.

Definition 1.3 ([10]). Let f : X −→ Y be a mapping. f is a quotient mapping if
whenever f−1(U) is open in X , then U is open in Y ; f is a sequentially-quotient
mapping, if for every convergent sequence S in Y , there is a convergent sequence
L in X such that f(L) is a subsequence of S; f is a compact mapping, if f−1(y)
is compact in X for every y ∈ Y ; f is a perfect mapping, if f is a closed and
compact mapping.

Remark 1.4. (1) compact mappings defined on metric spaces are π-mappings.
(2) If the domain is sequential, then quotient mapping =⇒ sequentially-quo-

tient mapping ([8, Proposition 2.1.16]).
(3) If the image is sequential, then sequentially-quotient mapping =⇒ quotient

mapping ([8, Proposition 2.1.16]).

Definition 1.5 ([3]). Let X be a space.
(1) Let x ∈ X . A subset P of X is a sequential neighborhood of x (called a

sequence barrier at x in [9]) if every sequence {xn} converging to x is eventually
in P , i.e., x ∈ P and there is k ∈ N such that xn ∈ P for all n > k.
(2) A subset P of X is sequentially open if P is a sequential neighborhood of

x for every x ∈ P . X is sequential if every sequentially open subset of X is open.

Remark 1.6. P is a sequential neighborhood of x if and only if every sequence
{xn} converging to x is frequently in P , i.e., x ∈ P and for every k ∈ N, there is
n > k such that xn ∈ P .

Definition 1.7 ([10]). Let P be a cover of a space X .
(1) P is a k-network of X , if whenever K is a compact subset of an open set

U , there is a finite F ⊂ P such that K ⊂
⋃
F ⊂ U .

(2) P is a cs-network of X , if every convergent sequence S converging to a
point x ∈ U with U open in X , is eventually in P ⊂ U for some P ∈ P .
(3) P is a cs∗-network of X , if every convergent sequence S converging to a

point x ∈ U with U open in X , is frequently in P ⊂ U for some P ∈ P .
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Definition 1.8 ([10]). Let P =
⋃
{Px : x ∈ X} be a cover of a space X . Assume

that P satisfies the following (a) and (b) for every x ∈ X .
(a) P is a network of X , that is, whenever x ∈ U with U open in X , then

x ∈ P ⊂ U for some P ∈ Px, where Px is called a network at x.
(b) If P1, P2 ∈ Px, then there exists P ∈ Px such that P ⊂ P1 ∩ P2.

(1) P is called a weak base of X , if for G ⊂ X , G is open in X if and only if
for every x ∈ G there exists P ∈ Px such that P ⊂ G, where Px is called a weak
neighborhood base at x.
(2) P is called an sn-network of X , if every element of Px is a sequential

neighborhood of x for every x ∈ X , where Px is called an sn-network at x.

Definition 1.9 ([4], [5], [13], [17]). A space X is a g-metric space (resp. an
sn-metric space) if X has a σ-locally finite weak base (resp. a σ-locally finite
sn-network). A space X is called g-first countable (resp. sn-first countable), if
X has a weak base (resp. an sn-network) P =

⋃
{Px : x ∈ X} such that Px is

countable for every x ∈ X . A space X is an ℵ-space if X has a σ-locally finite
k-network; X is an ℵ0-space if X has a countable k-network.

Remark 1.10. (1) In [9], sn-networks are said to be universal cs-networks; sn-
first countable is said to be universally csf -countable; sn-metric spaces are said
to be spaces with σ-locally finite universal cs-networks.
(2) ℵ0-spaces =⇒ ℵ-spaces, ℵ-spaces⇐⇒ spaces with a σ-locally finite cs-net-

work [2, Theorem 4], ℵ0-spaces⇐⇒ spaces with a countable cs∗-network (see [18,
Proposition C]).
(3) For a space, weak base =⇒ sn-network =⇒ cs-network ([10]). So g-metric

spaces =⇒ sn-metric spaces =⇒ ℵ-spaces, and g-first countable space =⇒ sn-first
countable space. Spaces with countable weak base =⇒ spaces with countable sn-
networks =⇒ ℵ0-spaces.
(4) An sn-network for a sequential space is a weak base ([10]). Notice that

g-first countable =⇒ sequential. g-first countable space ⇐⇒ sequential, sn-first
countable space. Spaces with countable weak base ⇐⇒ sequential, spaces with
countable sn-network.
(5) g-metric space ⇐⇒ k, sn-metric space (see [9, Theorem 3.15 and Corol-

lary 3.16]). So every k, sn-metric space is sequential.

Definition 1.11 ([11]). Let {Pn} be a sequence of covers of a space X .
(1) {Pn} is a point-star network of X , if {st(x,Pn)} is a network at x for every

x ∈ X ;
(2) {Pn} is a point-star sn-network, if {st(x,Pn)} is an sn-network at x for

every x ∈ X .

Remark 1.12. Spaces with a point-star sn-network are sn-first countable.

Definition 1.13 ([11]). Let P be a cover of a space X . P is a cs∗-cover, if every
convergent sequence in X is frequently in P for some P ∈ P .
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2. Main results

At first, we give a characterization of spaces with countable sn-networks. We
have known that having countable weak bases, Lindelöf and separable are equiv-
alent for g-metric spaces ([17]), and ℵ0, (hereditarily) Lindelöf and hereditarily
separable are equivalent for ℵ-spaces ([14], [15]). We have the following analogue
for sn-metric spaces.

Theorem 2.1. The following are equivalent for a space X :
(1) X has a countable sn-network;
(2) X is an sn-first countable, ℵ0-space;
(3) X is a (hereditarily) Lindelöf, sn-metric space;
(4) X is a hereditarily separable, sn-metric space;
(5) X is an ω1-compact, sn-metric space.

Proof: (1) =⇒ (2) follows from Remark 1.10(3).
(2) =⇒ (3): sn-first countable, ℵ-spaces are sn-metric spaces ([9]), so X is an

sn-metric space. ℵ0-spaces are hereditarily Lindelöf (see [7, Theorem 3.4]), so X
is hereditarily Lindelöf.
(3) =⇒ (4): sn-metric spaces are ℵ-spaces, and Lindelöf and hereditarily sep-

arable are equivalent for ℵ-spaces (see [7, Theorem 3.4]), so X is hereditarily
separable.
(4) =⇒ (5): It is clear that every Lindelöf space is ω1-compact.
(5) =⇒ (1): Let P =

⋃
{Pn : n ∈ N} be an sn-network of X . We can assume

Pn is a closed discrete collection of subsets of X for every n ∈ N ([4]). We claim
that |Pn| ≤ ω for every n ∈ N. If not, there is n ∈ N such that |Pn| > ω. We pick
xP ∈ P for every P ∈ Pn. Then {xP : P ∈ Pn} is a closed discrete subspace of X .
This contradicts the ω1-compactness of X . So X has a countable sn-network.

�

Since perfect mappings inversely preserve sn-metric spaces if the domain spaces
have Gδ-diagonal ([4]), and inversely preserve Lindelöf spaces, we obtain the fol-
lowing result by the above theorem.

Corollary 2.2. Let f : X −→ Y be a perfect mapping. If Y has a countable
sn-network and X has a Gδ-diagonal, then X has a countable sn-network.

We give an example to show that “hereditarily separable” in Theorem 2.1
cannot relax to “separable”.

Example 2.3. There is a separable, sn-metric space, which has not any count-
able sn-network.

Proof: Let Y be a space in [6, Example 1]. Then Y is a separable, ℵ-space,
and is not an ℵ0-space, hence Y has not any countable sn-network. Notice that
every convergent sequence in Y is a finite subset of Y and Y has a σ-locally finite
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cs-network, so Y has a σ-locally finite sn-network. That is, Y is an sn-metric
space. �

Lemma 2.4. Let {Pn} be a sequence of cs∗-covers of a space X , and S be a
sequence converging to a point x ∈ X . Then there is a subsequence L of S such
that for every n ∈ N, there is Pn ∈ Pn such that L is eventually in Pn.

Proof: Pn is a cs∗-cover of X for every n ∈ N, so there is Pn ∈ Pn such that
S is frequently in Pn. Since S is frequently in P1, there is a subsequence S1 of
S such that S1 ⊂ P1. Put xn1 is the first term of S1. Similarly, S1 is frequently
in P2, there is a subsequence S2 of S1 such that S2 ⊂ P2. Put xn2 is the second
term of S2. By the inductive method, for every k ∈ N, since Sk−1 is frequently
in Pk, there is a subsequence Sk of Sk−1 such that Sk ⊂ Pk. Put xnk

is the k-th
term of Sk. Let L = {xnk

: k ∈ N} ∪ {x}. Then L, which is a subsequence of
S, is eventually in Pn for every n ∈ N. In fact, for every n ∈ N, if k > n, then
xnk

∈ Sk ⊂ Sn ⊂ Pn. �

Theorem 2.5. The following are equivalent for a space X :
(1) X is a sequentially-quotient π-image of a metric space;
(2) X has a point-star sn-network consisting of cs∗-covers;
(3) X has a point-star network consisting of cs∗-covers.

Proof: (1) =⇒ (2). Let f : M −→ X be a sequentially-quotient π-mapping,
(M, d) be a metric space. For every n ∈ N, put Bn = {B(a, 1/n) : a ∈ M} and
Pn = f(Bn). Then {Pn} is a sequence of covers of X . Obviously, {st(x,Pn)}
satisfies Definition 1.8(b) by the construction of {Pn}.
(i) {Pn} is a point-star network of X : Let x ∈ U with U open in X . f is

a π-mapping, so there is n ∈ N such that d(f−1(x), M − f−1(U)) > 2/n, thus
st(x,Pn) ⊂ U . In fact, if y ∈ st(x,Pn), then there is P = f(B(a, 1/n)) ∈ Pn

for some a ∈ M such that x, y ∈ P . Let b, c ∈ B(a, 1/n) such that f(b) = x
and f(c) = y. Then d(c, f−1(x)) ≤ d(c, b) < 2/n, so c /∈ M − f−1(U), thus
y = f(c) ∈ U .
(ii) Pn is a cs∗-cover of X for every n ∈ N: Let S be a sequence in X converging

to the point x ∈ X . f is sequentially-quotient, so there is a sequence L in M
converging to a point a ∈ f−1(x) such that f(L) = S1 is a subsequence of S. L
is eventually in B(a, 1/n), so S1 = f(L) is eventually in P = f(B(a, 1/n)) ∈ Pn.
Thus S is frequently in P .
(iii) st(x,Pn) is a sequential neighborhood of x for every x ∈ X and n ∈ N: Let

S be a sequence converging to the point x ∈ X . By the proof in the above (ii),
S is frequently in some P ∈ Pn and x ∈ P , so S is frequently in st(x,Pn). By
Remark 1.6, st(x,Pn) is a sequential neighborhood of x.
By the above (i)–(iii), X has a point-star sn-network consisting of cs∗-covers.
(2) =⇒ (3) is obvious.
(3) =⇒ (1). Let {Pn} be a point-star network consisting of cs∗-covers of X .

We can assume Pn is a collection of closed subsets of X for every n ∈ N.
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Put Pn = {Pα : α ∈ An} for every n ∈ N, the topology on An is the discrete
topology. Put M = {a = (αn) ∈ Πn∈NAn : {Pαn

} is a network at some xa ∈ X}.
Then M , which is a subspace of the product space Πn∈NAn, is a metric space
with metric d defined as follows:

Let a = (αn), b = (βn) ∈ M . Then d(a, b) = 0 if a = b, and d(a, b) =
1/min{n ∈ N : αn 6= βn} if a 6= b.

Define f : M −→ X by f(a) = xa for every a = (αn) ∈ M , where {Pαn
} is a

network at xa. It is easy to see that xa is unique for every a ∈ M by T1-property
of X , so f is a function.

(i) f is onto: Let x ∈ X . For every n ∈ N, there is α ∈ An such that x ∈ Pαn
.

For {Pn} is a point-star network of X , {Pαn
} is a network for x. Put a = (αn),

then f(a) = x.

(ii) f is continuous: Let a = (αn) ∈ M , U be a neighborhood of x = f(a).
Then there is k ∈ N such that Pαk

⊂ U . Put V = {b = (βn) ∈ M : βk = αk}.
Then V is open in M containing a and f(V ) ⊂ Pαk

⊂ U , thus f is continuous.

(iii) f is a π-mapping: Let x ∈ U with U open in X . For Pn is a point-star
network of X , there is n ∈ N such that st(x,Pn) ⊂ U . Then d(f−1(x), M −
f−1(U)) ≥ 1/2n > 0. In fact, let a = (αn) ∈ M such that d(f−1(x), a) <
1/2n. Then there is b = (βn) ∈ f−1(x) such that d(a, b) < 1/n, so αk = βk

if k ≤ n. Notice that x ∈ Pβn
∈ Pn, Pαn

= Pβn
, so f(a) ∈ Pαn

= Pβn
⊂

st(x,Pn) ⊂ U , hence a ∈ f−1(U). Thus d(f−1(x), a) ≥ 1/2n if a ∈ M − f−1(U),
so d(f−1(x), M − f−1(U)) ≥ 1/2n > 0.

(iv) f is sequentially-quotient: Let S be a sequence converging to a point
x ∈ X . Notice that {Pn} is a sequence of cs

∗-covers of X . By Lemma 2.4, there
is a subsequence L = {xk : k ∈ N} ∪ {x} of S such that for every n ∈ N, there is
αn ∈ An such that L is eventually in Pαn

. Put a = (αn). Since {Pn} is a point-
star network, a ∈ M and f(a) = x. We pick bk ∈ f−1(xk) for every xk ∈ L as
follows. For every n ∈ N, if xk ∈ Pαn

, put βkn
= αn; if xk /∈ Pαn

, pick αkn
∈ An

such that xk ∈ Pαkn
, and put βkn

= αkn
. Put bk = (βkn

) ∈ Πn∈NAn. Obviously,

bk ∈ M and f(bk) = xk . It is easy to prove that L′ = {bk : k ∈ N} ∪ {a} is a
sequence inM converging to the point a. In fact, let U be open inM containing a.
By the definition of Tychonoff-product spaces, we can assume there is m ∈ N such
that U = ((Π{{αn} : n ≤ m}) × (Π{An : n > m})) ∩ M . For every n ≤ m, L
is eventually in Pαn

, so there is k(n) ∈ N such that xk ∈ Pαn
if k > k(n), thus

βkn
= αn. Put k0 = max{k(1), k(2), . . . , k(m), m}. It is easy to see that bk ∈ U

if k > k0, so L′ converges to a. Thus there is a converging sequence L′ in M such
that f(L′) = L is a subsequence of S, so f is sequentially-quotient. �

The following lemma belongs to Shou Lin ([8, Proposition 3.7.14(2)]).

Lemma 2.6. Let f : X −→ Y be a sequentially-quotient mapping, and X be an
ℵ0-space. Then Y is an ℵ0-space.
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Proof: Since X is an ℵ0-space, it is easy to prove that X has a countable cs-
network P(also see [8, Proposition 1.6.7]). Put P ′ = f(P). By Remark 1.10(2),
we need only prove that P ′ is a cs∗-network of Y .
Let S be a sequence in Y converging to a point y ∈ U with U open in Y .

f is sequentially-quotient, so there is a sequence L in X converging to a point
x ∈ f−1(y) ⊂ f−1(U) such that f(L) is a subsequence of S. Since P is a cs-
network of X , there exists P ∈ P such that L is eventually in P and P ⊂ f−1(U).
Thus f(L) is eventually in f(P ) ⊂ U , and so S is frequently in f(P ) ⊂ U . Notice
that f(P ) ∈ P ′. So P ′ is a cs∗-network of Y . �

Theorem 2.7. The following are equivalent for a space X :
(1) X has a countable sn-network;
(2) X is a sequentially-quotient compact image of a separable metric space;
(3) X is a sequentially-quotient π-image of a separable metric space.

Proof: (1) ⇐⇒ (2) from [10], and (2) =⇒ (3) from Remark 1.4. We only need
to prove (3) =⇒ (1).
Let f : M −→ X be a sequentially-quotient π-mapping, M be a separable

metric space. Then X is sn-first countable from Theorem 2.5 and Remark 1.12.
Sequentially-quotient mappings preserve ℵ0-spaces by Lemma 2.6, so X is an ℵ0-
space. Thus X has a countable sn-network by Theorem 2.1.

�

Every k-space with a countable sn-network is sequential by Remark 1.10(5),
so it has a countable weak base. Thus we have the following corollary.

Corollary 2.8. The following are equivalent for a k-space X :
(1) X has a countable weak base;
(2) X has a countable sn-network;
(3) X is a quotient compact image of a separable metric space;
(4) X is a sequentially-quotient compact image of a separable metric space;
(5) X is a quotient π-image of a separable metric space;
(6) X is a sequentially-quotient π-image of a separable metric space.

Acknowledgment. The author would like to thank the referee for his valuable
amendments.
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