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Embedding 3-homogeneous latin

trades into abelian 2-groups

Nicholas J. Cavenagh

Abstract. Let T be a partial latin square and L be a latin square with T ⊆ L. We say
that T is a latin trade if there exists a partial latin square T ′ with T ′ ∩ T = ∅ such
that (L \ T ) ∪ T ′ is a latin square. A k-homogeneous latin trade is one which intersects
each row, each column and each entry either 0 or k times. In this paper, we show the
existence of 3-homogeneous latin trades in abelian 2-groups.

Keywords: latin square, latin trade, abelian 2-group

Classification: 05B15, 20N05

1. Introduction

Given a particular latin square L, what is the smallest size of a partial latin
square P such that P is contained in L, P is contained in no other latin square, and
is minimal with respect to this property? (Equivalently, given a latin square L,
what is the size of the smallest critical set in L?)

In general the solution to this problem is difficult, but there is possibility of
progress when the latin square L is the multiplication table for a group.

Consider the following latin square L, which is (isotopic to) the multiplication
table for the group Z2 × Z2.

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

0 1
3
1

2

L P

The partial latin square P is a critical set for (Z2)
2. It is well known that |P | = 5

is the smallest possible size for a critical set in (Z2)
2, and that P is in fact the

unique partial latin square with this property (up to isotopism).
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If we delete any entry in P , the resultant partial latin square P ′ will have two
completions (fitting the definition of critical set). If we consider the difference
between L and an alternative completion for P ′, we obtain a latin trade.

0 3 1 2
2 1 3 0
3 0 2 1
1 2 0 3

1 2 3
1 0 2
2 3 0
3 1 0

L′ L \ L′

For example, if we delete the entry 1 from the first row and second column of P ,
the resultant partial latin square P ′ has completion to latin square L′ on the left.
On the right we give the corresponding latin trade L \ L′ ⊆ L.
Similarly, for each entry in the critical set P shown above we can obtain a

latin trade T in L that intersects P in exactly one entry. So there is a connection
between the latin trades in a latin square L and the critical sets in L. (Indeed
they occupy the same chapter in the CRC Handbook of Combinatorial Designs
[25]).

There are three interesting points to note about the above example of the latin
trade L \ L′. Namely, it is

1. large with respect to the size of the latin square L;
2. necessary to establish the critical set of smallest size in (Z2)

2;
3. 3-homogeneous — that is, each row, column and entry occurs 3 times.

In this paper, we take a construction of 3-homogeneous latin trades from [8],
and some linearly independent vectors from (Z2)

n and cook up a general way of
finding 3-homogeneous latin trades in (Z2)

n. We conjecture that some of these
latin trades, and in general k-homogeneous latin trades can be used to determine
critical sets in (Z2)

n of small sizes.

2. Definitions

We start with basic definitions which allow us to state and prove our main
results.

Let N = N(n) be some finite set of size n. Let R(N) = {ri | i ∈ N},
C(N) = {ci | i ∈ N} and E(N) = {ei | i ∈ N}.
A partial latin square P of order n is a set of ordered triples of the form

(ri, cj , ek), where ri ∈ R(N), cj ∈ C(N) and ek ∈ E(N) with the following
properties:

• if (ri, cj , ek) ∈ P and (ri, cj , ek′) ∈ P then k = k′,

• if (ri, cj , ek) ∈ P and (ri, cj′ , ek) ∈ P then j = j′ and

• if (ri, cj , ek) ∈ P and (ri′ , cj , ek) ∈ P then i = i′.
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We may also represent a partial latin square P as an n × n array with entries
chosen from the set E(N) such that if (ri, cj , ek) ∈ P , the entry ek occurs in cell
(ri, cj).
A partial latin square has the property that each entry occurs at most once in

each row and at most once in each column. If all the cells of the array are filled
then the partial latin square is termed a latin square. That is, a latin square L
of order n is an n× n array with entries chosen from the set E(N) in such a way
that each element of E(N) occurs precisely once in each row and precisely once
in each column of the array.
For a given partial latin square P the set of cells

SP = {(ri, cj) | (ri, cj , ek) ∈ P, for some ek ∈ E(N)}

is said to determine the shape of P and |SP | is said to be the size of the partial
latin square. That is, the size of P is the number of non-empty cells in the array.
For each i ∈ N , letRi

P denote the set of entries occurring in row ri of P . Formally,

Ri
P = {ek | (ri, cj , ek) ∈ P}. For each j ∈ N , we define Cj

P = {ek | (ri, cj , ek) ∈
P}. Finally, for each k ∈ N , we define Ek

P = {(ri, cj) | (ri, cj , ek) ∈ P}.
A partial latin square T of order n is said to be a latin trade (or latin inter-

change) if T 6= ∅ and there exists a partial latin square T ′ (called a disjoint mate
of T ) of order n, such that

• ST = ST ′ ,
• if (ri, cj , ek) ∈ T and (ri, cj , ek′) ∈ T ′ then k 6= k′,

• for each i ∈ N(n), Ri
T = Ri

T ′ ,

• for each j ∈ N(n), Cj
T = Cj

T ′ .

Important facts on latin trades may be found in [11], [12], [13], [16] and of course
in the “latin square bible” [10]. In [14] it is shown how to embed a minimal latin
trade onto an orientable surface. We thus may associate with a minimal latin
trade a genus.
A latin trade T of order n is said to be k-homogeneous if

• for each i ∈ N(n), |Ri
T | = 0 or k, and

• for each j ∈ N(n), |Cj
T | = 0 or k, and

• for each k ∈ N(n), |Ek
T | = 0 or k.

Clearly if T is k-homogeneous, its size is equal to km for some integer m, where
m ≥ k. A minimal 2-homogeneous latin trade is uniquely a 2× 2 latin subsquare.
A critical set in a latin square L (of order n) is a partial latin square P ⊆ L,

such that

(1) L is the only latin square of order n which has element ek in cell (ri, cj)
for each (ri, cj , ek) ∈ P ; and

(2) no proper subset of P satisfies (1).
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Let T be a partial latin square that is a subset of a latin square L. Observe
(as in the example in the Introduction) that T is a latin trade if and only if there
exists a disjoint mate T ′, with T ′∩T = ∅, such that (L \T )∪T ′ is a latin square.
It follows that a critical set P in a latin square L must intersect every latin trade
in L; and is minimal with respect to this property.

Because k-homogeneous latin trades often have the property of being large
in size (with respect to the size of the latin square) yet primary, they often are
related to critical sets of small size. It is known that using only 2-homogeneous
and 3-homogeneous latin trades, we can determine minimum critical sets in the
latin squares for both ((Z2)

2,+) (size 5) and ((Z2)
3,+) (size 25) ([23]). (The size

of the smallest critical set in ((Z2)
4,+) is not known, but is no greater than 124

[23].) We conjecture that k-homogeneous latin trades with k > 3 can be used to
locate small critical sets in ((Z2)

n,+) for larger values of n. (See also Section 7.)

The best known lower bound for the size of a critical set in an arbitrary latin
square of order n is ⌊(4n− 8)/3⌋ [20]. This bound can be improved under certain
restrictions; such as if the critical set has an empty row (2n − 4, [5]), the critical
set has a strongly forced completion (⌊n2/4⌋, [3]), or if the latin square is the
addition table for the integers modulo n (n4/3/2, [6]). It is conjectured in [4] that
in fact ⌊n2/4⌋ is the actual lower bound. This is known to be true for n ≤ 7
([1], [2]).

3. Hexagonal constructions

The constructions in this section are given in detail in [8], complete with proofs.
Here we give just enough detail for the embeddings into (Z2)

n later in the paper.

Definition 1. Let S be the following set of co-ordinates in R × R:

S = {(2
√
3i, 2j), ((2i+ 1)

√
3, 2j + 1) | i, j ∈ Z}.

Let C be the set of unit circles in R × R whose centres are the elements of S.
(This is the well-known hexagonal lattice in the plane. See Chapter 1 of [9] for
more details on lattices and spherical packings.)

If d ∈ C is a circle with centre (α, β), then let:

• u1(d) be the circle with centre (α, β + 2),

• u2(d) be the circle with centre (α+
√
3, β + 1),

• u3(d) be the circle with centre (α+
√
3, β − 1),

• u4(d) be the circle with centre (α, β − 2),
• u5(d) be the circle with centre (α −

√
3, β − 1),

• u6(d) be the circle with centre (α −
√
3, β + 1).
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u1(d)u6(d) u2(d)u5(d) u4(d) u3(d)d
Figure 1: The neighbours of d ∈ C

Lemma 2. For each i, 1 ≤ i ≤ 6, each circle d ∈ C intersects ui(d) at vertex vi(d).

Definition 3. Let d ∈ C with centre (α, β). We define xd, yd and zd to be arcs
on the circumference of d given by:

• xd = {(α+ cos θ, β + sin θ) | 7π/6 ≤ θ ≤ 11π/6},
• yd = {(α+ cos θ, β + sin θ) | −π/6 ≤ θ ≤ π/2},
• zd = {(α+ cos θ, β + sin θ) | π/2 ≤ θ ≤ 7π/6}.

(See Figure 2.)
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Definition 4. Let f : C → N(= N(m)) where m ≥ 3. We say that f is coherent
if for each i, 1 ≤ i ≤ 6, f(d) = f(d′) implies f(ui(d)) = f(ui(d

′)), for each
d, d′ ∈ C. (In other words, if two circles d and d′ have the same labelling, then
ui(d) and ui(d

′) have the same labelling, for each 1 ≤ i ≤ 6.)
Definition 5. Let f : C → N = (N(m)), where m ≥ 3. We say that f is proper
if for each i, 1 ≤ i ≤ 6, f(d) 6= f(ui(d)). (In other words, a coherent labelling is
proper if we do not apply the same label to any pair of adjacent circles.)

Definition 6. Let f be a coherent, proper, onto labelling f : C → N(= N(m)).
Let ⋆ be a binary operation R(N)×C(N)→ E(N) defined as follows: ri ⋆cj = ek

if there exist circles d, d′, d′′ ∈ C such that f(d) = i, f(d′) = j, f(d′′) = k,
xd ∩ yd′ ∩ zd′′ = ∅, but xd ∩ yd′ = {(w1, w′

1)}, xd ∩ zd′′ = {(w2, w′
2)}, and

yd′ ∩ zd′′ = {(w3, w′
3)}, where (w1, w′

1), (w2, w
′
2), (w3, w

′
3) ∈ R × R. Otherwise,

ri ⋆ cj is undefined.

The following lemma is verified on inspection of Figure 2.

Lemma 7. Let f be a coherent, proper, onto labelling f : C → N and let ⋆ be
defined as in Definition 6. Then ri ⋆ cj = ek if and only if there exist circles d, d′

and d′′ such that f(d) = i, f(d′) = j, f(d′′) = k and either:
Case 1. d = d′ = d′′, or
Case 2. d′ = u4(d) and d′′ = u3(d), or
Case 3. d′ = u5(d) and d′′ = u4(d).

Proof of the following theorem may be found in [8].

Theorem 8. Let ⋆ be the operation given in Definitions 6. The set of triples
T = {(ri, cj , ri ⋆ ej) | ri ⋆ cj is defined } is a latin trade of size 3m. Moreover,
this latin trade is 3-homogeneous.

4. Some onto, coherent, proper maps and the corresponding latin

trades

Next we give a general form of an onto, coherent and proper mapping f : C →
N(m2) × N(m1). (Henceforth we assume that, in general, N(m) = {0, 1, 2 . . . ,
m − 1}.) Furthermore we give, algebraically, the exact elements of the 3-homo-
geneous latin trades that arise from this mapping.

Definition 9. Let m1, m2 and k be integers such that m1 ≥ 2, 0 ≤ k < m1,
m2 ≥ 1 and if m2 = 1, m1 ≥ 3 and 2 ≤ k. Then we define a mapping f : C →
N(m2) × N(m1) such that if d ∈ C has centre (α, β), then f(d) = (η(d), ω(d)),
where

δ(d) = α/
√
3 (div m2),

ω(d) = δ(d)k − (β + α/
√
3)/2 (modm1) and

η(d) = α/
√
3 (modm2).
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Proof of the following lemma may be found in [8]. (In [8], f is mapped onto
N(m2m1) rather than N(m2) × N(m1). However this change is cosmetic, and
has been made to simplify what follows.)

Lemma 10. The function f : C → N(m2)× N(m1), as given in Definition 9, is
an onto, proper, coherent labelling.

Lemma 11. Let f : C → N(m2)×N(m1) be an onto, proper, coherent labelling,
as given in Definition 9. Then for each circle d ∈ C,

1. f(u4(d)) = (η(d), ω(d) + 1 (modm1));
2. f(u3(d)) = (η(d) + 1, ω(d)) if 0 ≤ η(d) < m2 − 1;
3. f(u3(d)) = (0, ω(d) + k (modm1)) if η(d) = m2 − 1;
4. f(u5(d)) = (m2 − 1, ω(d)− k + 1 (modm1)) if η(d) = 0;
5. f(u5(d)) = (η(d) − 1, ω(d) + 1 (modm1)) if η(d) > 0.

Proof: Let d ∈ C have centre (α, β).

Then u4(d) has centre (α, β−2). Thus η(u4(d)) = η(d), and ω(u4(d)) = ω(d)+1
(modm1).

Next, the circle u3(d) has centre (α +
√
3, β − 1). Then η(u3(d)) = η(d) + 1

(modm2). If η(d) < m2 − 1, then α/
√
3 (modm2) < m2 − 1, which implies that

δ(d) = δ(u3(d)). Thus ω(d) = ω(u3(d)) in this case. Otherwise η(d) = m2 − 1,
α/

√
3 ≡ m2 − 1 (modm2), δ(u3(d)) = δ(d) + 1, η(u3(d)) = 0 and ω(u3(d)) ≡

ω(d) + k (modm1).

Next, the circle u5(d) has centre (α −
√
3, β − 1). If η(d) = 0, then α/

√
3 ≡ 0

(modm2), η(u5(d)) = m2 − 1, δ(u5(d)) = δ(d) − 1 and ω(u5(d)) ≡ ω(d) − k + 1

(modm1). Otherwise η(d) ≥ 1, α/
√
3 (modm2) ≥ 1, η(u5(d)) = η(d) − 1,

δ(u5(d)) = δ(d) and ω(u5(d)) = ω(d) + 1 (modm1). �

The next lemma gives us an exact expression of the elements of a 3-homo-
geneous latin trade constructed from the proper, onto, coherent map in Defini-
tion 9.

Lemma 12. Let f : C → N(m2) × N(m1) be an onto, proper, coherent la-
belling, as given in Definition 9. Then the corresponding operation ⋆, as given in
Definition 6, is defined exactly in the following five cases:

1. r(i,j) ⋆ c(i,j) = e(i,j) ((i, j) ∈ N(m2)× N(m1));

2. r(i,j) ⋆ c(i,j+1(modm1)) = e(i+1,j) (0 ≤ i < m2 − 1, j ∈ N(m1));

3. r(i,j) ⋆ c(i,j+1(modm1)) = e(0,j+k(modm1)) (i = m2 − 1, j ∈ N(m1));

4. r(i,j) ⋆ c(m2−1,j−k+1(modm1)) = e(i,j+1(modm1)) (i = 0; j ∈ N(m1));

5. r(i,j) ⋆ c(i−1,j+1(modm1)) = e(i,j+1(modm1)) (0 < i ≤ m2 − 1; j ∈ N(m1)).

Proof: The proof is obtained by combining Lemma 7 and the previous lemma.
�
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5. Examples

Example 13. Here we construct a 3-homogeneous latin trade of size 9. Let
m1 = 7, m2 = 1 and k = 3 as in Definition 9. So Lemma 10 tells us that f
is a coherent, proper mapping onto N(1) × N(7). So from Lemma 12, we have
that the following is a 3-homogeneous latin trade of size 21. (We omit the first
subscript since this is always equal to 0).

{(r0, c0, e0), (r1, c1, e1), (r2, c2, e2), (r3, c3, e3), (r4, c4, e4), (r5, c5, e5), (r6, c6, e6),
(r0, c1, e3), (r1, c2, e4), (r2, c3, e5), (r3, c4, e6), (r4, c5, e0), (r5, c6, e1), (r6, c0, e2),

(r0, c5, e1), (r1, c6, e2), (r2, c0, e3), (r3, c1, e4), (r4, c2, e5), (r5, c3, e6), (r6, c4, e0).}
In fact, the 3-homogeneous latin trade may be embedded into (Z2)

3, if we let:

r0 = (0, 0, 0), c0 = (0, 0, 0), e0 = (0, 0, 0), r1 = (1, 1, 0), c1 = (1, 0, 0), e1 = (0, 1, 0),

r2 = (1, 0, 0), c2 = (1, 0, 1), e2 = (0, 0, 1), r3 = (1, 1, 1), c3 = (0, 1, 1), e3 = (1, 0, 0),

r4 = (0, 1, 0), c4 = (0, 0, 1), e4 = (0, 1, 1), r5 = (1, 0, 1), c5 = (0, 1, 0), e5 = (1, 1, 1),

r6 = (0, 0, 1), c6 = (1, 1, 1), e6 = (1, 1, 0).

Example 14. By now we have encountered two 3-homogeneous latin trades that
occur in the multiplication tables for (Z2)

n for some integer n: one in the previous
example and one in the introduction. Now, we give an example of how we can
construct a general 3-homogeneous latin trade in (Z2)

n (the value of n is deter-
mined by our construction). This technique will be generalised in the following
section.
Let us return to the packing of circles C from the previous section for a moment.

We will give a proper, coherent, onto function f : C :→ N(m2) × N(m1) as in
Definition 9 for some values of m1, m2 and k. For now we just assume that
m1 = 2 and m2 > 1. We assign to c(0,0), e(0,0), c(0,1) and e(0,1) the vectors

(0, 0), (0, 0), (0, 1) and (1, 0), respectively, from (Z2)
2. (See the left-hand-side of

Figure 3.)
We henceforth assume that the ⋆ operation is equivalent to addition of vectors

modulo 2. Lemma 12 tells us that r(0,0) ⋆ c(0,0) = e(0,0) and r(0,1) ⋆ c(0,1) = e(0,1).

Thus r(0,0) = (0, 0) and r(0,1) = (1, 1).

Since m2 ≥ 1, the value e(1,0) must be defined. Case 2 of Lemma 12 tells us

that r(0,0) ⋆ c(0,1) = e(1,0), so e(1,0) = r(0,0) + c(0,1) = (0, 1). Similarly, e(1,1) =

r(0,1)+c(0,0) = (1, 1). Next, Case 5 of Lemma 12 tells us that r(1,0)⋆c(0,1) = e(1,1)
and r(1,1) ⋆ c(0,0) = e(1,0), so r(1,0) = (1, 0) and r(1,1) = (0, 1). From Case 1 of

Lemma 12, c(1,0) = r(1,0) + e(1,0) = (1, 1) and c(1,1) = r(1,1) + e(1,1) = (1, 0).
So far, the sets

{r(0,0), r(0,1), r(1,0), r(1,1)}, {c(0,0), c(0,1), c(1,0), c(1,1)} and
{e(0,0), e(0,1), e(1,0), e(1,1)}
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Figure 3: Our example, as seen in the circle packing

are each of size 4 (i.e. they each contain distinct elements).

Let d be a circle such that f(d) = (1, 0). Presently the value of f(u3(d)) is unde-
fined; however if we continue to assume that the ⋆ operation is addition modulo 2,
we can infer what f(u3(d)) should be. From Lemma 7, rf(d)+cf(u4(d)) = ef(u3(d)).

Thus ef(u3(d)) = r(1,0) + c(1,1) = (1, 0) + (1, 0) = (0, 0) = e(0,0). So, if we want

all elements distinct in our resultant latin trade, we must set f(u3(d)) = (0, 0).
In fact, continuing in this fashion induces a labelling of the circles that is as in
Definition 9, with k = 0 and m2 = 2. (Figure 3 shows this process in terms
of the circle packing, with arcs xd, yd and zd replaced by rf(d), cf(d) and ef(d),

respectively, for each circle d.) Because the above sets of vectors are distinct, we
have a latin trade that occurs in (Z2)

n as follows.

{((0, 0), (0, 0), (0, 0)), ((1, 1), (0, 1), (1, 0)), ((1, 0), (1, 1), (0, 1)), ((0, 1), (1, 0), (1, 1)),
((0, 0), (0, 1), (0, 1)), ((1, 1), (0, 0), (1, 1)), ((1, 0), (1, 0), (0, 0)), ((0, 1), (1, 1), (1, 0)),

((0, 0), (1, 0), (1, 0)), ((1, 1), (1, 1), (0, 0)), ((1, 0), (0, 1), (1, 1)), ((0, 1), (0, 0), (0, 1))}.

In fact, this latin trade is isotopic to the one given in the introduction.

In Sections 6 and 7 we generalise this idea. It turns out if we start off with
a set of linearly independent vectors {e(0,j), c(0,j) | 0 ≤ j ≤ m1 − 1} we can
always “generate” a latin trade in (Z2)

n (for some n), in a manner similar to this
example.
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6. Polynomial matrices

The idea of the next two sections is to obtain a coherent, proper labelling of the
hexagonal lattice in the plane (and thus a 3-homogeneous latin trade) by taking
a set of linearly independent vectors in (Z2)

2n and letting the ⋆ operation from
Section 3 be the equivalent of the addition of vectors modulo 2. We will thus
generalise the example given in the previous section.
First we give a matrix that will act as a kind of “transition matrix” from the

set of vectors corresponding to one column of circles in the plane to the set of
vectors corresponding to the next column of circles in the plane. In the next
section, the transition matrix will be a 2n × 2n matrix over Z2. However we
need to verify various properties of this matrix before being able to define an
embedding of certain 3-homogeneous trades into abelian 2-groups. Thus in this
section we will initially work with an isomorphic, 2× 2 matrix whose entries are
polynomials with coefficients in Z2, calculated modulo xn + 1. The motivation
for this alternative representation is to make the initial proofs nicer to read.
The elementary properties of matrices in this section may be found in

Lütkepohl’s very useful “Handbook of Matrices” ([24]).

Definition 15. Let Pn(x) be the set of polynomials with coefficients from Z2,
maximum degree n − 1, with addition and multiplication calculated modulo
(xn + 1).

Unless otherwise stated, all polynomials in this section lie in Pn(x).

Definition 16. Let Q be the set of polynomial matrices of dimension 2× 2 with
elements from Pn(x).

The following lemma is trivial to verify.

Lemma 17. The set Q, with operations + and × as matrix multiplication, is a
commutative ring with a multiplicative identity.

In fact Q is almost a field, except that some elements lack multiplicative in-
verses. We denote the multiplicative identity by I.

Definition 18. For each a, 0 ≤ a ≤ n − 1, define In(a) to be the n × n matrix
with the entry in position (i, j) equal to 1 if j − i = a, and 0 otherwise. (We
denote the first row/column of a matrix by zero.) So for example In(0) = I is the
identity matrix.

The following lemma is easy to verify, with the observation that In(a)In(b) =
In(c), where c ≡ a+ b (modn).

Lemma 19. The set of matrices H =
∑n−1

a=0 δaIn(a), where each δa ∈ {0, 1},
forms a commutative ring with multiplicative identity under normal matrix ad-
dition and multiplication, where each entry of the matrix is calculated modulo 2.
In fact there is an isomorphism h : Pn(x)→ H , given by h(

∑

δix
i) =

∑

δiIn(i).
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Ultimately we will be working over C rather than Pn(x), but the preliminary
results are tidier to verify in Pn(x), hence our choice of this representation.

Definition 20. Let A ∈ Q be the following matrix:

A =

[

1 x+ 1
x+ 1 x2 + x+ 1

]

.

Lemma 21. Let A be as in the previous definition. Then A has an inverse, which
is given by

A−1 =

[

xn−1 + 1 + x xn−1 + 1
xn−1 + 1 xn−1

]

.

Proof: Observe that A × A−1 = I. �

Lemma 22. The matrix Am has the following form:

Am =

[

qm(x) pm(x)
pm(x) qm(x) + xpm(x)

]

,

for some pm(x), qm(x) ∈ Pn(x), such that qm(x)
2+xpm(x)qm(x)+pm(x)

2 = xm.

Proof: We use a proof by induction. It is easy to check the result is true for
x = 1. So assume the result is true for x = k, for some integer k ≥ 1. Then,
(writing pk instead of pk(x) and qk instead of qk(x)),

Ak+1 =

[

qk pk
pk qk + xpk

]

×
[

1 x+ 1
x+ 1 x2 + x+ 1

]

,

=

[

qk + pk + xpk qk + xqk + pk + xpk + x2pk
qk + xqk + pk + xpk + x2pk pk + x2pk + x3pk + qk + xqk + x2qk

]

.

So let qk+1 = qk + pk + xpk and let pk+1 = qk + xqk + pk + xpk + x2pk, and we
have:

Ak+1 =

[

qk+1(x) pk+1(x)
pk+1(x) qk+1(x) + xpk+1(x)

]

.

The fact that qm(x)
2 + xpm(x)qm(x) + pm(x)

2 = xm, for each integer m, is most
easily verified by the fact that det(Am) = (det(A))m = xm. �

Lemma 23. There exists a least integer k such that Ak is equal to the identity
matrix.

Proof: This follows from the fact that A has an inverse (Lemma 21). �
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Corollary 24. There exists an integer k such that pk(x) ≡ 0 (modulo xn + 1)

and qk(x) ≡ xl (modulo xn + 1) for some integer l.

Definition 25. Let ord(n) be the least integer k such that Ak is the identity. Let

γ(n) be the least integer k such that pk(x) ≡ 0 (modulo xn+1) and qk(x) = xr(n)

for some integer r(n).

Lemma 26. The set of matrices of the form Ak, where pk(x) ≡ 0 (modulo xn+1)
and qk(x) = xc for some integer c form a group under multiplication. Moreover,

this group is cyclic, with generator Aγ(n).

Proof: Any such matrix Ak has an inverse, given by:

[

xn−c 0
0 xn−c

]

.

The result follows. �

Corollary 27. If k is any integer such that pk(x) = 0, then γ(n)|k.
Open problem 28. Determine explicitly the form of Am for any integer m. Or,
more specifically for our purposes, determine γ(n) for each integer n.

We next solve this problem when n is an even power. The following lemma is
easily verified.

Lemma 29. For any integer k,

A2k = (Ak)2 =

[

qk(x)
2 + pk(x)

2 x(pk(x)
2)

x(pk(x))
2 qk(x)

2 + pk(x)
2 + (xpk(x))

2

]

.

In fact, we can give explicitly the form of Ak, where k is any power of two, as
shown in the next lemma.

Lemma 30. Let k = 2a, for some integer a ≥ 0. Then,

pk(x) = x2
a−1(x2

a

+ 1) and

qk(x) = x2
a+1−2 +

a−1
∑

b=1

(x(2
a−b)(2b−1) + x(2

a+1−b)(2b−1)).

Proof: First we show that pk(x) = x2
a−1(x2

a

+ 1) by induction. This is clearly
true for a = 0. Assume it is true for some a ≥ 0. From the previous lemma,
p2k(x) = x(x2

a−1(x2
a

+1))2 = x2
a+1−1(x2

a+1

+1). This completes the induction.
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Next we verify that qk(x) = x2
a+1−2 +

∑a−1
b=1 (x

(2a−b)(2b−1) + x(2
a+1−b)(2b−1))

by induction. If a = 0, qk(x) = 1, which is true. So assume it is true for some
a ≥ 0. Then from the previous lemma

q2k(x) = pk(x)
2 + qk(x)

2

= (x2(2
a−1)+ x2

a+2−2)+ x4(2
a−1)+

a−1
∑

b=1

(x(2
a−b+1)(2b−1)+ x(2

a+2−b)(2b−1))

= x2
a+2−2 +

a
∑

b=1

(x(2
a+1−b)(2b−1) + x(2

a+2−b)(2b−1)),

completing the induction. �

Corollary 31. If n is an even power, γ(n) = n and r(n) = 0.

Proof: Let n = 2a for some integer a ≥ 1. From the previous lemma, pn(x) = 0,
and

qn(x) = x2
a+1−2 +

a−1
∑

b=1

(x(2
a−b)(2b−1) + x(2

a+1−b)(2b−1))

= x2
a+1−2 + x2

a

+ x2
a−2 +

a−2
∑

b=1

(x(2
a−b)(2b−1) + x(2

a−b)(2b+1−1)).

But x(2
a−b)(2b+1−1) = x(2

a−b)(2b+2b−1) = x2
a

x2
a−b(2b−1) = x2

a−b(2b−1) since
we are working modulo x2

a

+ 1. Thus the terms in the sum all cancel, and

qn(x) = x2
a+1−2 + x2

a

+ x2
a−2 = x2

a

x2
a−2 + x2

a

+ x2
a−2 = 1 = x0.

From Corollary 27, γ(n)|n. But for all b such that b < a, p2b(x) = x2
b+1−1 +

x2
b−1, which is not equivalent to 0 (modulo xn). Thus m(2a) = 2a and r(n) = 0.

�

7. Embeddings in the abelian 2-group

Now we are ready to demonstrate precisely some embeddings of 3-homogeneous
latin trades into abelian 2-groups. First we give some definitions and lemmas that
allow us to make use of the polynomial matrix theory from the previous section.

Definition 32. If p(x) ∈ Pn(x) and p(x) = a0 + a1x + a2x
2 + · · ·+ an−1x

n−1,
we can associate with p(x) a vector v(p(x)) = (a0, a1, . . . , an−1), where ai ∈ Z2,
for each i, 1 ≤ i ≤ n. We also define an operation ⊕ that concatenates two
vectors; that is, if a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn), then a ⊕ b =
(a1, a2, . . . , an, b1, b2, . . . , bn).
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Definition 33. Let C ∈ Q, with

C =

[

a(x) b(x)
c(x) d(x)

]

.

We define a matrix ω(C) =M2n×2n(Z2) as follows. Row i of this matrix is equal

to v(xia(x))⊕v(xib(x)) for 0 ≤ i ≤ n−1 and row i is equal to v(xic(x))⊕v(xid(x))
for n ≤ i ≤ 2n− 1. (We take the convention of labelling the first row of a matrix
as row 0.) So,

ω(C) =





























v(a(x)) ⊕ v(b(x))
v(xa(x)) ⊕ v(xb(x))

...
...

v(xn−1a(x)) ⊕ v(xn−1b(x))
v(c(x)) ⊕ v(d(x))

v(xc(x)) ⊕ v(xd(x))
...
...

v(xn−1c(x)) ⊕ v(xn−1d(x))





























.

Example 34. For n = 3,

ω(A) =















1 0 0 1 1 0
0 1 0 0 1 1
0 0 1 1 0 1
1 1 0 1 1 1
0 1 1 1 1 1
1 0 1 1 1 1















.

Lemma 35. The mapping ω is an isomorphism from the group ({Ak | k ∈ Z},×)
to the group ({(ω(A))k | k ∈ Z},×).
Proof: Observe that to construct w(C) from C, we replace each element

∑

δix
i

∈ Pn(x) of C by the matrix
∑

δiIn(i) ∈ H . The result then follows from the
isomorphism given in Lemma 19. �

Lemma 36. Let B ∈ M2n×2n(Z2) be a matrix whose rows are linearly indepen-
dent. Then the rows of (ω(A))mB are linearly independent, for any integer m.

Proof: First we show that if the rows of B are linearly independent, then the
rows of (ω(A))B are linearly independent. The general result then follows recur-
sively.
So let the rows of B be b0, b1, . . . , b2n−1 and let the rows of (ω(A))(B) be c0,

c1, . . . , c2n−1. Then,

ci =











bi + bn+i + b(i+1)(mod n)+n( if 0 ≤ i ≤ n − 1);
bi−n + b(i+1)(mod n) + bi + b(i+1)(mod n)+n + b(i+2)(mod n)+n

(if n ≤ i ≤ 2n − 1).
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Now suppose that the rows of (ω(A))(B) are not linearly independent.

That is,
∑2n−1

i=0 ǫici = 0 for some ǫi ∈ Z2. Or, equivalently,

n−1
∑

i=0

ǫi(bi + bn+i + b((i+1)(mod n)+n))+

2n−1
∑

i=n−1

ǫi(bi−n + b(i+1)(mod n) + bi + b((i+1)(mod n)+n) + b((i+2)(mod n)+n)) = 0.

But since

n−1
∑

i=0

ǫibn+i =
n−1
∑

i=0

ǫib(i+1)(mod n)+n,

2n−1
∑

i=n

ǫibi−n =

2n−1
∑

i=n

ǫib(i+1)(mod n)

and
2n−1
∑

i=n

ǫib(i+1)(mod n)+n =

2n−1
∑

i=n

ǫib(i+2)(mod n)+n,

and because we are working over Z2, we can cancel terms to obtain
∑2n−1

i=0 ǫibi =
0, contradicting the linear independence of the rows of B. �

The following lemma facilitates the reader in comprehending the connection
between a matrix C ∈ Q and the matrix w(C) in the proofs that follow.

Lemma 37. Let B be a 2n×2nmatrix with rows r0, r1, . . . r2n−1. Let δi ∈ {0, 1},
for 0 ≤ i ≤ 2n − 1. Then

(v(

n−1
∑

i=0

δix
i)⊕ v(

n−1
∑

j=0

δjx
j))B

is equal to the following sum of rows in B:

n−1
∑

i=0

δiri +

n−1
∑

j=0

δn+jrj .

Definition 38. Let B ∈ M2n×2n(Z2) be a matrix whose rows are linearly inde-
pendent. Let a(i,j), b(i,j) ∈ (Z2)2n be row j, n + j (respectively) of the matrix

(ω(A))iB, where 0 ≤ i ≤ γ(n) − 1 and 0 ≤ j ≤ n − 1. (Here we count the first
row of a matrix as row zero.)
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Lemma 39. The set of vectors {a(i,j) | (i, j) ∈ N(γ(n)) × N(n)} are distinct.
The set of vectors {b(i,j) | (i, j) ∈ N(γ(n))×N(n)} are distinct. The set of vectors
{a(i,j) + b(i,j) | (i, j) ∈ N(γ(n))× N(n)} are distinct.
Proof: First we show that the set of vectors {a(i,j) | (i, j) ∈ N(γ(n))×N(n)} are
distinct. Suppose that a(i,j) = a(i′,j′). The rows of B are linearly independent,

so from the previous lemma, if i = i′ then j = j′.
Next suppose, without loss of generality that i′ > i. Then row j of the matrix

(ω(A))iB is equal to row j′ of the matrix (ω(A))i
′

B. Equivalently, since ω(A)

has an inverse, row j′ of (ω(A))i−i′B is equal to row j of B.
Let k = i− i′, and observe that k is strictly less than γ(n). So from Lemma 22

and Lemma 37, we have (v(xj′qk(x))⊕ v(xj′pk(x)))B is equal to row j of B. But
also from Lemma 37, row j of B is equal to (v(xj) ⊕ v(0))B. Since the rows

of B are linearly independent, we have xj′qk(x) = xj and xj′pk(x) = 0. Thus

pk(x) = 0, and qk(x) = xj−j′ , contradicting the minimality of γ(n).
Next we show that the set of vectors {b(i,j) | (i, j) ∈ N(γ(n)) × N(n)} are

distinct. Suppose that b(i,j) = b(i′,j′). As above, if i = i′ then j = j′, because of

the previous lemma. Assume i′ > i.
Also, by similar reasoning as above, we obtain row j′+n of (ω(A))kB is equal

to row j+n of B, for some k < γ(n). So from Lemma 22 and Lemma 37 we have

v(xj′pk(x))⊕ v(xj′ (xpk(x)+ qk(x)))B is equal to (v(0)⊕ v(xj ))B. Since the rows

of B are linearly independent, we have xj′(xpk(x)+qk(x)) = xj and xj′pk(x) = 0.

Thus pk(x) = 0, and qk(x) = xj−j′, again contradicting the minimality of γ(n).
Finally, we show that the set of vectors {a(i,j)+b(i,j) | (i, j) ∈ N(γ(n))×N(n)}

are distinct. Suppose that a(i,j)+ b(i,j) = a(i′,j′)+ b(i′,j′). As above, if i = i′ then

the previous lemma implies j = j′.
Also, by similar reasoning to above, we obtain row j′+n plus row j′ of (ω(A))kB

is equal to row j+n plus row j of B, for some k < γ(n). So we have v(xj′(qk(x)+

pk(x)))⊕v(xj′ ((x+1)pk(x)+qk(x)))B is equal to row j+n plus row j ofB, which is
in turn equal to (v(xj)⊕ v(xj))B. Since the rows of B are linearly independent,

we have xj′(pk(x) + qk(x)) = xj and xj′((x + 1)pk(x) + qk(x)) = xj . Thus

pk(x) = (x + 1)pk(x), which in turn implies that pk(x) = 0. Also qk(x) = xj−j′,
contradicting the minimality of γ(n). �

The following four lemmata do the dirty work for the main theorem that follows.

Lemma 40. Let 0 ≤ i < γ(n) and 0 ≤ j ≤ n − 1. Then

a(i+1,j) = a(i,j) + b(i,j) + b(i,j+1(modn)).

Proof: From Definition 38, a(i+1,j) is equal to the jth row in the matrix

(ω(A))i+1B = ω(A)(ω(A))iB. From the definition of A, we have that row j
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of (ω(A))(ω(A))iB is equal to (v(xj)⊕ v(xj(x+ 1)))(ω(A))iB. This in turn (us-
ing Lemma 37) is equal to the sum of rows j, n+ j and j + 1 (modn) + n in the
matrix (ω(A))iB, that is, a(i+1,j) = a(i,j) + b(i,j) + b(i,j+1(modn)). �

Lemma 41. Let 0 < i < γ(n) and 0 ≤ j ≤ n − 1. Then

b(i−1,j) = a(i,j) + a(i,j−1(modn)) + b(i,j−1(modn)).

Proof: From Definition 38, b(i−1,j) is equal to the (n + j)th row in the matrix

(ω(A))i−1B = (ω(A−1))(ω(A))iB. Observing the structure of A−1, we have that
row n+j of (ω(A−1))(ω(A))iB is equal to (v(xj−1+xj)⊕v(xj−1))(ω(A))iB. This
in turn (using Lemma 37) is equal to the sum of rows j, j − 1 (modn) and j − 1
(modn) + n in the matrix (ω(A))iB, that is, b(i−1,j) = a(i,j) + a(i,j−1(modn)) +

b(i,j−1(modn)). �

Lemma 42. Let i = γ(n)− 1 and 0 ≤ j ≤ n − 1. Then

a(0,j+r(n)(mod n)) = a(i,j) + b(i,j) + b(i,j+1(modn)).

Proof: Now, i+1 = γ(n), so by the definition of γ(n), pi+1(x) = 0 and qi+1(x) =

xr(n). Thus row j of (ω(A))i+1B is equal to (v(xj+r(n)(mod n)) ⊕ v(0))B which
is equal to a(0,j+r(n)(mod n)), by Lemma 37. But row j of (ω(A)i+1)B is also

equal to (v(xj)⊕ v(xj(x+1)))(ω(A))iB, which in turn is equal to a(i,j)+ b(i,j)+

b(i,j+1(modn)) as in Lemma 40. The result follows. �

Lemma 43. Let i = γ(n)− 1 and 0 ≤ j ≤ n − 1. Then

b(i,j−r(n)+1(modn)) = a(0,j) + b(0,j) + a(0,j+1(modn)).

Proof: First, let l = j − r(n) + 1 (modn). Then, by definition, b(i,l) is equal

to row l + n of (ω(A))iB = (ω(A−1))(ω(A))i+1B. By observing the structure of
A−1, this is in turn equal to

(v(xl−1(mod n) + xl)⊕ v(xl−1(mod n)))(ω(A))i+1B,

or, by Lemma 37, the sum of rows l − 1 (modn), l and l − 1 (modn) + n in
(ω(A))i+1B. But i+ 1 = γ(n), so row x of (ω(A))i+1B will be a(0,r(n)+x(modn))
or b(0,r(n)+x(modn)), for 0 ≤ x ≤ n − 1 and n ≤ x ≤ 2n − 1 respectively. Thus,

b(i,l) = a(0,l−1+r(n)(mod n)) + a(0,l+r(n)(mod n)) + b(0,l+r(n)−1(mod n))

= a(0,j) + a(0,j+1(modn)) + b(0,j),

as required. �
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Definition 44. Let n ≥ 2, and γ(n), r(n), B, a(i,j), b(i,j) (0 ≤ i ≤ γ(n) − 1,
0 ≤ j ≤ n − 1) be as in previous definitions. Let f be an onto, coherent, proper
map defined as in Lemma 9 with m1 = n, m2 = γ(n) and k = r(n) (modn).
(Clearly γ(n) > 1 for all n ≥ 2, so these values of m1, m2 and k satisfy the
conditions of Lemma 9.)

For each (i, j) ∈ N(γ(n)) × N(n), let r(i,j) = a(i,j) + b(i,j), c(i,j) = b(i,j) and

e(i,j) = a(i,j). Let ⋆ be as defined in Definition 6, based on the onto, coher-

ent, proper map f : C → N(γ(n)) × N(n). Then let Tn be the set of triples
(r(i,i′), c(j,j′), e(k,k′)) such that r(i,i′) ⋆ c(j,j′) = e(k,k′).

Theorem 45. The set of triples Tn, as given in the previous definition, is a
3-homogeneous latin trade of size 3γ(n)n in the latin square for (Z2)

2n.

Proof: Theorem 8 tells us that Tn is a 3-homogeneous latin trade. We need to
show also that Tn embeds into (Z2)

2n. Then Lemma 39 tells us |Tn| = 3γ(n)n as
claimed. So it remains to be shown that r(i,i′) ⋆ c(j,j′) = e(k,k′) implies r(i,i′) +

c(j,j′) = e(k,k′) (or, equivalently, a(i,i′)+ b(i,i′)+ b(j,j′)+ a(k,k′) = 0). This is done

by a systematic checking of the cases from Lemma 12.

So take Case 1 from Lemma 12. Here r(i,j) ⋆ c(i,j) = e(i,j), where (i, j) ∈
N(γ(n))×N(n). We need a(i,j) + b(i,j) + b(i,j) + a(i,j) = 0, which holds trivially.

Next Case 2 from Lemma 12: r(i,j)⋆c(i,j+1(modn)) = e(i+1,j), where 0 ≤ i < n−1.
We want to show that a(i,j) + b(i,j) + b(i,j+1(modn)) + a(i+1,j) = 0. But from

Lemma 40, a(i+1,j) = a(i,j) + b(i,j) + b(i,j+1(modn)) as required.

In Case 3 of Lemma 12, we have r(i,j) ⋆ c(i,j+1(modn)) = e(0,j+r(n)(modn)),

where i = γ(n) − 1 and j ∈ N(n). Let l = j + r(n) (modn). Then from
Lemma 42, a(0,l) = a(i,j) + b(i,j) + b(i,j+1(modn)). This is the desired result for

this case.

Now for Case 4. Here r(i,j) ⋆ c(γ(n)−1,j−r(n)+1(mod n)) = e(i,j+1(modn)), where

i = 0 and j ∈ N(n). Let l = j − r(n) + 1 (modn). From Lemma 43, b(γ(n)−1,l) =

a(0,j) + b(0,j) + a(0,j+1(modn)) as required.

Finally we have Case 5. Here r(i,j) ⋆ c(i−1,j+1(mod n)) = e(i,j+1(modn)), where

i > 0, j ∈ N(n). We need to show that a(i,j) + b(i,j) + b(i−1,j+1(modn)) +

a(i,j+1(modn)) = 0. But b(i−1,j+1(modn)) = a(i,j) + b(i,j) + a(i,j+1(modn)) = 0

(from Lemma 41) as required. This completes the proof. �

Corollary 46. There exists a 3-homogeneous latin trade of size 3k2 in the latin
square (Z2)

k, where k is any even power.

Proof: This corollary follows from Theorem 45 and Corollary 31. �

The following table gives values of γ(n) and r(n) for n up to 8, determined
by computer, and lists the sizes and orders of the corresponding 3-homogeneous
latin trades Tn.
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n γ(n) r(n) ord(n) |Tn| 22n

2 2 0 2 12 16
3 5 1 15 45 64
4 4 0 4 16 256
5 17 1 85 85 1024
6 10 2 30 60 4096
7 21 0 21 147 16384
8 8 0 8 64 65536

Table 1: Values of γ(n), r(n), ord(n), |Tn| and 22n for n ≤ 8

8. Open problems

There are many open questions and problems associated with the latin
trades Tn. To determine γ(n) for each n is one that is connected to the com-
putations done in the paper in the most narrow way. However, there are other
ones. For example, we know that Tn embeds into (Z2)

2n (Theorem 45), but we do
not know if 2n is the least possible value ofm for which there exists an embedding
of Tn into (Z2)

m. In fact, Example 14 shows that the condition that the rows of B
are linearly independent is sufficient but not always necessary for our construction
to work. The example in Example 13 also shows that our construction does not
give all 3-homogeneous latin trades in (Z2)

n.
We may also think of the size of a latin trade T (with disjoint mate T ′) in

(Z2)
n as describing the Hamming distance

d((Z2)
n, L) = |(Z2)n \ L|,

where L = ((Z2)
n \ T ) ∪ T ′ is a latin square of order 2n not equal to (Z2)

n.
The problem of determining the minimum Hamming distance d((Z2)

n, L), for
any integer n is trivial; (Z2)

n contains many latin trades of size 4, which is the
minimum size for a latin trade. However, the following problem may not be so
trivial:

Open problem 47. What is the minimum value of d((Z2)
n, L), where L is a

latin square of order 2n not equal to (Z2)
n and L contains no subsquare isotopic

to (Z2)
n−1?

We can pose an even stronger question, the answer to which (we believe) would
need k-homogeneous trades, where k is in general much larger than 3.

Open problem 48. What is the minimum value of d((Z2)
n, L), where L is a

latin square of order 2n not equal to (Z2)
n and L contains no subsquare isotopic

to Z2?



210 N.J.Cavenagh

For n = 2 the answer is infinity, since every latin square of order 4 contains a
2× 2 subsquare.
Another interesting problem (mentioned also in [8]) is the determination of k-

homogeneous latin trades for k > 3. The techniques used in this paper could also
be useful in locating 3-homogeneous latin trades in other groups. Of particular
interest would be finding 3-homogeneous latin trades in Bn, the latin square based
on addition modulo n, for various values of n. We are aware of 3-homogeneous
latin trades in B5 (see below) and B21 ([15]), but not of any infinite families of
3-homogeneous latin trades in Bn.

0 1 2
1 2 4
2 4 0
4 0 1

Figure 4: A 3-homogeneous latin trade in B5

The latin square Bn is of particular interest because it is conjectured that Bn

yields critical sets of smallest possible size amongst all latin squares of order n,
and that this size is ⌊n2/4⌋ ([4]). In [7] it is shown that the size of a critical set
in Bn must be at least n4/3/2.
Finally, we note that the 3-homogeneous latin trade from Example 13 has a

number of interesting properties. If we delete exactly one row, one column and
one entry (such that the row, column and entry intersect in exactly one cell) from
the latin square for (Z2)

3, the remaining elements can be partitioned into exactly
two copies of this latin trade. In fact, in Figure 5 we show a critical set in (Z2)

3 of
size 29 formed from one copy of the 3-homogeneous latin trade, plus almost all of
the empty row, plus one additional element. (Note the minimum size for a critical
set in (Z2)

3 is 25 [23].) The elements from the latin trade from Example 13 are
shown in bold.

000 010 100

001 000 010 110

011 000 111

011 010 001 000 111 110 100
100 111 001

111 110 010

010 011 001

110 100 011

Figure 5: A critical set in (Z2)
3
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Open problem 49. Using 3-homogeneous latin trades, k-homogeneous latin
trades or otherwise, construct small (or even minimum) critical sets in (Z2)

n and
other latin squares.
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