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Reflection loops of spaces with congruence

and hyperbolic incidence structure

Alexander Kreuzer

Abstract. In an absolute space (P, L,≡, α) with congruence there are line reflections and
point reflections. With the help of point reflections one can define in a natural way an
addition + of points which is only associative if the product of three point reflection is a
point reflection again. In general, for example for the case that (P, L, α) is a linear space
with hyperbolic incidence structure, the addition is not associative. (P,+) is a K-loop
or a Bruck loop.

Keywords: ordered space with congruence, point reflection, Bol loop, K-loop

Classification: 51D, 20N05

1. Introduction

Reflections are a powerful tool in order to prove geometric theorems. They have
been used by J. Hjelmslev, G. Thomsen, A. Schmidt, F. Bachmann, E. Sperner
and many others as a basic concept for an axiomatization of plane absolute ge-
ometry. There are two types of reflections, line reflections and point reflections.
For characterizations of absolute planes one has to consider products of reflec-
tions. One central theorem of absolute planes is the well known three reflections
theorem. Let A,B,C be lines, either through a common point or perpendicular
to a common line. Then the product of the line reflections about A,B,C is a line
reflection again. For an absolute space it is convenient to consider the product of
three point reflections. If the points are on a line we get a point reflection again.
In the general case we may interpret the product of three point reflections as the
product of a reflection and a rotation about the same point. In the euclidian case
the rotation is always the identity, but not in the hyperbolic case.
If one fixes a point 0 with its point reflection 0̃, one can attach to any two point
reflections α, β exactly that point reflection, which is determined by the product
of α 0̃β, and one gets a binary operation. Since we may identify points with point
reflections, we may consider the operation as a binary operation of the point set.
We recall that the product of three point reflections is not a point reflection itself.
Because of that, it turns out that the operation is not associative. We prove that
we get a Bol loop with the automorphic inverse property (cf. Theorem 5.3).
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In Section 2 we introduce a space with hyperbolic incidence structure. The
hyperbolic incidence structure is defined using only order without congruence.
This concept is introduced in the papers [3], [4], [5], [7]. In Section 3 a short

definition of a space with congruence is given, introduced by K. Sörensen in [13].
The results in [13], [15] are proved for a plane geometry, using the powerful
characterization in [13, (1.12)] of line reflections, which is not true for absolute
spaces. Distinct to [15], [2] we use a weaker formulation of the axiom (WK)
without using order, and we use this axiom for the proof that the restriction of
line reflections to planes are motions. On the other hand, in Section 3 we do not
use any assumption on the incidence structure of (P,L), like the assumption (E)
or (F), respectively, of [15], [2]. We generalize the results of [13], [15], [6], [2] to
our assumptions. The proofs of the first results in Section 3 can be found in [13],
but for the convenience of the reader we repeat the short proofs.
In Section 4 we assume in addition an ordered space. Now we can define point
reflections and we show that point and line reflections are motions. We do not
need that any two points have a midpoint, but for completeness, we show that
this is true in an absolute space. We give a short proof here and remark that
one can get this result by combining results of [13], [15], [6], [2]. In Section 5 we
define the addition of points and, using the results of Section 3 and 4, we get the
main result Theorem 5.3.
The contents of the paper was presented at the Conference Loop 03 in Prague.

2. Ordered spaces

Let (P,L) denote a linear space or incidence space with the point set P , the
line set L and at least three points on every line, i.e.,
- for any two points there is exactly one line containing it and
- for any line L ∈ L we have |L| ≥ 3.

A subspace is a subset U ⊂ P such that for all distinct points x, y ∈ U the unique
line passing through x and y, denoted by x, y , is contained in U . Let U denote
the set of all subspaces. For every subset X ⊂ P we define the following closure
operation

(1) : P(P )→ U, X 7→ X by X :=
⋂

U∈U
X⊂U

U.

For U ∈ U we call dim U := inf{|X | − 1 : X ⊂ U and X = U} the dimension
of U . A subspace of dimension two is a plane.

Now let P (3) := {(a, b, c) ∈ P 3 : a, b, c collinear and a 6= b, c}. We call

α : P (3) → {1,−1}; (a, b, c)→ (a|b, c)
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a betweenness function and (P,L, α) an ordered space if the following axioms are
satisfied:
(A1) For a, b, c, d collinear with a 6= b, c, d : (a|b, c)(a|c, d) = (a|b, d).

(A2) For distinct and collinear points a, b, c ∈ P , exactly one of the values
(a|b, c), (b|c, a) or (c|a, b) equals -1.

(A3) For all distinct points a, b ∈ P there exists a point c ∈ P with (a|b, c) = −1.

We denote by ]a, b[ := {x ∈ a, b : (x|a, b) = −1}.

(PA) (Axiom of Pasch). Let a, b, c be non-collinear points and G ⊂ a, b, c be a
line of the plane generated by a, b, c with G∩ ]a, b[ 6= ∅. Then G∩ ]a, c[ 6= ∅
or G∩ ]b, c[ 6= ∅.

By [14], [8] it holds:

Lemma 2.1. Every ordered space (P,L, α) satisfies the exchange condition:

For S ⊂ P and x, y ∈ P with x ∈ S ∪ {y} \ S, it follows that y ∈ S ∪ {x}.

An ordered space is called desarguesian, if the following axiom (D) is satisfied.

(D) For z ∈ P let G1, G2, G3 ∈ L be distinct lines through z with distinct
points xi, yi ∈ Gi \ {z}, i ∈ {1, 2, 3}, such that p1 := x2, x3 ∩ y2, y3 ,
p2 := x3, x1 ∩ y3, y1 , p3 := x1, x2 ∩ y1, y2 exist. Then p1, p2, p3 are
collinear.

We recall that for dimP ≥ 3, every ordered space (P,L, α) is a desarguesian
space (cf. [6]).

For two distinct points a, b ∈ P let denote
−→
a, b := {x ∈ a, b \ {a} : (a|b, x) = 1} the half line starting with a and contain-

ing b.

Lemma 2.2. For points a 6= b let b′ ∈
−→
a, b. Then

−→
a, b =

−→

a, b′.

Proof: Since (a|b′, b) = 1, it follows (a|b, x) = (a|b′, b)(a|b, x) = (a|b′, x). �

For a, b, c, d ∈ P with a 6= b, c 6= d we call the half line
−→
a, b h-parallel to

−→
c, d,

denoted by
−→
a, b |-|

−→
c, d, if

(i) a, b ∩ c, d = ∅,
(ii) ]a, c[ ∩ ]b, d[ = ∅,

(iii) ∀x ∈ ]b, d[ it holds a, x ∩
−→
c, d 6= ∅.
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First we show some easy properties (cf. [4]):

Lemma 2.3. Let a, b, c, d ∈ P with a 6= b, c 6= d and a, b ∩ c, d = ∅. Then there
are equivalent

(α) a, c ∩ ]b, d[ 6= ∅;
(β) ]a, c[ ∩ b, d 6= ∅;
(γ) ]a, c[ ∩ ]b, d[ 6= ∅.

Proof: It suffices to show that (α) implies (γ). Let x = a, c ∩ ]b, d[ . By (A2)
we have (b|x, d) = (d|x, b) = 1. Consider the three points (x, c, d) and the line
a, b . Now by axiom (PA) a, b ∩ c, d = ∅ and (b|x, d) = 1 imply (a|x, c) = 1. In
the same way (c|a, x) = 1, hence (x|a, c) = −1 by (A2). �

Lemma 2.4. Let a, b, c, d ∈ P with a 6= b, c 6= d and a, b ∩ c, d = ∅.

(a) For b′ ∈
−→
a, b, d′ ∈

−→
c, d we have

−→

a, b′ |-|
−→

c, d′ if and only if
−→
a, b |-|

−→
c, d.

(b) For c′ ∈ c, d with (d|c, c′) = 1 we have
−→
a, b |-|

−→

c′, d if and only if
−→
a, b |-|

−→
c, d.

(c) Let a′ ∈ ]a, b[ and assume
−→
a, b |-|

−→
c, d, then

−→
a′, b |-|

−→
c, d.

Proof: (a) We have (a|b, b′) = 1, hence by (PA) for x ∈ ]b, d[ the point

x′ = a, x∩ ]b′, d[ exists and vice versa. Hence a, x ∩
−→
c, d = a, x′ ∩

−→
c, d. Con-

sider the three points b, b′, d. By (PA) y := a, c∩ ]b, d[ 6= ∅ if and only if
y′ := a, c∩ ]b′, d[ 6= ∅.
By Lemma 2.3, a, c∩ ]b, d[ = ]a, c[ ∩ ]b, d[ and a, c∩ ]b′, d[ = ]a, c[ ∩ ]b′, d[ ,

therefore ]a, c[ ∩ ]b, d[ = ∅ if and only if ]a, c[ ∩ ]b′, d[ = ∅ and
−→
a, b |-|

−→
c, d if and

only if
−→

a, b′ |-|
−→
c, d. In the same way

−→

a, b′ |-|
−→
c, d if and only if

−→

a, b′ |-|
−→

c, d′.

(b) Since (d|c, c′) = 1, by (PA) we have b, d∩ ]a, c[ 6= ∅ if and only if b, d∩
]a, c′[ 6= ∅. By Lemma 2.3 ]b, d[ ∩ ]a, c[ 6= ∅ if and only if ]b, d[ ∩ ]a, c′[ 6= ∅.
Assume that for x ∈ ]b, d[ the point z = a, x ∩ c, d exists. Since (b|x, d) =
(d|x, b) = 1 and a, b ∩ c, d = ∅, we have (a|x, z) = (z|x, a) = 1 by (PA). By (A2)
it follows (x|a, z) = −1. Assume b, d∩ ]a, c[ = b, d∩ ]a, c′[ = ∅, then this implies
by (PA) (d|z, c) = −1 and (d|z, c′) = −1, respectively (consider the points x, d, x

and a, b, x, respectively), hence (c|d, z) = (c′|d, z) = 1. This shows a, x ∩
−→
c, d 6= ∅

if and only if a, x ∩
−→

c′, d 6= ∅.
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(c) For any x ∈ ]b, d[ let z = a, x ∩
−→
c, d. Since (a′|a, b) = −1 = (x|b, d) it follows

a′, x∩ ]a, d[ = ∅ by (PA). Consider now the three points a, z, d and the line a′, x .
Then by (PA) z′ := a′, x∩ ]z, d[ exists and (z′|z, d) = −1. Now (c|d, z) = 1

implies (c|d, z′) = 1, i.e., z′ ∈
−→
c, d and a′, x ∩

−→
c, d 6= ∅. (By (A1) the assumption

(c|d, z′) = −1 implies (c|z, z′) = −1 and by (A2) (z′|z, c) = 1 = (z′|c, d), hence
(z′|z, d) = 1 by (A1), a contradiction to (z′|z, d) = −1.) �

Lemma 2.5. Let a, b, c, d with
−→
a, b |-|

−→
c, d and G ⊂ a, b, c with a, c /∈ G and

p = G ∩
−→
a, b 6= ∅. Then G∩ ]a, c[ 6= ∅ or G ∩

−→
c, d 6= ∅.

Proof: Let p′ ∈ a, b = a, p with (p|a, p′) = −1, hence (a|p, p′) = 1 and by

Lemma 2.4(a), (c)
−→
a, p′ |-|

−→
c, d and

−→
p, p′ |-|

−→
c, d. Assume G∩ ]a, c[ = ∅, then by (PA)

v := G∩ ]p′, c[ exists. Now we consider the points c, d, p′ and by (PA) and

G∩ ]p′, c[ 6= ∅ it follows ∅ 6= G∩ ]c, d[ ∈
−→
c, d or x = G∩ ]p′, d[ . For the second case

−→

p, p′ |-|
−→
c, d implies G ∩

−→
c, d = p, x ∩

−→
c, d 6= ∅. �

Theorem 2.6. Let (P,L, α) be a desarguesian ordered space. Let a, b, c, d ∈ P

with
−→
a, b |-|

−→
c, d. Then we have

−→
c, d |-|

−→
a, b.

Proof: We assume that there exists x1 ∈ ]b, d[ with c, x1 ∩
−→
a, b = ∅. Let

p1 ∈ a, b with (b|a, p1) = −1. Since b, d ∩ ]a, c[ = ∅ by Lemma 2.2, by (PA)
the point x2 = b, d ∩ ]p1, c[ exists. If (x1|x2, b) = −1, then (PA) would imply

∅ 6= c, x1 ∩ ]b, p1[ ⊂ c, x1 ∩
−→
a, b, a contradiction, hence (x1|x2, b) = 1. It follows

(x1|x2, d) = (x1|b, d)(x1|x2, b) = (−1) · 1 = −1 and therefore (x2|x1, d) = 1.
Consider the points x2, c, d and x2, b, p1, respectively, the lines a, b and c, d ,
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respectively. Since a, b ∩ c, d = ∅ and (p1|x2, c) = (c|x2, p1) = 1 (because
x2 ∈ ]p1, c[ ), by (PA) we have (b|x2, d) = (d|x2, b) = 1, hence (x2|b, d) = −1. It
follows (x2|b, x1) = (x2|b, d)(x2|x1, d) = (−1) · 1 = −1.

Let y1 ∈ c, p1 with (p1|y1, x2) = −1, hence (x2|y1, c) = (x2|p1, c)(x2|p1, y1) =
(−1) · 1 = −1 and (y1|x2, c) = (c|y1, x2) = 1. Since (x1|x2, d) = −1 and
(y1|x2, c) = 1 by (PA) the point z = x1, y1 ∩ ]c, d[ exists. Consider the
points c, z, y1 and the line x1, x2 . Since (d|z, c) = 1 (because z ∈ ]c, d[ ) and
(x2|c, y1) = −1 it follows by (PA) (x1|z, y1) = −1 and (z|x1, y1) = 1. Since
(z|x1, y1) = 1 and (x2|b, x1) = −1 by (PA) y2 = z, x2 ∩ ]b, y1[ exists. Since
(p1|a, b) = 1 and (y2|b, y1) = −1 by (PA) u = p1, y2 ∩ ]a, y1[ exists. Con-
sider the points a, c, y1 and the line u, p1 . Since (u|a, y1) = −1 and (p1|y1, c) =
(p1|y1, x2)(p1|x2, c) = (−1) · 1 = −1 (because x2 ∈ ]p1, c[ ) by (PA) we have

u, p1 ∩ ]a, c[ = ∅ and since p1 ∈
−→
a, b by Lemma 2.5, y3 = u, p1 ∩

−→
c, d exists.

Because y3 ∈
−→
c, d, we have (c|y3, d) = 1 and (c|y3, z) = (c|y3, d)(c|d, z) =

1 · 1 = 1 (because (z|d, c) = −1). Since (c|y3, z) = 1 and (x1|z, y1) = −1 by
(PA) the point p2 = c, x1 ∩ ]y1, y3[ exists. Now we set x3 = c and p3 = b.
Then with Gi = xi, yi , i = 1, 2, 3 and (D) the points p1, p2, p3 are collinear, i.e.,
p2 ∈ p1, p3 = a, b .

We consider the points b, p2, x1 and the line d, c . Since b, p2 ∩ c, d = a, b ∩
c, d = ∅ and (d|b, x1) = 1, by (PA) it follows (c|p2, x1) = 1. Now with the line
a, c , (c|p2, x1) = 1 implies (a|b, p2) = 1 since a, c∩ ]b, x1[ ⊂ a, c∩ ]b, d[ = ∅ by

Lemma 2.3. Hence p2 ∈ c, x1 ∩
−→
a, b, a contradiction to c, x1 ∩

−→
a, b = ∅. Therefore

−→
c, d |-|

−→
a, b. �

Lemma 2.7. Let a, b, b′, c, d ∈ P with
−→
a, b |-|

−→
c, d and

−→

a, b′ |-|
−→
c, d. Then a, b =
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a, b′ .

Proof: Assume a, b 6= a, b′ . Let x ∈ c, d with (d|c, x) = −1. Since with
Lemma 2.2 b, d∩ ]a, c[ = ∅ = b′, d∩ ]a, c[ , by (PA) r = b, d∩ ]a, x[ and r′ =

b′, d∩ ]a, x[ exist. It holds (x|r, r′) = (x|r, a)(x|r′, a) = 1 · 1 = 1. Hence we may
assume (r′|r, x) = −1 (or we change b and b′). Since d, x ∩ a, b = c, d ∩ a, b = ∅
and (x|r, a) = 1, by (PA) it follows (d|r, b) = 1. Because (r′|r, x) = −1 therefore

with (PA) the point b̃ = ]a, b[ ∩ d, r′ exists. We have (d|̃b, r′) = 1 by (PA), since

(b|̃b, a) = (r|r′, a) = 1, and therefore (d|̃b, b′) = (d|̃b, r′)(d|b′, r′) = 1 · 1 = 1. It

follows (b′ |̃b, d) = −1 or (̃b|b′, d) = −1.

In the first case by
−→
a, b =

−→

a, b̃ |-|
−→
c, d it holds a, b′ ∩

−→
c, d 6= ∅, a contradiction to

a, b′ ∩ c, d = ∅. In the second case a, b ∩
−→
c, d 6= ∅, a contradiction to a, b∩ c, d = ∅.

�

We call a half line
−→
a, b h-parallel to a line G, denoted by

−→
a, b |-| G, if there are

points c, d ∈ G with
−→
a, b |-|

−→
c, d.

We call two lines G,H h-parallel , denoted by G |-| H , if there are distinct points

a, b ∈ H, c, d ∈ G with
−→
a, b |-|

−→
c, d.

Theorem 2.8. Let G ∈ L and a ∈ P \ G. Then there are at most two distinct
lines H1, H2 through a which are h-parallel to G.

Proof: Let c, d ∈ G be distinct. By Lemma 2.7 there is at most one b with
−→
a, b |-|

−→
c, d and at most one b′ with

−→
a, b′ |-|

−→
d, c. With Lemma 2.4 the assumption

now follows. �
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We call a line set b ⊂ L an end ,

(1) if for any two lines G,H ∈ b it holds G |-| H , and
(2) if

⋃
G∈b

G = P

An ordered space (P,L, α) is called an ordered space with hyperbolic incidence
structure if the following holds

(H) for every line G and every point a ∈ P \G there are two distinct h-parallel
lines H1, H2 through a;

(E) for any distinct a, b ∈ P the set (
−→
a, b) := {G ∈ L :

−→
a, b |-| G} ∪ { a, b } is an

end.

Remarks. 1. For dimP ≥ 3, the axiom (H) implies the axiom (E) (cf. [5, (3.11)]).
2. Konrad has shown in [7] that, if we add a congruence relation ≡ to an
ordered space (P,L, α), we have a hyperbolic space (P,L, α,≡) if and only
if (P,L, α) is an ordered space with hyperbolic incidence structure.

3. Spaces with congruence

In this section we introduce the concept of a space (P,L,≡) with congruence
(cf. [13]). We assume in this section a linear space (P,L) whose planes satisfy the
exchange condition. Let ≡ be a congruence relation on P × P , i.e.

≡ is a equivalence relation with
(a, b) ≡ (b, a) and
(a, a) ≡ (b, c) if and only if b = c.

We use the notation (x1, x2, x3) ≡ (y1, y2, y3) if and only if (xi, xj) ≡ (yi, yj)
for i, j ∈ {1, 2, 3}. (P,L,≡) is a space with congruence if the axioms (W1), (W2)
and (W3) are satisfied.

(W1) Let a, b, c ∈ P be distinct and collinear, and let a′, b′ ∈ P with (a, b) ≡
(a′, b′). Then there exists exactly one c′ ∈ a′, b′ with (a, b, c) ≡ (a′, b′, c′).

(W2) Let a, b, x ∈ P be non-collinear and let a′, b′, x′ ∈ P with (a, b, x) ≡

(a′, b′, x′). For any c ∈ a, b and c′ ∈ a′, b′ with (a, b, c) ≡ (a′, b′, c′) it
holds (x, c) ≡ (x′, c′).

(W3) For a, b, x ∈ P non-collinear there exists exactly one x′ ∈ {a, b, x} \ {x}
with (a, b, x) ≡ (a, b, x′).

Let (P,L,≡) be a space with congruence. Then (P,L,≡) is called a regular
space with congruence, if in addition (WK) is satisfied:

(WK) for a, b, c ∈ P non-collinear and c′ ∈ {a, b, c} \ {c} with (a, b, c) ≡ (a, b, c′)

it holds a, b ∩ c, c′ 6= ∅.

We remark that we use here a weaker formulation of this axiom then used in
[15], [2], [10]. In the following let (P,L,≡) be a regular space with congruence.
We call a bijective mapping φ : P → P a motion, if (x, y) ≡ (φ(x), φ(y)) for all
x, y ∈ P . It is well known:
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Lemma 3.1. (i) If a, b, c are collinear points and a′, b′, c′ ∈ P with (a, b, c) ≡
(a′, b′, c′), then a′, b′, c′ are collinear.
(ii) Any motion φ is a collineation.

Proof: (i) By (W1) the point c′′ ∈ a′, b′ exists with (a, b, c) ≡ (a′, b′, c′′). If

c′ /∈ a′, b′, then by (W3) it would follow (c, c) ≡ (c′, c′′), hence c′ = c′′ ∈ a′, b′.

(ii) By (i), φ and φ−1 maps collinear points onto collinear points. �

Lemma 3.2. Any distinct points b, b′ have at most one midpoint m ∈ b, b′ with
(b,m) ≡ (b′,m).

Proof: For m,m′ ∈ b, b′ with (b,m) ≡ (b′,m) and (b,m′) ≡ (b′,m′), we have
(m,m′, b) ≡ (m,m′, b′). If m 6= m′, (W1) would imply b = b′. �

In (1.5) of [13] the following lemma is shown. Since we have distinct assump-
tions, we give a proof.

Lemma 3.3. Let a, b, x ∈ P be non-collinear points and let x′ ∈ a, b, x\{x} with
(a, b, x) ≡ (a, b, x′). Then for any c ∈ a, b, x with (x, c) ≡ (x′c) it holds c ∈ a, b.

Proof: We may assume c /∈ a, x and b 6= c. Since a, b, x is an exchange plane,
a, b, x = a, c, x , and (a, c, x) ≡ (a, c, x′) implies by (WK), p = a, c ∩ x, x′ . Also

by (WK),m = a, b∩ x, x′ . By (W2),m and p are midpoints of x, x′ , hencem = p
by Lemma 3.2 and a,m ∈ a, b ∩ a, c . Therefore, if a 6= m, a, b = a,m = a, c .
If a = m, we show m ∈ b, c and a, b = b,m = b, c . �

Lemma 3.4. Let E = a, b, c be a plane and φ|E be a motion.

(i) If a, b are fixed points of φ then any point x ∈ a, b is a fixed point.
(ii) If a, b, c are fixed points of φ then any point x ∈ a, b, c is a fixed point.

Proof: We have (a, b, x) ≡ (a, b, φ(x)) for any point x ∈ a, b, hence by (W1),
φ(x) = x. Now let x ∈ a, b, c \ a, b. If x 6= φ(x), then (a, b, x) ≡ (a, b, φ(x))
and (c, x) ≡ (c, φ(x)) implies c ∈ a, b by Lemma 3.3, a contradiction to a, b, c
non-collinear. Hence x = φ(x). �

Lemma 3.5. Let E be a plane, φ|E be a motion, L ⊂ E be a line and let z ∈ L
with φ(z) = z.

(i) If φ(L) = L, then φ2|L = id |L.

(ii) If φ(L) = L and φ(E) = E, then φ2|E = id |E .

Proof: For x ∈ L \ {z}, (z, x) ≡ (z, φ(x)) and (z, φ(x), x) ≡ (z, x, φ(x)) ≡
(z, φ(x), φ2(x)), hence x = φ2(x) by (W1). For y ∈ E \ L it follows (z, x, y) ≡
(z, φ2(x), φ2(y)) ≡ (z, x, φ2(y)) and (y, φ(y)) ≡ (φ(y), φ2(y)). If y 6= φ2(y),
Lemma 3.3 implies φ(y) ∈ z, x = L, a contradiction to y /∈ L = φ(L). �
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For a line L ∈ L, x ∈ P \ L and a, b ∈ L with a 6= b there exists by (W3)

the unique point x′ ∈ L ∪ {x} \ {x} with (a, b, x) ≡ (a, b, x′). By (W2) x′ is
independent of the choice of a, b ∈ L, hence we may denote x′ = L(x).

We call the following mapping line reflection

∼
L : P → P ; x→

{
x if x ∈ L,

L(x) if x /∈ L.

Clearly
∼
L is an involutory bijection with z =

∼
L(z) if and only if z ∈ L.

Lemma 3.6. Let L be a line of a plane E and let p′ :=
∼
L(p) for p ∈ E.

(i) If (p, q) ≡ (p′, q′) for p, q ∈ E, then (p, q, x) ≡ (p′, q′, x′) for every x ∈ p, q .
(ii) Let a, b, c, d ∈ E be points with (p, q) ≡ (p′, q′) for p, q ∈ {a, b, c, d}. Then
(x, y) ≡ (x′, y′) for x ∈ a, b and y ∈ c, d .

Proof: (i) By (W1) there exists a point x1 ∈ p′, q′ with (p, q, x) ≡ (p′, q′, x1).
If x = x1, then by Lemma 3.3 x ∈ L. For any point u ∈ L , (p, q, u) ≡ (p′, q′, u),
hence by (W2) (u, x) ≡ (u, x1) and therefore x1 = x

′.
(ii) By (i) we have (a, b, x) ≡ (a′, b′, x′) and (c, d, y) ≡ (c′, d′, y′). If c ∈ a, b ,

then (c, x) ≡ (c′, x′) by (i). For c /∈ a, b , by the assumptions (a, b, c) ≡ (a′, b′, c′)
and (W2) implies (c, x) ≡ (c′, x′) . Also (d, x) ≡ (d′, x′). If x ∈ c, d , then by
(i), (x, y) ≡ (x′, y′). If x /∈ c, d with (c, d, x) ≡ (c′, d′, x′) it follows by (W2)
(x, y) ≡ (x′, y′). �

For the proof that the restriction of a line reflection to a plane is a motion, we
have to consider the closure of three points. We define for a subset X ⊂ P

[X ] :=
⋃

x,y∈P

x, y , [X ]1 := X and [X ]n+1 := [[X ]n] for n ∈ N.

Clearly [X ]n ⊂ X and since
⋃

n∈N
[X ]n is a linear space, X =

⋃
n∈N
[X ]n.

Theorem 3.7. Let L be a line of a plane E. Then
∼
L|E is an involutory motion

with z =
∼
L(z) if and only if z ∈ L.

Proof: Let u, v, w be points with L = u, v and E = u, v, w . We prove the
theorem by induction. For x, y ∈ [u, v, w]1 = {u, v, w} clearly (x, y) ≡ (x′, y′).
Assume this property for [u, v, w]n and let x, y ∈ [u, v, w]n+1. Then a, b, c, d ∈
[u, v, w]n exist with x ∈ a, b and y ∈ c, d . By assumption a, b, c, d satisfy the
conditions of Lemma 3.6(ii) and we have (x, y) ≡ (x′, y′). With X =

⋃
n∈N
[X ]n

it follows (x, y) ≡ (x′, y′) for any x, y ∈ E. �
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Lemma 3.8. Let a, b, b′ be non-collinear points with (a, b) ≡ (a, b′). Then there

exists exactly one line L ⊂ a, b, b′ through a with b′ = L(b), and b, b′ have a
midpoint m.

Proof: By (W3) there exists the point a′ ∈ a, b, b′\{a} with (b, b′, a) ≡ (b, b′, a′),

since (a, b) ≡ (a, b′) also (a, a′, b) ≡ (a, a′, b′). For L := a, a′ it follows L ⊂ a, b, b′

and L(b) = b′. By Lemma 3.3, L is uniquely determined. By (WK), m = L∩ b, b′

exists with (m, b) ≡ (m, b′). �

We define for lines A,B ∈ L:

A ⊥ B ⇐⇒ Ã(B) = B and A 6= B.

Lemma 3.9. (i) If A ⊥ B, then A ∩B 6= ∅ and B ⊥ A.

(ii) For lines A,B of a plane E, we have A ⊥ B if and only if
(∼
A

∼
B

)2
|E = id |E .

Proof: (i) Let a0, a1 ∈ A \ B be distinct points, b ∈ B \ A and b′ = A(b) ∈ B.
Then (a0, a1, b) ≡ (a0, a1, b

′) and by (WK) z = A ∩B exists. For a2 = B(a1) we
have (b′, b, a1) ≡ (b

′, b, a2), and by Lemma 3.3, (b, a2) ≡ (b, a1) ≡ (b
′, a1) ≡ (b

′, a2)

implies a2 ∈ A = a1, a0, hence by Theorem 3.7,
∼
B(A) = A.

(ii) Let A ⊥ B and z = A ∩ B. For φ :=
∼
A

∼
B and E := A ∪B we have

φ(E) = E, φ(B) = B and φ(z) = z. By Lemma 3.5, φ2|E = id |E .

Assume now φ2|E = id |E , hence
∼
A

∼
B

∼
A

∼
B(b) = b for any point b ∈ B, i.e.,

∼
B(

∼
A(b)) =

∼
A(b). By Theorem 3.7,

∼
A(b) ∈ B, i.e.,

∼
A(B) = B. �

The following two lemmas one can find in Sections 1 and 4 of [13]. Since there
(P,L) is assumed as a plane, we have to give proofs here.

Lemma 3.10. For distinct points a, b, there exists a point b′ ∈ a, b \ {b} with
(a, b) ≡ (a, b′).

Proof: Let c be a point not on A := a, b, and let c′ ∈ a, b, c \ {c} with (a, b, c) ≡

(a, b, c′). Let C := c, c′ . By (WK), m := C ∩ a, b exists. By Lemma 3.3 a′ =
C(a) ∈ A, and by (W2) (a,m) ≡ (a′,m). Now we use two times (W1) and get the
points m′, b′ ∈ A with (m, a, a′) ≡ (a,m,m′) and (a,m, b) ≡ (a,m′, b′). Therefore
(a,m) ≡ (a,m′) and (a, b) ≡ (a, b′). �

Theorem 3.11. For a plane E and distinct points a, b, b′ ∈ E with (a, b) ≡ (a, b′),
there exists a line L ⊂ E with a ∈ L and L(b) = b′.

Proof: Let a, b, b′ be collinear and A := a, b. First we show that there exists
b′′ ∈ E \L with (a, b) ≡ (a, b′′). Let q ∈ E \L, hence a, b, q = E. For a′ = q, b (a),

we have B := a, a′ ⊥ q, b and therefore b′′ = B(b) ∈ q, b \ {b}, in particular
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b′′ /∈ A. Clearly (a, b) ≡ (a, b′′). By Lemma 3.5, the line C ⊂ E through a with

C(b′) = b′′ exists. For φ :=
∼
C

∼
B

∼
A we have φ(b) =

∼
C

∼
B

∼
A(b) =

∼
C(b′′) = b′, φ(A) = A

and φ(a) = a. Also
∼
C

∼
B(A) = A and

∼
C

∼
B(a) = a. By Lemma 3.5, φ2|E = id |E and

(∼
C

∼
B

)2
|E = id |E . Now Lemma 3.9 shows

∼
B(C) = C. Since A 6= G = a, b′′ , also

∼
C(A) = G 6= A and by Lemma 3.9

∼
A(C) 6= A and therefore φ(C) 6= C.

Hence for p ∈ C \{a} we have a /∈ p, φ(p) and (a, p) ≡ (a, φ(p)). By Lemma 3.8

a line L through a exists with L(p) = φ(p) = p′. Now by Lemma 3.4, φ
∼
L(a) = a,

φ
∼
L(p) = p and φ

∼
L(p′) = p′ imply φ

∼
L |E = id |E and L(b) = φ(b) = b

′. �

4. Absolute spaces

Let (P,L, α) be an ordered space and let (P,L,≡) be a regular space with
congruence. Then we call (P,L,≡, α) a regular ordered space with congruence.
(P,L,≡, α) is called an absolute space if in addition (WF) is satisfied (cf. [15],
[2]):

(WF) Let a, b, c ∈ P be non-collinear points. Then there exists d ∈ a, c with
(a, b) ≡ (a, d).

Now we assume first that (P,L,≡, α) is a regular ordered space with congru-
ence.

Theorem 4.1. For a, b, c ∈ P non-collinear and c′ ∈ {a, b, c} \{c} with (a, b, c) ≡

(a, b, c′) let m := a, b ∩ c, c′ . Then (m|c, c′) = −1.

Proof: For L := a, b , by definition c′ = L(c). We assume (c|m, c′) = −1,
hence (c′|m, c) = (m|c, c′) = 1. Let x ∈ L with (x|a,m) = −1. By the axiom
of Pasch (PA), there exists y := c′, x∩ ]a, c[ and for y′ = L(y) = c, x ∩ a, c′ it
follows (y′|a, c′) = 1 by (PA), since (c|m, c′) = −1. Therefore we have by (PA)

p = y, y′ ∩ ]c, c′[ 6= ∅, in particular p 6= m. Since
∼
L( y, y′ ) = y′, y ,

∼
L( c, c′ ) = c′, c

it follows L(p) = p ∈ L by Theorem 3.7, a contradiction to p 6= m = c, c′ ∩ L. It
follows (c|m, c′) = 1 and also (c′|m, c) = 1, hence by (A2), (m|c, c′) = −1. �
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Lemma 4.2. (i) Let a, b, b′ be collinear points with (a, b) ≡ (a, b′). Then
(a|b, b′) = −1.
(ii) For distinct points a, b there exists exactly one point b′ ∈ a, b \ {b} with
(a, b) ≡ (a, b′).

(iii) For a plane E, a line L ⊂ E and a ∈ L, there exists exactly one line G ⊂ E
with a ∈ G and L ⊥ G.

Proof: (i) By Lemma 3.11 a line L exists with a ∈ L and L(b) = b′. For any

point x ∈ L \ {a} we have (x, a, b) ≡ (x, a, b′) and by (WK), a = b, b′ ∩ a, x, i.e.,
(a|b, b′) = −1 by 4.1.
(ii) By Lemma 3.10, b′ exists. If there are b′, b′′ ∈ a, b\{b} with (a, b′) ≡ (a, b) ≡

(a, b′′), it follows by (i), (a|b, b′) = (a|b, b′′) = (a|b′, b′′) = −1, a contradiction to
axiom (A1).
(iii) For b ∈ L \ {a} we have L ⊥ G if and only if b 6= b′ := G(b) ∈ a, b. Now

(ii) and Lemma 3.11 show (iii). �

For distinct points a, x ∈ P we denote by a(x) the unique point a(x) ∈ a, x\{x}
with (a, x) ≡ (a, a(x)). We call the following mapping point reflection:

ã : P → P ; x→

{
x if x = a,

a(x) if x 6= a.

Theorem 4.3. Every point reflection ã is an involutory motion with x = ã(x) if
and only if x = a.

Proof: By 4.2(ii), ã is an involutory bijection and ã(x) = x only if x = a. Let
x, y ∈ P , x′ = a(x) and y′ = a(y). We show (x, y) ≡ (x′, y′). If x, y, a are non-
collinear then X := a, x 6= Y := a, y. For y′′ = X(y) by 3.8 a line L through a

exists with L(y′′) = y′. (If y′ = y′′, L = Y .) Hence for φ :=
∼
L

∼
X it holds φ(y) = y′

and φ(Y ) = Y . For E := a, x, y also φ(E) = E and φ(a) = a. Therefore by

Lemma 3.5, φ2|E = id and by Lemma 3.9,
∼
L(X) = X . Now L(x) ∈ X \ {x}

implies by Lemma 4.2(ii) L(x) = x′, hence φ(x) = x′. Since by Theorem 3.7, φ|E
is a motion, (x, y) ≡ (x′.y′). If x, y, a are collinear, by (W1) and Lemma 4.2(ii),
(a, x, y) ≡ (a, x′, y′). �

Theorem 4.4. Every line reflection
∼
L is a motion.

Proof: For any point a, we denote a′ :=
∼
L(a). Let x, y ∈ P \L and z := x, x′ ∩L.

By Theorem 4.2(iii), the line G ⊂ L ∪ {y} through z exists with
∼
L(G) = G. Let

p ∈ G \ {z}. We have x′ = z(x) and p′ = z(p), in particular (x, p) ≡ (x′, p′) by
Theorem 4.3. By Lemma 4.1, (z|p, p′) = −1, hence with the axiom of Pasch (PA)
we may assume that the point q = ]p, y[ ∩L exists (else ]p′, y[ ∩L 6= ∅). Since
q ∈ L and p, q, y are collinear, by Theorem 3.7 (p, q, y) ≡ (p′q′y′). Also since
q ∈ L, (p, q, x) ≡ (p′, q′, x′). With (W2) it follows (x, y) ≡ (x′, y′). �
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Lemma 4.5. Let φ be a motion with exactly one fixed point z. If φ2 = id, then
φ = z̃.

Proof: For any point x 6= z and x′ := φ(x) we have (z, x, x′) ≡ (z, x′, φ2(x)) ≡

(z, x′, x), in particular (z, x) ≡ (z, x′). For z′ = x, x′ (z) we have (z, z′, x) ≡
(z, z′, x′) and by (WK) m = x, x′ ∩ z, z′ exists, and by (W2) m is the midpoint

of x, x′. Let m′ := φ(m) ∈ x′, φ2(x) = x′, x. Then (x, x′,m) ≡ (x′, φ2(x),m′) ≡
(x′, x,m′) implies (x,m′) ≡ (x′,m′), i.e. m = m′ by Lemma 3.2. Since z is the
only fixed point, we have m = z and x′ = z(x). �

Theorem 4.6. Let a, b, c be collinear points with a 6= b and assume that the

midpoint m of c and ãb̃(c) exists.

Then ãb̃c̃ has exactly the fixed point m and ãb̃c̃ = m̃.

Proof: For L = a, b, ãb̃(c),m ∈ L. By the definition of m, m̃ãb̃(c) = c. Let φ :=

m̃ãb̃. Assume that φ has another fixed point on L, then by Lemma 3.4, φ|L = id|L

and φ(m) = m implies ã(m) = b̃(m), i.e. b = a, a contradiction. Assume now that
there is a point y ∈ P \L with φ(y) = y. Then y′ = a(y) and y′′ = b(a(y)) are not
collinear and a and b and m, respectively, are the midpoints of y, y′ and y′, y′′,
and y′′, y, respectively. By Lemma 4.2(i), (a|y, y′) = (b|y′, y′′) = (m|y′′, y) = −1,
by the axiom of Pasch (PA) a contradiction to m, a, b collinear. Therefore c is the
only fixed point of φ.
Now let E be any plane with L ⊂ E. By definition of point reflections φ(E) = E
and clearly φ(L) = L. Now Lemma 3.5 shows φ2|E = id |E for any plane E

containing L, and therefore φ2 = id. Now φ = c̃ and ãb̃c̃ = m̃ by Lemma 4.5. �

Lemma 4.7. Let a, b be points. Then ãb̃ã = ã(b) is a point reflection.

Proof: Because ã is a motion, (b, a, b(a)) ≡ (a(b), a, a(b(a)) ), and by the defini-
tion of a point reflection, (b, a) ≡ (b, b(a) ). Therefore (a(b) , a) ≡ (a(b) , a(b(a)) ),
and a(b) is the midpoint of (a, a(b(a)) ). Now for c = a and m = a(b) by Theo-

rem 4.6, ãb̃ã = m̃. �

In the following we assume an absolute space (P,L,≡, α), i.e., we assume in
addition the property (WF). In (16.11) of [6] with different assumption it is proved
that any two points have a midpoint. In (5.4) of [13] and [15] it is shown for a
plane that the axioms given here imply the assumptions of [6]. We give here a
complete proof for an absolute space (P,L,≡, α).

Lemma 4.8. For distinct points a, b, for a line L and for x ∈ L, there exists
y ∈ L with (a, b) ≡ (x, y).

Proof: We may assume x /∈ a, b and L 6= X := a, x. By (WF) there exists c ∈ X
with (a, b) ≡ (a, c). By (W1), d ∈ X exists with (a, x, c) ≡ (x, a, d), and again
(WF) shows the existence of y ∈ L with (x, d) ≡ (x, y). �
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Theorem 4.9. Any two distinct points a, b ∈ P have exactly one midpoint m ∈
a, b.

Proof: Let La and Lb be coplanar lines with a ∈ La, b ∈ Lb and La, Lb ⊥ G :=
a, b (cf. 4.2(iii)). For x ∈ La \ {a} let x′ = G(x) ∈ La, y ∈ Lb with (a, x) ≡ (b, y)
(cf. 4.8) and let y′ = G(y), in particular (x, y′) ≡ (x′, y) and (x, y) ≡ (x′, y′).
By (W1), y′′ ∈ Lb with (a, x, x

′) ≡ (b, y, y′′) exists and 4.2(ii) implies y′ = y′′,
hence (x, x′) ≡ (y, y′). Now from (a, x, x′) ≡ (b, y, y′) and (y, y′, x) ≡ (x, x′, y) it
follows by (W2) also (a, y) ≡ (b, x).
By 4.2(i), (b|y, y′) = −1 and by axiom (PA), G ∩ x, y 6= ∅ or G ∩ x, y′ 6= ∅. We

may assumem := G∩x, y. By (W1) there existsm′ ∈ G with (a, b,m) ≡ (b, a,m′)
and since (a, b, y) ≡ (b, a, x) we have by (W2) (x,m) ≡ (y,m′) and (x,m′) ≡
(y,m). Therefore by Lemma 3.1(i), (x, y,m) ≡ (x, y,m′) implies m = m′, i.e.,
(a,m) ≡ (b,m). By Lemma 3.2 there exists only one midpoint. �

Since in an absolute space any two points have a midpoint, the point reflections
act regularly on the point set P and by Theorem 4.6 the product of the point
reflections of any three collinear points is a point reflection again.

5. Addition of points

In this section we assume an absolute space (P,L, α,≡). Using point reflections
we introduce an addition of points. For an euclidian space this addition is exactly
the vector addition of the corresponding vector space, but in general, for example
for an ordered space with hyperbolic incidence structure, this addition is not
associative.

First we recall some definitions. A set Q with a binary operation · is a loop, if
for a, b, c ∈ Q there are elements x, y ∈ Q with a · x = c and y · b = c, and if there
is an neutral element e ∈ Q with x · e = x = e · x for all x ∈ Q.
A loop (Q, ·) is a Bol loop, if for a, b, c ∈ Q the (left) Bol identity

a(b · ac) = (a · ba)c
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is satisfied. In a Bol loop every element a ∈ Q has a unique inverse a−1 with
a · a−1 = a−1 · a = e. Usually a Bol loop is called a Bruck loop or a K-loop (cf.
[11], [9]), if the inverse automorphic property

(a · b)−1 = a−1 · b−1

is satisfied. For the structure of a Bruck loop A. Ungar also introduced the name
gyrogroup (cf. [12], [16], [17]).

For an absolute space (P,L, α,≡) we fix now a point 0 ∈ P and denote for any
point a ∈ P \ {0} the unique midpoint of 0 and a by a/2 (cf. Theorem 4.9). We
denote 0 = 0/2. Then for the point reflection corresponding to a/2 we have

ã/2(0) = a and ã/2(a) = 0.

We define for points a, b the addition + on the point set P by

a+ b := ã/2 ◦ 0̃(b) = ã/2 0̃(b).

Theorem 5.1. (P,+) is a loop with the neutral element 0. The point −a := 0̃(a)
is the inverse of a ∈ P .
(P,+) is associative if and only if for three points a, b, c ∈ P the product ã b̃ c̃ is
a point reflection, too.

Proof: Let a, b, c ∈ P be given. Since ã/2 and 0̃ are bijections, there exists an

unique point x with ã/2 0̃(x) = c, i.e., a+ x = c. Let y′ be the unique midpoint

of −b = 0̃(b) and c, i.e., ỹ′(−b) = c. For y := ỹ′(0), i.e., y′ = y/2 we have the

unique solution y with y + b = ỹ/2 0̃(b) = c.

Clearly we have a + 0 = ã/2(0) = a and 0 + a = 0̃ 0̃(a) = a. Also a + (−a) =

ã/2 0̃ 0̃(a) = 0 and (−a) + a = −̃a/2 0̃(a) = −̃a/2(−a) = 0, since −a/2 is the
midpoint of −a and 0.

Now we compute a+(b+c) = ã/2 0̃ b̃/2 0̃(c) and (a+b)+c = ˜(a+ b)/2 0̃(c), hence

the addition is associative if ã/2 0̃ b̃/2 = ˜(a+ b)/2. This is satisfied if and only if

φ := ã/2 0̃ b̃/2 is a point reflection, since then φ(0) = a+ b implies φ = ˜(a+ b)/2.
�

We remark that in general for three non-collinear points a, b, c ∈ P the product

of the point reflections ãb̃c̃ is not a point reflection. For example if (P,L, α) is an
ordered space with hyperbolic incidence structure. This is easy to see, if one uses
the Klein model of a hyperbolic plane with the polar reflections as line reflections.
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Lemma 5.2. For points a, b ∈ P it holds 0̃ ã/2 0̃ = −̃a/2 and ã/2 0̃ b̃/2 0̃ ã/2 =
˜(a+ (b+ a))/2.

Proof: Obviously, the points a/2, 0, a/2 are collinear and by Lemma 4.7, φ =

0̃ ã/2 0̃ is a point reflection. Since φ(0) = −a it follows φ = −̃a/2. We compute

ψ(0) := ã/2 0̃ b̃/2 0̃ ã/2(0) = ã/2 0̃(b+a) = a+(b+a), hence ψ = ˜(a+ (b + a))/2,

since β = 0̃ b̃/2 0̃ and φ = ã/2 β ã/2 are point reflections. �

Theorem 5.3. (P,+) is a Bruck loop and a K-loop.

Proof: Using Lemma 5.2 we compute (−a) + (−b) = −̃a/2 0̃(−b) = −̃a/2(b) =

0̃ ã/2 0̃(b) = 0̃(a+ b) = −(a+ b).

Also a+(b+(a+c)) = ã/2 0̃ b̃/2 0̃ ã/2(−c) = ˜(a+ (b + a))/2(−c) = (a+(b+a))+c.
�
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