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Duality theory of spaces

of vector-valued continuous functions

Marian Nowak, Aleksandra Rzepka

Abstract. Let X be a completely regular Hausdorff space, E a real normed space, and
let Cb(X, E) be the space of all bounded continuous E-valued functions on X. We
develop the general duality theory of the space Cb(X, E) endowed with locally solid
topologies; in particular with the strict topologies βz(X, E) for z = σ, τ, t. As an ap-
plication, we consider criteria for relative weak-star compactness in the spaces of vector
measures Mz(X, E′) for z = σ, τ, t. It is shown that if a subset H of Mz(X, E′) is
relatively σ(Mz(X, E′), Cb(X, E))-compact, then the set conv(S(H)) is still relatively
σ(Mz(X, E′), Cb(X, E))-compact (S(H) = the solid hull of H inMz(X, E′)). A Mackey-
Arens type theorem for locally convex-solid topologies on Cb(X, E) is obtained.

Keywords: vector-valued continuous functions, strict topologies, locally solid topologies,
weak-star compactness, vector measures

Classification: 46E10, 46E15, 46E40, 46G10

1. Introduction and preliminaries

Let X be a completely regular Hausdorff space and let (E, ‖·‖E) be a real normed
space. Let BE and SE stand for the closed unit ball and the unit sphere in E,
and let E′ stand for the topological dual of (E, ‖ · ‖E). Let Cb(X, E) be the space
of all bounded continuous functions f : X → E. We will write Cb(X) instead
of Cb(X, R), where R is the field of real numbers. For a function f ∈ Cb(X, E)
we will write ‖f‖(x) = ‖f(x)‖E for x ∈ X . Then ‖f‖ ∈ Cb(X) and the space
Cb(X, E) can be equipped with the norm ‖f‖∞ = supx∈X ‖f‖(x) = ‖‖f‖‖∞,
where ‖u‖∞ = supx∈X |u(x)| for u ∈ Cb(X).
It turns out that the notion of solidness in the Riesz space (= vector lattice)

Cb(X) can be lifted in a natural way to Cb(X, E) (see [NR]). Recall that a subset
H ofCb(X, E) is said to be solid whenever ‖f1‖ ≤ ‖f2‖ (i.e., ‖f1(x)‖E ≤ ‖f2(x)‖E

for all x ∈ X) and f1 ∈ Cb(X, E), f2 ∈ H imply f1 ∈ H . A linear topology τ on
Cb(X, E) is said to be locally solid if it has a local base at 0 consisting of solid
sets. A linear topology τ on Cb(X, E) that is at the same time locally convex and
locally solid will be called a locally convex-solid topology.
In [NR] we examine the general properties of locally solid topologies on the

space Cb(X, E). In particular, we consider the mutual relationship between locally
solid topologies on Cb(X, E) and Cb(X). It is well known that the so-called
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strict topologies βz(X, E) on Cb(X, E) (z = t, τ, σ, g, p) are locally convex-solid
topologies (see [Kh, Theorem 8.1], [KhO2, Theorem 6], [KhV1, Theorem 5]).

For a linear topological space (L, ξ), by (L, ξ)′ (or L′
ξ) we will denote its topo-

logical dual. We will write Cb(X, E)′ and Cb(X)
′ instead of (Cb(X, E), ‖ · ‖∞)′

and (Cb(X), ‖ · ‖∞)′ respectively. By σ(L, M) and τ(L, M) we will denote the
weak topology and the Mackey topology with respect to a dual pair 〈L, M〉. For
terminology concerning locally solid Riesz spaces we refer to [AB1], [AB2].

In the present paper, we develop the duality theory of the space Cb(X, E)
endowed with locally solid topologies (in particular, the strict topologies βz(X, E),
where z = σ, τ, t).

In Section 2 we examine the topological dual of Cb(X, E) endowed with a
locally solid topology τ . We obtain that (Cb(X, E), τ)′ is an ideal of Cb(X, E)′.
We consider a mutual relationship between topological duals of the spaces Cb(X)
and Cb(X, E), which allows us to examine in a unified manner continuous linear
functionals on Cb(X, E) by means of continuous linear functionals on Cb(X).

In Section 3 we consider criteria for relative weak-star compactness in spaces of
vector measures Mz(X, E′) for z = σ, τ, t. In particular, we show that if a subset
H of Mz(X, E′) is relatively σ(Mz(X, E′), Cb(X, E))-compact, then conv (S(H))
is still relatively σ(Mz(X, E′), Cb(X, E))-compact (here S(H) stand for the solid
hull of H in Mz(X, E′); see Definition 3.1 below).

Section 4 deals with the absolute weak and the absolute Mackey topologies on
Cb(X, E). A Mackey-Arens type theorem for locally convex-solid topologies on
Cb(X, E) is obtained.

Now we recall some properties of locally solid topologies on Cb(X, E) as set out
in [NR]. A seminorm ρ on Cb(X, E) is said to be solid whenever ρ(f1) ≤ ρ(f2) if
f1, f2 ∈ Cb(X, E) and ‖f1‖ ≤ ‖f2‖.
Note that a solid seminorm on the vector lattice Cb(X) is usually called a Riesz

seminorm (see [AB1]).

Theorem 1.1 (see [NR, Theorem 2.2]). For a locally convex topology τ on
Cb(X, E) the following statements are equivalent:

(i) τ is generated by some family of solid seminorms;
(ii) τ is a locally convex-solid topology.

From Theorem 1.1 it follows that any locally convex-solid topology τ on
Cb(X, E) admits a local base at 0 formed by sets which are simultaneously abso-
lutely convex and solid.

Recall that the algebraic tensor product Cb(X)⊗E is the subspace of Cb(X, E)
spanned by the functions of the form u⊗ e, (u⊗ e)(x) = u(x)e, where u ∈ Cb(X)
and e ∈ E.

Now we briefly explain the general relationship between locally convex-solid
topologies on Cb(X) and Cb(X, E) (see [NR]). Given a Riesz seminorm p on
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Cb(X) let us set

p∨(f) := p
(

‖f‖
)

for all f ∈ Cb(X, E).

It is seen that p∨ is a solid seminorm on Cb(X, E). From now on let e0 ∈ SE be
fixed. Given a solid seminorm ρ on Cb(X, E) one can define a Riesz seminorm ρ∧

on Cb(X) by:
ρ∧(u) := ρ(u ⊗ e0) for all u ∈ Cb(X).

One can easily show:

Lemma 1.2 (see [NR, Lemma 3.1]). (i) If ρ is a solid seminorm on Cb(X, E),
then (ρ∧)∨(f) = ρ(f) for all f ∈ Cb(X, E).

(ii) If p is a Riesz seminorm on Cb(X), then (p
∨)∧(u) = p(u) for all u ∈ Cb(X).

Let τ be a locally convex-solid topology on Cb(X, E) and let {ρα : α ∈ A} be
a family of solid seminorms on Cb(X, E) that generates τ . By τ∧ we will denote
the locally convex-solid topology on Cb(X) generated by the family {ρ

∧
α : α ∈ A}.

Next, let ξ be a locally convex-solid topology on Cb(X) and let {pα : α ∈ A} be
a family of solid seminorms on Cb(X) that generates ξ. By ξ∨ we will denote the
locally convex-solid topology on Cb(X, E) generated by the family {p∨α : α ∈ A}.

As an immediate consequence of Lemma 1.2 we have:

Theorem 1.3 (see [NR, Theorem 3.2]). For a locally convex-solid topology τ on
Cb(X, E) (resp. ξ on Cb(X)) we have:

(

τ∧
)∨
= τ

(

resp.
(

ξ∨
)∧
= ξ

)

.

The strict topologies βz(X, E) on Cb(X, E), where z = t, τ, σ, g, p have been
examined in [F], [KhC], [Kh], [KhO1], [KhO2], [KhO3], [KhV1], [KhV2]. In this
paper we will consider the strict topologies βz(X, E), where z = t, τ, σ. We will
write βz(X) instead of βz(X, R).
Now we recall the concept of a strict topology on Cb(X, E). Let βX stand

for the Stone-Čech compactification of X . For v ∈ Cb(X), v denotes its unique
continuous extension to βX . For a compact subset Q of βX \ X let CQ(X) =
{v ∈ Cb(X) : v |Q ≡ 0}. Let βQ(X, E) be the locally convex topology on
Cb(X, E) defined by the family of solid seminorms {̺v : v ∈ CQ(X)}, where
̺v(f) = supx∈X |v(x)| ‖f‖(x) for f ∈ Cb(X, E).
Now let C be some family of compact subsets of βX \ X . The strict topology

βC(X, E) on Cb(X, E) determined by C is the greatest lower bound (in the class
of locally convex topologies) of the topologies βQ(X, E), as Q runs over C (see
[NR] for more details). In particular, it is known that βC(X, E) is locally solid
(see [NR, Theorem 4.1]).
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The strict topologies βτ (X, E) and βσ(X, E) on Cb(X, E) are obtained by
choosing the family Cτ of all compact subsets of βX \ X and the family Cσ of all
zero subsets of βX \ X as C, resp. In view of [NR, Corollary 4.4] for z = τ, σ we
have

βz(X)
∨ = βz(X, E) and βz(X, E)∧ = βz(X).

The strict topology βt(X, E) on Cb(X, E) is generated by the family {̺v : v ∈
C0(X)}, where C0(X) denotes the space of scalar-valued continuous functions
on X , vanishing at infinity. It is easy to show that

βt(X)
∨ = βt(X, E) and βt(X, E)∧ = βt(X).

2. Topological dual of Cb(X, E) with locally solid topologies

For a linear functional Φ on Cb(X, E) let us put

|Φ|(f) = sup
{

|Φ(h)| : h ∈ Cb(X, E), ‖h‖ ≤ ‖f‖
}

.

The next theorem gives a characterization of the space Cb(X, E)′.

Theorem 2.1. We have

Cb(X, E)′ =
{

Φ ∈ Cb(X, E)# : |Φ|(f) < ∞ for all f ∈ Cb(X, E)
}

,

where Cb(X, E)# denotes the algebraic dual of Cb(X, E).

Proof: Indeed, by the way of contradiction, assume that for some Φ0 ∈ Cb(X, E)′

we have |Φ0|(f0) = ∞ for some f0 ∈ Cb(X, E). Hence there exists a sequence
(hn) in Cb(X, E) such that ‖hn‖ ≤ ‖f0‖ and |Φ0(hn)| ≥ n for all n ∈ N.
Since ‖n−1hn‖∞ → 0, we get n−1Φ0(hn) → 0, which is in contradiction with
|Φ0(hn)| ≥ n.
Next, assume by the way of contradiction that there exists a linear func-

tional Φ0 on Cb(X, E) such that |Φ0|(f) < ∞ for all f ∈ Cb(X, E) and Φ0 /∈
Cb(X, E)′. Then there exists a sequence (fn) in Cb(X, E) such that ‖fn‖∞ = 1
and |Φ0(fn)| > n3 for all n ∈ N. Since

∑∞
n=1

1
n2

‖‖fn‖‖∞ < ∞ and the space

(Cb(X), ‖·‖∞) is complete, there exists u0∈Cb(X)
+ such that

∑∞
n=1

1
n2

‖fn‖=u0.

Let f0 = u0 ⊗ e0 for some fixed e0 ∈ SE . Then
1
n2

‖fn‖ ≤ ‖f0‖ = u0. Hence for

all n ∈ N, n < |Φ0(fn/n2)| ≤ |Φ0|(fn/n2) ≤ |Φ0|(f0) < ∞, which is impossible.
Thus the proof is complete. �

Now we consider the concept of solidness in Cb(X, E)′.

Definition 2.1. For Φ1,Φ2 ∈ Cb(X, E)′ we will write |Φ1| ≤ |Φ2| whenever
|Φ1|(f) ≤ |Φ2|(f) for all f ∈ Cb(X, E). A subset A of Cb(X, E)′ is said to be
solid whenever |Φ1| ≤ |Φ2| with Φ1 ∈ Cb(X, E)′ and Φ2 ∈ A implies Φ1 ∈ A.
A linear subspace I of Cb(X, E)′ will be called an ideal whenever I is solid.
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Since the intersection of any family of solid subsets of Cb(X, E)′ is solid, every
subset A of Cb(X, E)′ is contained in the smallest (with respect to the inclusion)
solid set called the solid hull of A and denoted by S(A). Note that

S(A) =
{

Φ ∈ Cb(X, E)′ : |Φ| ≤ |Ψ| for some Ψ ∈ A
}

.

Lemma 2.2. Let Φ ∈ Cb(X, E)′. Then for f ∈ Cb(X, E),

(∗) |Φ|(f) = sup
{

|Ψ(f)| : Ψ ∈ Cb(X, E)′, |Ψ| ≤ |Φ|
}

.

Moreover, if A is a subset of Cb(X, E)′ then for f ∈ Cb(X, E) we have

(∗∗)
sup

{

|Φ|(f) : Φ ∈ A
}

= sup
{

|Ψ(f)| : Ψ ∈ S(A)
}

= sup
{

|Ψ(f)| : Ψ ∈ conv
(

S(A)
)}

.

Proof: Note first that |Φ| is a seminorm on Cb(X, E). To see that |Φ|(f1+f2) ≤
|Φ|(f1) + |Φ|(f2) holds for f1, f2 ∈ Cb(X, E) with f1, f2 6= 0, assume that h ∈
Cb(X, E) and ‖h‖ ≤ ‖f1+f2‖. Then for hi = (‖fi‖/(‖f1‖+‖f2‖))h for i = 1, 2 we
have h = h1+ h2 and ‖hi‖ ≤ ‖fi‖ for i = 1, 2. Thus |Φ(h)| ≤ |Φ(h1)|+ |Φ(h2)| ≤
|Φ|(h1) + |Φ|(h2) ≤ |Φ|(f1) + |Φ|(f2). Hence |Φ|(f1 + f2) ≤ |Φ|(f1) + |Φ|(f2), as
desired. Moreover, one can easily show that |Φ|(λf) = |λ| |Φ|(f) for all λ ∈ R.
For a fixed f0 ∈ Cb(X, E) we define a functional Ψ0 on the linear subspace

Lf0 = {λf0 : λ ∈ R} of Cb(X, E) by putting Ψ0(λf0) = λ|Φ|(f0) for λ ∈ R. It is
clear that Ψ0 is a linear functional on Lf0 and |Ψ0(λf0)| = |Φ|(λf0) for λ ∈ R.
Then by the Hahn-Banach extension theorem there exists a linear functional Ψ
on Cb(X, E) such that Ψ(f) ≤ |Φ|(f) for all f ∈ Cb(X, E) and Ψ(λf0) = Ψ0(λf0)
for all λ ∈ R. Since Ψ is linear and |Φ|(f) = |Φ|(−f) we get |Ψ(f)| ≤ |Φ|(f) for all
f ∈ Cb(X, E). To see that |Ψ| ≤ |Φ| let f ∈ Cb(X, E) and take h ∈ Cb(X, E) with
‖h‖ ≤ ‖f‖. Then |Ψ(h)| ≤ |Φ|(h) ≤ |Φ|(f), so |Ψ|(f) ≤ |Φ|(f). Thus |Ψ| ≤ |Φ|.
Moreover, Ψ(f0) = Ψ0(f0) = |Φ|(f0), so

|Φ|(f0) = sup
{

|Ψ(f0)| : Ψ ∈ Cb(X, E)′, |Ψ| ≤ |Φ|
}

.

Thus (∗) is shown. As a consequence of (∗) we easily obtain that (∗∗) holds. �

We now introduce the concept of a solid dual system. Let I be an ideal of
Cb(X, E)′ separating the points of Cb(X, E). Then the pair 〈Cb(X, E), I〉, under
its natural duality

〈f,Φ〉 = Φ(f) for f ∈ Cb(X, E), Φ ∈ I

will be referred to as a solid dual system.
For a subset A of Cb(X, E) and a subset B of I let us set

A0 =
{

Φ ∈ I : |〈f,Φ〉| ≤ 1 for all f ∈ A
}

,

0B =
{

f ∈ Cb(X, E) : |〈f,Φ〉| ≤ 1 for all Φ ∈ B
}

.

By making use of Lemma 2.2 we can get the following result.
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Theorem 2.3. Let 〈Cb(X, E), I〉 be a solid dual system.

(i) If a subset A of Cb(X, E) is solid, then A0 is a solid subset of I.
(ii) If a subset B of I is solid, then 0B is a solid subset of Cb(X, E).

Proof: (i) Let |Φ1| ≤ |Φ2| with Φ1 ∈ I and Φ2 ∈ A0. Assume that f ∈ A and
let h ∈ Cb(X, E) with ‖h‖ ≤ ‖f‖. Then h ∈ A, because A is solid, so |Φ2(h)| ≤ 1.
Hence |Φ2|(f) ≤ 1. Thus |Φ1(f)| ≤ |Φ1|(f) ≤ 1, so Φ1 ∈ A0. This means that A0

is a solid subset of I.

(ii) Let ‖f1‖ ≤ ‖f2‖ with f1 ∈ Cb(X, E) and f2 ∈ 0B. To see that f1 ∈ 0B
assume that Φ ∈ B. Since B is a solid subset of I, by Lemma 2.2 the identity
|Φ|(f2) = sup {|Ψ(f2)| : Ψ ∈ B, |Ψ| ≤ |Φ|} holds. Thus for every Ψ ∈ B with
|Ψ| ≤ |Φ| we have |Ψ(f2)| ≤ 1, so |Φ|(f2) ≤ 1. Since |Φ(f1)| ≤ |Φ|(f1) ≤ |Φ|(f2) ≤
1, we get f1 ∈

0B, as desired. �

Theorem 2.4. Let τ be a locally solid topology onCb(X, E). Then (Cb(X, E), τ)′

is an ideal of Cb(X, E)′.

Proof: To show that (Cb(X, E), τ)′ ⊂ Cb(X, E)′, by the way of contradiction
assume that for some Φ0 ∈ (Cb(X, E), τ)′ we have Φ0 /∈ Cb(X, E)′, so in view of
Theorem 2.1 we get |Φ0|(f0) = ∞ for some f0 ∈ Cb(X, E). Hence there exists a
sequence (hn) in Cb(X, E) such that ‖hn‖ ≤ ‖f0‖ and |Φ0(hn)| ≥ n for n ∈ N.
Since n−1f0 → 0 for τ , and τ is locally solid, we get n−1hn → 0 for τ . Hence
Φ0(n

−1hn)→ 0, which is in contradiction with |Φ0(hn)| ≥ n.
To see that (Cb(X, E), τ)′ is an ideal of Cb(X, E)′ assume that |Φ1| ≤ |Φ2|

with Φ1 ∈ Cb(X, E)′ and Φ2 ∈ (Cb(X, E), τ)′. Let fα
τ

−→ 0 and ε > 0 be
given. Then there exists a net (hα) in Cb(X, E) such that ‖hα‖ ≤ ‖fα‖ for each

α and |Φ2|(fα) ≤ |Φ2(hα)| + ε. Clearly hα
τ

−→ 0, because τ is locally solid,
so Φ2(hα) → 0. Since |Φ1(fα)| ≤ |Φ1|(fα) ≤ |Φ2|(fα) ≤ |Φ2(fα)| + ε, we get
Φ1(fα)→ 0, so Φ1 ∈ (Cb(X, E), τ)′, as desired. �

Theorem 2.5. For a Hausdorff locally convex topology τ on Cb(X, E) the fol-
lowing statements are equivalent:

(i) τ is locally solid;
(ii) (Cb(X, E), τ)′ is an ideal of Cb(X, E)′ and for every τ -equicontinuous
subset A of (Cb(X, E), τ)′ its solid hull S(A) is also τ -equicontinuous.

Proof: (i) =⇒ (ii) By Theorem 2.4 (Cb(X, E), τ)′ is an ideal of Cb(X, E)′, and
thus we have the solid dual system 〈Cb(X, E), (Cb(X, E), τ)′〉. Assume that a
subset A of (Cb(X, E), τ)′ is equicontinuous. Hence A ⊂ V 0 for some solid τ -
neighbourhood V of zero. Hence S(A) ⊂ S(V 0) = V 0 (see Theorem 2.3). This
means that S(A) is a τ -equicontinuous subset of (Cb(X, E), τ)′.

(ii) =⇒ (i) Let Bτ be a local base at zero for τ consisting of absolutely convex, τ -
closed sets. Assume that V is τ -neighbourhood of zero. Then there exists U ∈ Bτ
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such that U ⊂ V . Moreover, the polar set U0 is a τ -equicontinuous subset of
(Cb(X, E), τ)′. By our assumption S(U0) is also τ -equicontinuous. Hence there
exists W ∈ Bτ such that W ⊂ 0S(U0). Since the set 0S(U0) is solid in Cb(X, E),

S(W ) ⊂ 0S(U0) ⊂ 0(U0) = abs conv U
τ
= U ⊂ V . This shows that τ is locally

solid, as desired. �

For each Φ ∈ Cb(X, E)′ let

ϕΦ(u) = sup
{
∣

∣Φ(h)
∣

∣ : h ∈ Cb(X, E), ‖h‖ ≤ u
}

for u ∈ Cb(X)
+.

One can easily show that ϕΦ : Cb(X)
+ → R

+ is an additive and positively homo-
geneous mapping (see [KhO1, Lemma 1]), so ϕΦ has a unique positive extension
to a linear mapping from Cb(X) to R (denoted by ϕΦ again) and given by

ϕΦ(u) = ϕΦ(u
+)− ϕΦ(u

−) for all u ∈ Cb(X)

(see [AB, Lemma 3.1]). Hence ϕΦ = |ϕΦ| holds on Cb(X)
+. Since Cb(X)

′ =
Cb(X)

∼ (the order dual of Cb(X)) (see [AB2, Corollary 12.5]), we get ϕΦ ∈
Cb(X)

′. Moreover, we have:

ϕΦ
(

‖f‖
)

= |Φ|(f) for f ∈ Cb(X, E)

and
ϕΦ(u) = |Φ|(u ⊗ e0) for u ∈ Cb(X)

+.

The following lemma will be useful.

Lemma 2.6. (i) Assume that L is an ideal of Cb(X)
′. Then the set

Cb(X, E)′L :=
{

Φ ∈ Cb(X, E)′ : ϕΦ ∈ L
}

is an ideal of Cb(X, E)′.

(ii) Assume that I is an ideal of Cb(X, E)′. Then the set

Cb(X)
′
I :=

{

ϕ ∈ Cb(X)
′ : |ϕ| ≤ ϕΦ for some Φ ∈ I

}

is an ideal of Cb(X)
′ and Cb(X, E)′

Cb(X)
′

I

= I.

Proof: (i) We first show that Cb(X, E)′L is a linear subspace of Cb(X, E)′.

Assume that Φ1,Φ2 ∈ Cb(X, E)′L, i.e., ϕΦ1 , ϕΦ2 ∈ L. It is easy to show that

ϕΦ1+Φ2(u) ≤ (ϕΦ1 + ϕΦ2)(u) for u ∈ Cb(X)
+, so ϕΦ1+Φ2 ∈ L, i.e., Φ1 + Φ2 ∈

Cb(X, E)′L. Next, let Φ ∈ Cb(X, E)′L and λ ∈ R. Then ϕΦ ∈ L and since

ϕλΦ = λϕΦ, we get λΦ ∈ Cb(X, E)′L.
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To show that Cb(X, E)′L is solid in Cb(X, E)′, assume that |Φ1| ≤ |Φ2| with

Φ1 ∈ Cb(X, E)′ and Φ2 ∈ Cb(X, E)′L, i.e., ϕΦ2 ∈ L. Then for u ∈ Cb(X)
+ we

have ϕΦ1(u) = |Φ1|(u ⊗ e0) ≤ |Φ2|(u ⊗ e0) = ϕΦ2(u). Hence ϕΦ1 ∈ L, because L
is an ideal of Cb(X)

′. Thus Φ1 ∈ Cb(X, E)′L, as desired.

(ii) To prove that Cb(X)
′
I is an ideal of Cb(X)

′ assume that |ϕ1| ≤ |ϕ2|, where
ϕ1 ∈ Cb(X)

′ and ϕ2 ∈ Cb(X)
′
I . Then |ϕ2| ≤ ϕΦ for some Φ ∈ I, so |ϕ1| ≤ ϕΦ,

and this means that ϕ1 ∈ Cb(X)
′
I .

To show that I ⊂ Cb(X, E)′
Cb(X)

′

I

, assume that Φ ∈ I. Then ϕΦ ∈ Cb(X)
′
I , so

Φ ∈ Cb(X, E)′
Cb(X)

′

I

.

Now, we assume that Φ ∈ Cb(X, E)′
Cb(X)

′

I

, i.e., Φ ∈ Cb(X, E)′ and ϕΦ ∈

Cb(X)
′
I . It follows that there exists Φ0 ∈ I such that ϕΦ ≤ ϕΦ0 . Hence for every

f ∈ Cb(X, E) we have |Φ|(f) = ϕΦ(‖f‖) ≤ ϕΦ0(‖f‖) = |Φ0|(f). Thus Φ ∈ I,
because I is an ideal of Cb(X, E)′. �

Let A be a subset of Cb(X, E)′τ . Then S(A) ⊂ Cb(X, E)′τ as Cb(X, E)′τ is solid
(by Theorem 2.4). Hence

S(A) =
{

Φ ∈ Cb(X, E)′τ : |Φ| ≤ |Ψ| for some Ψ ∈ A
}

.

In view of Lemma 2.2 for a subset A of Cb(X, E)′ and f ∈ Cb(X, E) we have:

(+)
sup

{

|Φ|(f) : Φ ∈ A
}

= sup
{

ϕΦ(‖f‖) : Φ ∈ A
}

= sup
{

|Ψ(f)| : Ψ ∈ S(A)
}

.

Theorem 2.7. Let τ be a locally convex-solid Hausdorff topology on Cb(X, E).
Then for a subset A of Cb(X, E)′ the following statements are equivalent:

(i) A is τ -equicontinuous;
(ii) conv (S(A)) is τ -equicontinuous;
(iii) S(A) is τ -equicontinuous;
(iv) the subset {ϕΦ : Φ ∈ A} of Cb(X)

′ is τ∧-equicontinuous.

Proof: (i) =⇒ (ii) In view of Theorem 2.4 we have a solid dual system
〈Cb(X, E), Cb(X, E)′τ 〉. Let A be τ -equicontinuous. Then by Theorem 1.1 there is
a convex solid τ -neighbourhood V of zero such that A ⊂ V 0. Hence conv (S(A)) ⊂
conv (S(V 0)) = V 0 (see Theorem 2.3), and this means that conv (S(A)) is still
τ -equicontinuous.

(ii) =⇒ (iii) It is obvious.

(iii) =⇒ (iv) Assume that the subset S(A) of Cb(X, E)′ is τ -equicontinuous. Let
{ρα : α ∈ A} be a family of solid seminorms on Cb(X, E) that generates τ . Given
ε > 0 there exist α1, . . . , αn ∈ A and η > 0 such that sup {|Ψ(f)| : Ψ ∈ S(A)} ≤ ε
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whenever ραi
(f) ≤ η for i = 1, 2, . . . , n. To show that {ϕΦ : Φ ∈ A} is τ∧-

equicontinuous, it is enough to show that sup {|ϕΦ(u)| : Φ ∈ A} ≤ ε whenever
ρ∧αi
(u) ≤ η for i = 1, 2, . . . , n. Indeed, let u ∈ Cb(X) and ρ∧αi

(u) ≤ η for i =
1, 2, . . . , n. Then ραi

(u ⊗ e0) ≤ η (i = 1, 2, . . . , n), so sup {|Ψ(u ⊗ e0)| : Ψ ∈
S(A)} ≤ ε. Hence, in view of (+) we obtain that sup {ϕΦ(|u|) : Φ ∈ A} ≤ ε,
because ‖u ⊗ e0‖ = |u|. But |ϕΦ(u)| ≤ ϕΦ(|u|), and the proof is complete.

(iv) =⇒ (i) Assume that the set {ϕΦ : Φ ∈ A} is τ∧-equicontinuous. Let
{ρα : α ∈ A} be a family of solid seminorms on Cb(X, E) that generates τ . Given
ε > 0 there exist α1, . . . , αn ∈ A and η > 0 such that sup {|ϕΦ(u)| : Φ ∈ A} ≤ ε
whenever u ∈ Cb(X) and ρ∧αi

(u) ≤ η for i = 1, 2, . . . , n. Let f ∈ Cb(X, E)

with ραi
(f) ≤ η for i = 1, 2, . . . , n. Since ρ∧αi

(‖f‖) = ραi
(‖f‖ ⊗ e0) = ραi

(f)
(i = 1, 2, . . . , n), sup {|ϕΦ(‖f‖)| : Φ ∈ A} ≤ ε. But |Φ(f)| ≤ |Φ|(f) = ϕΦ(‖f‖),
so sup {|Φ(f)| : Φ ∈ A} ≤ ε. This means that A is τ -equicontinuous. �

Corollary 2.8. Let τ be a locally convex-solid topology on Cb(X, E). Then for
Φ ∈ Cb(X, E)′ the following statements are equivalent:

(i) Φ is τ -continuous;
(ii) ϕΦ is τ∧-continuous.

Corollary 2.9. Let ξ be a locally convex-solid topology on Cb(X). Then for
Φ ∈ Cb(X, E)′ the following statements are equivalent:

(i) Φ is ξ∨-continuous;
(ii) ϕΦ is ξ-continuous.

Remark. For the equivalence (i)⇐⇒ (iv) of Theorem 2.7 for the strict topologies
βz(X, E) (z = σ, τ, t,∞, g) see [KhO3, Lemma 2].

Corollary 2.10. (i) Let ξ be a locally convex-solid topology on Cb(X). Then

(

Cb(X), ξ
)′
=

{

ϕ ∈ Cb(X)
′ : |ϕ| ≤ ϕΦ for some Φ ∈

(

Cb(X, E), ξ∨
)′

}

.

(ii) Let τ be a locally convex-solid topology on Cb(X, E). Then

(

Cb(X), τ
∧)′
=

{

ϕ ∈ Cb(X)
′ : |ϕ| ≤ ϕΦ for some Φ ∈

(

Cb(X, E), τ
)′

}

.

Proof: (i) Let ϕ ∈ (Cb(X), ξ)
′. Define a linear functional Φ0 on the subspace

Cb(X)(e0) (= {u⊗e0 : u ∈ Cb(X)}) of Cb(X, E) by putting Φ0(u⊗e0) = ϕ(u) for
u ∈ Cb(X). Let {pα : α ∈ A} be a family of Riesz seminorms generating ξ. Since
ϕ ∈ (Cb(X), ξ)

′, there exist c > 0 and α1, . . . , αn ∈ A such that for u ∈ Cb(X)

∣

∣Φ0(u ⊗ e0)
∣

∣ =
∣

∣ϕ(u)
∣

∣ ≤ c max
1≤i≤n

pαi
(u) = c max

1≤i≤n
p∨αi
(u ⊗ e0).
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This means that Φ0 ∈ (Cb(X)(e0), ξ
∨ |Cb(X)(e0))

′, so by the Hahn-Banach ex-
tension theorem there is Φ ∈ (Cb(X, E), ξ∨)′ such that Φ(u ⊗ e0) = ϕ(u) for
all u ∈ Cb(X). We shall now show that |ϕ| ≤ ϕΦ, i.e., |ϕ|(u) ≤ ϕΦ(u) for all
u ∈ Cb(X)

+. Indeed, let u ∈ Cb(X)
+ be given and let v ∈ Cb(X) with |v| ≤ u.

Then we have |ϕ(v)| = |Φ(v ⊗ e0)| ≤ ϕΦ(u), so |ϕ| ≤ ϕΦ, as desired.
Next, assume that ϕ ∈ Cb(X)

′ with |ϕ| ≤ ϕΦ for some Φ ∈ (Cb(X, E), ξ∨)′.
In view of Corollary 2.9, ϕΦ ∈ (Cb(X), ξ)

′ and since (Cb(X), ξ)
′ is an ideal of

Cb(X)
′, we conclude that ϕ ∈ (Cb(X), ξ)

′.

(ii) It follows from (i), because (τ∧)∨ = τ . �

It is well known that if L is a σ-Dedekind complete vector-lattice and if H is
a relatively σ(L∼

n , L)-compact subset of L∼
n (resp. a relatively σ(L∼

c , L)-compact
subset of L∼

c ), then the set conv (S(H)) is still relatively σ(L∼
n , L)-compact (resp.

relatively σ(L∼
c , L)-compact) (see [AB, Corollary 20.12, Corollary 20.10]) (here

L∼
n and L∼

c stand for the order continuous dual and the σ-order continuous dual
of L resp.).
Now, we shall show that this property holds in

(Cb(X, E)′βz
, σ(Cb(X, E)′βz

, Cb(X, E))) for z = σ, τ, t.

Recall that a completely regular Hausdorff space X is called a P -space if every
Gδ set in X is open (see [GJ, p. 63]).

The following result will be of importance.

Theorem 2.11. LetH be a norm-bounded and σ(Cb(X, E)′βz
,Cb(X, E))-compact

subset of Cb(X, E)′βz
, where z = σ (resp. z = τ and X is a paracompact space ;

resp. z = τ and X is a P -space). Then H is βz(X, E)-equicontinuous.

Proof: See [KhO1, Theorem 5] for z = σ; [Kh, Theorem 6.1] for z = τ and
[KhC, Lemma 3] for z = t. �

Now we are ready to state our main result.

Theorem 2.12. Let H be a norm bounded subset of Cb(X, E)′βz
, where z = σ

(resp. z = τ and X is a paracompact space ; resp. z = t and X is a P -space).
Then the following statements are equivalent:

(i) H is relatively countably σ(Cb(X, E)′βz
, Cb(X, E))-compact;

(ii) H is βz(X, E)-equicontinuous;
(iii) conv (S(H)) is relatively σ(Cb(X, E)′βz

, Cb(X, E))-compact;

(iv) S(H) is relatively σ(Cb(X, E)′βz
, Cb(X, E))-compact;

(v) H is relatively σ(Cb(X, E)′βz
, Cb(X, E))-compact.

Proof: (i) =⇒ (ii) See Theorem 2.11.

(ii) =⇒ (iii) In view of Theorem 2.7 the set conv (S(H)) is βz(X, E)-equiconti-
nuous, i.e., there is a neighbourhood of 0 for βz(X, E) such that conv (S(H)) ⊂ V 0
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(= the polar set with respect to the dual pair 〈Cb(X, E), Cb(X, E)′βz
〉). Then by

the Banach-Alaoglu’s theorem the set V 0 is σ(Cb(X, E)′βz
, Cb(X, E))-compact, so

the set conv (S(H)) is relatively σ(Cb(X, E)′βz
, Cb(X, E))-compact.

(iii) =⇒ (iv) =⇒ (v) =⇒ (i) It is obvious. �

3. Weak-star compactness in some spaces of vector measures

In this section we consider criteria for relative weak-star compactness in some
spaces of vector measures Mz(X, E′) for z = σ, τ, t. In particular, by mak-
ing use of Theorem 2.11 we show that if a subset H of Mz(X, E′) is relatively
σ(Mz(X, E′), Cb(X, E))-compact, then the set conv (S(H)) is still relatively
σ(Mz(X, E′), Cb(X, E))-compact (here S(H) stand for the solid hull of H is
Mz(X, E′)). We start by recalling some notions and results concerning the topo-
logical measure theory (see [V], [S], [Wh]).
Let B(X) be the algebra of subsets of X generated by the zero sets. LetM(X)

be the space of all bounded finitely additive regular (with respect to the zero sets)
measures on B(X). The spaces of all σ-additive, τ -additive and tight members
of M(X) will be denoted by Mσ(X), Mτ (X) and Mt(X) respectively (see [V],
[Wh]). It is well known that Mz(X) for z = σ, τ, t are ideals of M(X) (see [Wh,
Theorem 7.2]).

Theorem 3.1 (A.D. Alexandroff ; [Wh, Theorem 5.1]). For a linear functional
ϕ : Cb(X)→ R the following statements are equivalent.

(i) ϕ ∈ Cb(X)
′.

(ii) There exists a unique µ ∈ M(X) such that

ϕ(u) = ϕµ(u) =

∫

X
u dµ for all u ∈ Cb(X).

Moreover, µ ≥ 0 if and only if ϕµ(u) ≥ 0 for all u ∈ Cb(X)
+.

ByM(X, E′) we denote the set of all finitely additive measuresm : B(X)→ E′

with the following properties:

(i) For every e ∈ E, the function me : B(X)→ R defined by me(A) = m(A)(e),
belongs to M(X).

(ii) |m|(X) < ∞, where for A ∈ B(X)

|m|(A) = sup
{
∣

∣

∣

n
∑

i=1

m(Bi)(ei)
∣

∣

∣
:

n
⋃

i=1

Bi = A, Bi ∈ B(X), Bi ∩ Bj = ∅

for i 6= j, ei ∈ BE , n ∈ N

}

.
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For z = σ, τ, t let

Mz(X, E′) =
{

m ∈ M(X, E′) : me ∈ Mz(X) for every e ∈ E
}

.

It is well known that |m| ∈ M(X) (resp. |m| ∈ Mz(X) for z = σ, τ, t) whenever
m ∈ M(X, E′) (resp. m ∈ Mz(X, E′) for z = σ, τ, t) (see [F, Proposition 3.9]).

Now we are ready to define the notion of solidness in M(X, E′).

Definition 3.1. For m1, m2 ∈ M(X, E′) we will write |m1| ≤ |m2| whenever
|m1|(B) ≤ |m2|(B) for every B ∈ B(X). A subset H of M(X, E′) is said to be
solid whenever |m1| ≤ |m2| with m1 ∈ M(X, E′) and m2 ∈ H imply m1 ∈ H .
A linear subspace I of M(X, E′) will be called an ideal of M(X, E′) whenever I
is a solid subset of M(X, E′).

Proposition 3.2. Mz(X, E′) (z = σ, τ, t) is an ideal of M(X, E′).

Proof: Let |m1| ≤ |m2|, where m1 ∈ M(X, E′) and m2 ∈ Mz(X, E′). Then
|m1| ∈ M(X) and |m2| ∈ Mz(X), and since Mz(X) is an ideal of M(X) we
conclude that |m1| ∈ Mz(X). For each e ∈ E we have |(m1)e|(B) ≤ ‖e‖E |m1|(B)
for B ∈ B(X), so (m1)e ∈ Mz(X), i.e., m1 ∈ Mz(X, E′). �

Since the intersection of any family of solid subsets of M(X, E′) is solid, every
subset H ofM(X, E′) is contained in the smallest (with respect to inclusion) solid
set called the solid hull of H and denoted by S(H). Note that

S(H) =
{

m ∈ M(X, E′) : |m| ≤ |m′| for some m′ ∈ H
}

.

Now we recall some results concerning a characterization of the topological
duals of (Cb(X, E), βz(X, E)) in terms of the spaces Mz(X, E′) ( z = σ, τ, t).

Theorem 3.3. Assume that βz(X, E) is the strict topology on Cb(X, E), where
z = σ and Cb(X)⊗E is dense in (Cb(X, E), βσ(X, E)) (resp. z = τ ; resp. z = t).
Then for a linear functionalΦ on Cb(X, E) the following statements are equivalent.

(i) Φ is βz(X, E)-continuous.
(ii) There exists a unique m ∈ Mz(X, E′) such that

Φ(f) = Φm(f) =

∫

X
f dm for every f ∈ Cb(X, E).

(iii) The functional ϕΦ is βz(X)-continuous.

Moreover, ‖Φm‖ = |m|(X) for m ∈ Mz(X, E′).

Proof: (i) ⇐⇒ (ii) See [Kh, Theorem 5.3] for z = σ; [Kh, Corollary 3.9] for
z = τ ; [F1, Theorem 3.13] for z = t.

(ii) ⇐⇒ (iii) It follows from Corollary 2.8, because βz(X, E)∧ = βz(X). �
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Lemma 3.4. Assume that m ∈ Mz(X, E′), where z = σ and Cb(X)⊗E is dense
in (Cb(X, E), βσ(X, E)) (resp. z = τ ; resp. z = t). Then

ϕΦm
(u) =

∫

X
u d|m| = ϕ|m|(u) for all u ∈ Cb(X).

Proof: Let u ∈ Cb(X)
+ and m ∈ Mz(X, E′). Then for h ∈ Cb(X, E) with

‖h‖ ≤ u by [F2, Lemma 3.11] we have

|Φm(h)| =
∣

∣

∣

∫

X
h dm

∣

∣

∣
≤

∫

X
‖h‖ d|m| ≤

∫

X
u d|m| = ϕ|m|(u).

Hence

ϕΦm
(u) = |Φm|(u ⊗ e0) = sup

{

|Φm(h)| : h ∈ Cb(X, E), ‖h‖ ≤ u
}

≤ ϕ|m|(u).

On the other hand, in view of [Kh, Theorem 2.1] we have

ϕ|m|(u) =

∫

X
u d|m| = sup

{

|Φm(g)| : g ∈ Cb(X)⊗ E, ‖g‖ ≤ u
}

,

so ϕ|m|(u) ≤ ϕΦm
(u). Thus ϕ|m|(u) = ϕΦm

(u) for all u ∈ Cb(X). �

Lemma 3.5. Assume that m1, m2 ∈ Mz(X, E′), where z = σ and Cb(X) ⊗ E
is dense in (Cb(X, E), βσ(X, E)) (resp. z = τ ; resp. z = t). Then the following
statements are equivalent:

(i) |m1| ≤ |m2|, i.e., |m1|(B) ≤ |m2|(B) for every B ∈ B(X);
(ii) ϕ|m1|(u) ≤ ϕ|m2|(u) for every u ∈ Cb(X)

+;

(iii) |Φm1 |(f) ≤ |Φm2 |(f) for every f ∈ Cb(X, E).

Proof: (i) ⇐⇒ (ii) It easily follows from Theorem 3.1.

(ii) =⇒ (iii) In view of Lemma 3.4 we get

|Φm1 |(f) = ϕΦm1

(

‖f‖
)

= ϕ|m1|

(

‖f‖
)

≤ ϕ|m2|

(

‖f‖
)

= ϕΦm2

(

‖f‖
)

=
∣

∣Φm2

∣

∣(f).

(iii) =⇒ (ii) By Lemma 3.3 for u ∈ Cb(X)
+ and e0 ∈ SE we have

ϕ|m1|(u) = ϕΦm1
(u) =

∣

∣Φm1

∣

∣(u ⊗ e0)

≤
∣

∣Φm2

∣

∣(u ⊗ e0) = ϕΦm2
(u) = ϕ|m2|(u).

�
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Lemma 3.6. Assume that H ⊂ Mz(X, E′), where z = σ and Cb(X)⊗E is dense
in (Cb(X, E), βσ(X, E)) (resp. z = τ ; resp. z = t), and let ΦH = {Φm : m ∈ H}.
Then conv (S(ΦH)) = Φconv (S(H)).

Proof: Assume that Φ ∈ conv (S(ΦH)). Then Φ =
∑n

i=1 αiΦmi
= ΦPn

i=1
αimi
,

where mi ∈ Mz(X, E′) and αi ≥ 0 for i = 1, 2, . . . , n with
∑n

i=1 αi = 1, and
|Φmi

| ≤ |Φm′

i

| for some m′
i ∈ H and i = 1, 2, . . . , n. In view of Lemma 3.5

|mi| ≤ |m′
i|, i.e., mi ∈ S(H) for i = 1, 2, . . . , n and

∑n
i=1 αimi ∈ conv (S(H)).

This means that Φ ∈ Φconv (S(H)).

Assume that Φ ∈ Φconv (S(H)). Then Φ = Φ
P

n

i=1
αimi

=
∑n

i=1 αiΦmi
, where

mi ∈ Mz(X, E′) and αi ≥ 0 for i = 1, 2, . . . , n with
∑n

i=1 αi = 1, and |mi| ≤
|m′

i| for some m′
i ∈ H and i = 1, 2, . . . , n. By Lemma 3.5 |Φmi

| ≤ |Φm′

i

| for

i = 1, 2, . . . , n, so Φ ∈ conv (S(ΦH)). �

Corollary 3.7. Assume that m0 ∈ Mz(X, E′), where z = σ and Cb(X) ⊗ E is
dense in (Cb(X, E), βσ(X, E)) (resp. z = τ ; resp. z = t) and let e ∈ SE . Then for
every u ∈ Cb(X)

+ we have:
∫

X
u d|m0| = sup

{∣

∣

∣

∫

X
u dme

∣

∣

∣
: m ∈ Mz(X, E′), |m| ≤ |m0|

}

.

Proof: Let m0 ∈ Mz(X, E′) and e ∈ SE . Assume that Φ ∈ Cb(X, E)′ and |Φ| ≤
|Φm0 |. Since Φm0 ∈ Cb(X, E)′βz

(see Theorem 3.3), by making use of Theorem 2.4

we get Φ ∈ Cb(X, E)′βz
. Hence in view of Theorem 3.3 and Lemma 3.5 we see

that Φ = Φm for some m ∈ Mz(X, E′) with |m| ≤ |m0|.
Moreover, it is easy to observe that for every m ∈ M(X, E′) and u ∈ Cb(X)

we have:
∫

X
(u ⊗ e) dm =

∫

X
u dme.

Thus in view of Lemma 3.4, Lemma 2.2 and Lemma 3.5 we get:
∫

X
u d|m0| = ϕΦm0

(u) = |Φm0 |(u ⊗ e)

= sup
{

|Φ(u ⊗ e)| : Φ ∈ Cb(X, E)′, |Φ| ≤ |Φm0 |
}

= sup
{

|Φm(u ⊗ e)| : m ∈ Mz(X, E′), |m| ≤ |m0|
}

= sup
{∣

∣

∣

∫

X
(u ⊗ e) dm

∣

∣

∣
: m ∈ Mz(X, E′), |m| ≤ |m0|

}

= sup
{∣

∣

∣

∫

X
u dme

∣

∣

∣
: m ∈ Mz(X, E′), |m| ≤ |m0|

}

.
�

To state our main result we recall some definitions (see [Wh, Definition 11.13,
Definition 11.23, Theorem 10.3]).
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A subset A of Mσ(X) (resp. Mτ (X)) is said to be uniformly σ-additive (resp.
uniformly τ-additive) if whenever un(x) ↓ 0 for every x ∈ X , un ∈ Cb(X)

+ (resp.
uα ↓ 0 for every x ∈ X , uα ∈ Cb(X)

+), then sup {|
∫

X un dµ| : µ ∈ A} −→
n
0

(resp. sup {|
∫

X uα dµ| : µ ∈ A} −→
α
0).

A subset A of Mt(X) is said to be uniformly tight if given ε > 0 there exists
a compact subset K of X such that sup {|µ|(X \ K) : µ ∈ A} ≤ ε.

Now we are in position to prove our desired result.

Theorem 3.8. For a subset H of Mz(X, E′), where z = σ and Cb(X) ⊗ E is
dense in (Cb(X, E), βσ(X, E)) (resp. z = τ and X is paracompact; resp. z = t
and X is a P -space) the following statements are equivalent.

(i) H is relatively σ(Mz(X, E′), Cb(X, E))-compact.
(ii) conv (S(H)) is relatively σ(Mz(X, E′), Cb(X, E))-compact.
(iii) The set {|m| : m ∈ H} in Mz(X)

+ is uniformly σ-additive for z = σ,
(resp. uniformly τ -additive for z = τ ; resp. uniformly tight for z = t).

Proof: (i) =⇒ (ii) It is seen that H is relatively σ(Mz(X, E′), Cb(X, E))-
compact if and only if ΦH is relatively σ(Cb(X, E)′βz

, Cb(X, E))-compact.

Hence by Theorem 2.12 and Lemma 3.6 the set Φconv (S(H)) is still relatively

σ(Cb(X, E)′βz
, Cb(X, E))-compact. This means that conv(S(H)) is relatively

σ(Mz(X, E′), Cb(X, E))-compact.

(ii) =⇒ (i) It is obvious.

(i) ⇐⇒ (iii) In view of Theorem 2.12 H is relatively σ(Mz(X, E′), Cb(X, E))-
compact if and only if ΦH is βz(X, E)-equicontinuous; hence in view of Theo-
rem 2.7 and Lemma 3.4 the subset {ϕ|m| : m ∈ H} of (Cb(X), βz(X))

′ is βz(X)-

equicontinuous. It is known that the subset {ϕ|m| : m ∈ H} of (Cb(X), βz(X))
′

is βz(X)-equicontinuous if and only if the set {|m| : m ∈ H} in Mz(X)
+ is uni-

formly σ-additive for z = σ (see [Wh, Theorem 11.14]) (resp. uniformly τ -additive
for z = τ (see [Wh, Theorem 11.24]); resp. uniformly tight for z = t (see [Wh,
Theorem 10.7])). �

4. A Mackey-Arens type theorem for locally convex-solid topologies

on Cb(X, E)

Let I be an ideal of Cb(X, E)′ separating points of Cb(X, E). For each Φ ∈ I let
us put

ρΦ(f) = |Φ|(f) for f ∈ Cb(X, E).

One can show that ρΦ is a solid seminorm on Cb(X, E) (see the proof of Lem-
ma 2.2). We define the absolute weak topology |σ|(Cb(X, E), I) on Cb(X, E) as
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the locally convex-solid topology generated by the family {ρΦ : Φ ∈ I}. In view
of Lemma 2.2 we have

ρΦ(f) = |Φ|(f) = sup
{

|Ψ(f)| : Ψ ∈ I, |Ψ| ≤ |Φ|
}

.

This means that |σ|(Cb(X, E), I) is the topology of uniform convergence on sets
of the form {Ψ ∈ I : |Ψ| ≤ |Φ|} = S({Φ}), where Φ ∈ I.

Assume that L is an ideal of Cb(X)
′ separating the points of Cb(X). For

each ϕ ∈ L the function pϕ(u) = |ϕ|(|u|) for u ∈ Cb(X) defines a Riesz semi-
norm on Cb(X). The family {pϕ : ϕ ∈ I} defines a locally convex-solid topol-
ogy |σ|(Cb(X), L) on Cb(X), called the absolute weak topology generated by L
(see [AB]).
Recall that |σ|(Cb(X), L)

∨ is the locally convex-solid topology on Cb(X, E)
generated by the family {p∨ϕ : ϕ ∈ L}, where p∨ϕ(f) = pϕ(‖f‖) for f ∈ Cb(X, E).

We shall need the following result.

Lemma 4.1. Let I be an ideal of Cb(X, E)′ separating the points of Cb(X, E).
Then

|σ|
(

Cb(X, E), I
)

= |σ|
(

Cb(X), Cb(X)
′
I

)∨

where Cb(X)
′
I = {ϕ ∈ Cb(X)

′ : |ϕ| ≤ ϕΦ for some Φ ∈ I}.

Proof: Let ϕ ∈ Cb(X)
′, i.e., |ϕ| ≤ ϕΦ for some Φ ∈ I. Then for f ∈ Cb(X, E)

we have

p∨ϕ(f) = pϕ

(

‖f‖
)

= |ϕ|
(

‖f‖
)

≤ ϕΦ
(

‖f‖
)

= |Φ|(f) = ρΦ(f).

This means that |σ|(Cb(X), Cb(X)
′
I)

∨ ⊂ |σ|(Cb(X, E), I).
Next, let Φ ∈ I. Then for f ∈ Cb(X, E) we have

ρΦ(f) = |Φ|(f) = ϕΦ
(

‖f‖
)

= pϕΦ

(

‖f‖
)

= p∨ϕΦ(f).

This shows that |σ|(Cb(X, E), I) ⊂ |σ|(Cb(X), Cb(X)
′
I)

∨, and the proof is com-
plete. �

Now we are ready to state the main result of this section.

Theorem 4.2. Let I be an ideal of Cb(X, E)′ separating the points of Cb(X, E).
Then

(

Cb(X, E), |σ|
(

Cb(X, E), I
))′
= I.

Proof: To see that (Cb(X, E), |σ|(Cb(X, E), I))′ ⊂ I assume that Φ ∈
(Cb(X, E), |σ|(Cb(X, E), I))′. In view of Lemma 2.6 we have to show that Φ ∈
Cb(X, E)′

Cb(X)
′

I

, that is Φ ∈ Cb(X, E)′ and ϕΦ ∈ Cb(X)
′
I . In fact, we know
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that (Cb(X), |σ|(Cb(X), Cb(X)
′
I))

′ = Cb(X)
′
I (see [AB1, Theorem 6.6]). Assume

that uα → 0 for |σ|(Cb(X), Cb(X)
′
I). It is enough to show that ϕΦ(uα) → 0.

Indeed, uα ⊗ e0 → 0 for |σ|(Cb(X), Cb(X)
′
I)

∨, because for each ϕ ∈ Cb(X)
′
I ,

p∨ϕ(uα ⊗ e0) = pϕ(uα). Hence by Theorem 4.1 uα ⊗ e0 → 0 for |σ|(Cb(X, E), I).

Since |ϕΦ(uα)| ≤ ϕΦ(|uα|) = |Φ|(uα ⊗ e0) = ρΦ(uα ⊗ e0), we obtain that
ϕΦ(uα)→ 0.

Now let Φ ∈ I. Then for f ∈ Cb(X, E), |Φ(f)| ≤ |Φ|(f) = ρΦ(f), so Φ is
|σ|(Cb(X, E), I)-continuous, i.e., Φ ∈ (Cb(X, E), |σ|(Cb(X, E), I))′, as desired.

�

As an application of Theorem 4.2 we have:

Corollary 4.3. Let I be an ideal of Cb(X, E)′ separating the points of Cb(X, E).
Then for a subset H of Cb(X, E) the following statements are equivalent:

(i) H is bounded for σ(Cb(X, E), I);
(ii) S(H) is bounded for σ(Cb(X, E), I).

Proof: (i) =⇒ (ii) By Theorem 4.2 and the Mackey theorem (see [Wi, Theo-
rem 8.4.1])H is bounded for |σ|(Cb(X, E), I). Since the topology |σ|(Cb(X, E), I)
is locally solid, S(H) is bounded for |σ|(Cb(X, E), I). Hence S(H) is bounded for
σ(Cb(X, E), I).

(ii) =⇒ (i) It is obvious. �

Lemma 4.4. Let Iz = {Φm : m ∈ Mz(X, E′)}, where z = σ and Cb(X) ⊗ E is
dense in (Cb(X, E), βσ(X, E)) (resp. z = τ ; resp. z = t). Then

Cb(X)
′
Iz
= {ϕµ : µ ∈ Mz(X)}.

Proof: Assume that ϕ ∈ Cb(X)
′
I , i.e., ϕ ∈ Cb(X)

′ and |ϕ| ≤ ϕΦm
for some m ∈

Mz(X, E′). Then ϕ = ϕµ for some µ ∈ M(X), and |ϕµ| = ϕ|µ| ≤ ϕΦm
= ϕ|m|

(see Lemma 3.4). It follows that |µ| ≤ |m|, where |m| ∈ Mσ(X)
+. Since Mz(X)

is an ideal of M(X), we get µ ∈ Mz(X).

Conversely, assume that µ ∈ Mz(X) and e0 ∈ SE and let e∗ ∈ E′ be such
that e∗(e0) = 1 and ‖e∗‖E′ = 1. Let us set m(B) = µ(B)e∗ for all B ∈ B(X).
Then m : B(X) → E′ is finitely additive, and for each e ∈ E we have me(B) =
m(B)(e) = (e∗(e)µ)(B) for all B ∈ B(X). Hence me ∈ Mz(X) for each e ∈ E. It
is easy to show that |m|(B) = |µ|(B) for all B ∈ B(X), so |m| ∈ Mz(X). Hence
m ∈ Mz(X, E′), and |ϕµ| = ϕ|µ| = ϕ|m| = ϕΦm

, so ϕµ ∈ Cb(X)
′
Iz
, as desired.

�

As an application of Lemma 4.1 and Lemma 4.4 we get:
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Corollary 4.5. For z = σ and Cb(X) ⊗ E dense in (Cb(E), βσ(X, E)) (resp.
z = τ ; resp. z = t) we have:

|σ|
(

Cb(X, E), Mz(X, E′)
)

= |σ|
(

Cb(X), Mz(X)
)∨

and
|σ|

(

Cb(X, E), Mz(X, E′)
)∧
= |σ|

(

Cb(X), Mz(X)
)

.

We now define the absolute Mackey topology |τ |(Cb(X, E), I) on Cb(X, E) as
the topology on uniform convergence on the family of all solid absolutely convex
σ(I, Cb(X, E))-compact subsets of I. In view of Theorem 2.3 |τ |(Cb(X, E), I) is
a locally convex-solid topology.

The following theorem strengthens the classical Mackey-Arens theorem for the
class of locally convex-solid topologies on Cb(X, E).

Theorem 4.6. Let τ be a locally convex-solid topology on Cb(X, E) and let
(Cb(X, E), τ)′ = Iτ . Then

|σ|(Cb(X, E), Iτ ) ⊂ τ ⊂ |τ |(Cb(X, E), Iτ ).

Proof: To show that |σ|(Cb(X, E), Iτ ) ⊂ τ , assume that (fα) is a sequence in

Cb(X, E) and fα
τ

−→ 0. Let Φ ∈ Iτ and ε > 0 be given. Then there exists a
net (hα) in Cb(X, E) such that ‖hα‖ ≤ ‖fα‖ and ρΦ(fα) = |Φ|(fα) ≤ |Φ(hα)| +

ε. Since τ is locally solid, hα
τ

−→ 0. Hence hα → 0 for σ(Cb(X, E), Iτ ), so
Φ(hα)→ 0, because σ(Cb(X, E), Iτ ) ⊂ τ . Thus ρΦ(fα)→ 0, and this means that
fα → 0 for |σ|(Cb(X, E), Iτ ).
Now we show that τ ⊂ |τ |(Cb(X, E), Iτ ). Indeed, let Bτ be a local base at

zero for τ consisting of solid absolutely convex and τ -closed sets and let V ∈ Bτ .
Then by Theorem 2.3 and the Banach-Alaoglu’s theorem, V 0 is a solid absolutely
convex and σ(Iτ , Cb(X, E))-compact subset of Iτ . Hence

0(V 0) = abs conv V
σ
= abs conv V

τ
= V,

so τ is the topology of uniform convergence on the family {V 0 : V ∈ Bτ}. It
follows that τ ⊂ |τ |(Cb(X, E), Iτ ). �

Corollary 4.7. Let Iz = {Φm : m ∈ Mz(X, E′)}, where z = σ and Cb(X) ⊗ E
is dense in (Cb(X, E), βz(X, E)) (resp. z = τ and X is paracompact; resp. z = t
and X is a P -space). Then

βz(X, E) = |τ |
(

Cb(X, E), Mz(X, E′)
)

= τ
(

Cb(X, E), Mz(X, E′)
)

,

and for a locally convex-solid topology τ on Cb(X, E) with Cb(X, E)′τ = Iz we
have:

|σ|
(

Cb(X, E), Mz(X, E′)
)

⊂ τ ⊂ βz(X, E).
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Proof: It is known that under our assumptions βz(X, E) is a Mackey topology
(see [KhO1, Corollary 6] for z = σ, [Kh, Theorem 6.2] for z = τ and [Kh, Theo-
rem 5] for z = t). Hence τ(Cb(X, E), Mz(X, E′)) = βz(X, E). On the other hand,
since βz(X, E) is a locally convex-solid topology and (Cb(X, E), βz(X, E))′ = Iz ,
by Corollary 4.6 we get βz(X, E) ⊂ |τ |(Cb(X, E), Mz(X, E′)). �
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Góra, ul. Szafrana 4a, 65–516 Zielona Góra, Poland
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