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Function spaces on ordinals

Rafa l Górak

Abstract. We give a partial classification of spaces Cp([1, α]) of continuous real valued
functions on ordinals with the topology of pointwise convergence with respect to home-
omorphisms and uniform homeomorphisms.

Keywords: function spaces, pointwise topology, uniform homeomorphisms, ordinal num-
bers

Classification: 54C35

1. Introduction

For a completely regular space X , Cp(X) denotes the space of all continuous
real-valued functions on X , equipped with the pointwise convergence topology.
Spaces X and Y are called t-equivalent (u-equivalent) if spaces Cp(X) and

Cp(Y ) are (uniformly) homeomorphic. We write X ∼
t Y if the spaces X and Y

are t-equivalent and X ∼
u Y when X and Y are u-equivalent. Let us recall that

the map ϕ : E → L, where E and L are linear topological spaces, is uniformly
continuous if for every neighborhood U of zero in L there is a neighborhood V of
zero in E such that, for every f, g ∈ E with (f −g) ∈ V we have ϕ(f)−ϕ(g) ∈ U .
In this paper we are concerned with the function spaces Cp([1, α]) on compact

ordinal intervals [1, α] (equipped with the standard order topology).
The complete classification of such spaces with respect to linear homeomor-

phisms was given by Baars and de Groot [2] (see Section 3). Gul’ko proved in [3]
and [4] some results concerning the problem we deal with. Some of these results
and techniques have turned out to be useful for us and will be recalled bellow. In
this paper we extend Gul’ko’s results. Namely our goal is to prove the following:

Theorem 1.1. Let α and β be ordinals.
If |α| 6= |β|, then

(a) Cp([1, α]) and Cp([1, β]) are not homeomorphic.

If |α| = |β| = κ, then

(b) if κ = ω or κ is singular or α, β ≥ κ2, then Cp([1, α]) and Cp([1, β]) are
uniformly homeomorphic.

(c) If κ is a regular uncountable cardinal and α, β ∈ [κ, κ2) such that α ∈
[κ · γa, κ · (γa + 1)) and β ∈ [κ · γb, κ · (γb + 1)), where γa, γb ∈ [1, κ),
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then Cp([1, α]) and Cp([1, β]) are (uniformly) homeomorphic if and only
if |γa| = |γb|.

Unfortunately this theorem does not cover all the possibilities. Namely, we do
not know whether Cp([1, κ

+·κ]) andCp([1, (κ
+)2]) are (uniformly) homeomorphic.

The proof of Theorem 1.1 is based on ideas from [2] and [3].

2. Preliminaries

All spaces under consideration are completely regular.

Definition 2.1. For a point x of a space X , let Cp(X,x) = {f ∈ Cp(X) :
f(x) = 0} with the topology of the pointwise convergence. If X is compact we
equip Cp(X,x) with the standard sup norm.

We will use the following standard fact (see [1]):

Theorem 2.2. If Cp(X) and Cp(Y ) are homeomorphic then |X | = |Y |.

In the sequel we will consider sets of the form [α, β] and [α, β) (α and β are
ordinals) defined in the following way:
[α, β] = {γ;α ≤ γ ≤ β} and [α, β) = {γ;α ≤ γ < β}.
By Ord, Lim, Card we denote the class of all ordinals, limit ordinals and cardi-
nals, respectively. The topology on [α, β] and its subsets will be always the order
topology. Let us point out some important properties of such spaces:

Fact 2.3. If β ·ω ≤ α then [1, α+β] and [1, α] are homeomorphic. In particular,
if κ is an infinite cardinal number (κ ∈ Card and κ ≥ ω) then for every β < κ,
[1, κ+ β] and [1, κ] are homeomorphic.

Let us recall the definition of the c0-product:

Definition 2.4. For every t ∈ T , let Et be a linear topological space and ‖ · ‖t

be a norm on Et, not necessarily related to the topology. Let us define:

Π∗t∈TEt = {(ft)t∈T ∈ Πt∈TEt : ∀ ε > 0 ‖ft‖ < ε for all but finitely many t ∈ T }.

The topology on Π∗t∈TEt is the standard product topology. Usually on Π
∗
t∈TEt

we consider the norm ‖(ft)t∈T ‖ = maxt∈T ‖ft‖t. The symbol Π
∗
t∈TE denotes the

c0 product Π
∗
t∈TEt, where Et = E for every t ∈ T .

We will use the following relation:

Definition 2.5 (Gul’ko [3]). Let E and F be linear topological spaces and ‖ · ‖1,
‖·‖2 be norms, on E and F , respectively, not necessarily related to the topologies.
We write (E, ‖ · ‖1) ≏ (F, ‖ · ‖2) if, for every ε > 0, there exists a uniform
homeomorphism uε : E → F satisfying the following condition:

(aε) (1 + ε)−1‖f‖1 ≤ ‖uε(f)‖2 ≤ ‖f‖1 for every f ∈ E.
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If it is clear which norms are considered on E and F we write E ≏ F .

In the sequel on spaces of real continuous functions on compacta and its sub-
spaces we will always consider the sup norm. Moreover, let us fix that for every
two linear topological spaces E and F equipped with norms ‖ · ‖0 and ‖ · ‖1, re-
spectively, on the space E × F we consider the norm ‖(e, f)‖ = max(‖e‖0, ‖f‖1).
Let us point out some obvious, but important, properties of the relation ≏.

Fact 2.6. If X ≏ X1 and Y ≏ Y1 then X × Y ≏ X1 × Y1.

Fact 2.7. If, for every t ∈ T , Xt ≏ Yt then Π
∗
t∈TXt ≏ Π∗t∈TYt.

Theorem 2.8 (Gul’ko [3]). For every compact space X and for every x0 ∈ X we
have

Cp(X) ≏ Cp(X,x0)× R.

The above theorem of Gul’ko is very important for our consideration. We will
use this in the proof of our main theorem and also some ideas from its proof will
be very helpful, namely the following

Lemma 2.9 (Gul’ko [3, Lemma 1]). Let R
2 be the real plane equipped with

the norm ‖(x1, x2)‖ = max(|x1|, |x2|) and let ε > 0. Then there exist functions
ϕε : R

2 → R and ψε : R
2 → R such that the following conditions are satisfied:

(a) the mapping (x1, x2) 7→ (x1, ϕε(x1, x2)) is a uniform homeomorphism of
the plane with the inverse of the form (x1, x2) 7→ (x1, ψε(x1, x2));

(b) ϕε(x1, x2) = 0 if x1 = x2;
(c) (1 + ε)−1‖(x1, x2)‖ ≤ ‖(x1, ϕε(x1, x2))‖ ≤ ‖(x1, x2)‖ for (x1, x2) ∈ R

2.

Fact 2.10. Let α be an infinite ordinal. Then

Cp([1, α]) ≏ Cp([1, α], α).

In particular, if [1, α] and [1, β] are homeomorphic then

Cp([1, α], α) ≏ Cp([1, β], β).

Proof: From Theorem 2.8 it follows that

Cp([1, α]) ≏ Cp([1, α], α)× R.

It is clear that Cp([1, α], α)× R can be identified with Cp([1, α]⊕ {·}, α).
On the other hand there exists a homeomorphism h : [1, α] ⊕ {·} → [1, α] such
that h(α) = α (we use the assumption α ≥ ω). This homeomorphism induces the
homeomorphism between function spaces such that:

Cp([1, α]⊕ {·}, α) ≏ Cp([1, α], α).

�
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3. Linear homeomorphisms

In [5] Kislyakov gave a complete linear classification of function spaces
Cp([1, α]) with sup norm topology. Later, Baars and de Groot got analogical
result for pointwise topology; more precisely, they proved that these classifica-
tions coincide.

Theorem 3.1 (Baars, de Groot [2]). Let α and β be ordinals.
If |α| 6= |β|, then

(a) Cp([1, α]) and Cp([1, β]) are not linearly homeomorphic.

If |α| = |β| = κ, then

(b) if κ = ω or κ is a singular cardinal or α, β ≥ κ2 then Cp([1, α]) and
Cp([1, β]) are linearly homeomorphic if and only if max(α, β) <
[min(α, β)]ω ;

(c) if κ is a regular uncountable cardinal and α, β ∈ [κ, κ2) such that α ∈
[κ · γa, κ · (γa + 1)) and β ∈ [κ · γb, κ · (γb + 1)), where γa, γb ∈ [1, κ),
then Cp([1, α]) and Cp([1, β]) are linearly homeomorphic if and only if
|γa| = |γb|;

(d) if κ is a regular uncountable cardinal, α < κ2, and β ≥ κ2 then Cp([1, α])
and Cp([1, β]) are not linearly homeomorphic.

This theorem gives us a complete classification of Cp([1, α]) up to linear home-
omorphisms where α is an ordinal. In the next section we will use the idea of
its proof to give a similar partial classification for uniform homeomorphisms and
homeomorphisms.

4. Uniform homeomorphisms and homeomorphisms

Theorem 4.1. If α ∈ Ord and τ, κ ∈ Card (τ ≥ ω and κ ≥ 1) satisfy the
following condition:

κ ≤ τ and α ∈ [τ · κ, τ · κ+)

then
Cp([1, α]) ≏

∏

β∈κ

∗
Cp([1, τ ]) ≏

∏

β∈κ

∗
Cp([1, τ ], τ).

To prove the above theorem we need the following

Lemma 4.2. Let γ be a limit ordinal (γ ∈ Lim), and (λξ)0≤ξ≤γ be a strictly
increasing sequence of ordinals such that:

(1) λξ = limβ<ξ λβ for ξ ∈ (0, γ] ∩ Lim;
(2) λ0 = 0.

Then:

Cp([1, λγ ], λγ) ≏ Cp([1, γ], γ)×
∏

ξ∈γ

∗
Cp([λξ + 1, λξ+1], λξ+1).
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Proof: The proof will be a modification of the proof of Lemma 2.5.6 in [2]. Let
us define

X = {f ∈ Cp([1, λγ ], λγ) : ∀ ξ ∈ [0, γ) f |(λξ , λξ+1] ≡ f(λξ+1)}

and

Y = {f ∈ Cp([1, λγ ], λγ) : ∀ ξ ∈ (0, γ] f(λξ) = 0}.

Fact 4.3. Cp([1, λγ ], λγ) ≏ X × Y .

Fix ε > 0. Let us define φ1 : Cp([1, λγ ], λγ)→ X as follows:

φ1(f)|[λξ + 1, λξ+1] ≡ f(λξ+1) for ξ ∈ [0, γ);
φ1(f)(λξ) = f(λξ) for ξ ∈ [1, γ] ∩ Lim.

To prove that φ1 is well defined we need to check the continuity of φ1(f) at λξ

for ξ ∈ [1, γ] ∩ Lim. We will show that for every δ > 0 there exists λα such that
λα < λξ and φ1(f)((λα, λξ ]) ⊂ (−δ+f(λξ), f(λξ)+δ). According to the continuity
of f there exists a ∈ [1, λξ) such that f((a, λξ ]) ⊂ (−δ+f(λξ), f(λξ)+δ). Because
ξ ∈ Lim we have limη<ξ λη = λξ . Therefore there exists λα such that a ≤ λα <
λξ . We have:

φ1(f)((λα, λξ ]) ⊂ f((λα, λξ ]) ⊂ f((a, λξ ]) ⊂ (−δ + f(λξ), f(λξ) + δ)

which finishes the proof of continuity of φ1(f).

One can easily verify that φ1 is continuous.
Let us define φ2 : Cp([1, λγ ], λγ)→ Y by

φ2(f)(x) = ϕε(φ1(f)(x), f(x))

where ϕε is as in Lemma 2.9. It is easy to observe that φ2(f) ∈ Y by Lem-
ma 2.9(b). Therefore, to check that φ2 is well defined it is enough to prove that
φ2(f) is continuous for f ∈ Cp([1, λγ ], λγ). We have proved that φ1(f) is contin-
uous thus φ2(f), as a composition of continuous functions, is also continuous. On
the other hand the uniform continuity of φ2 follows from the uniform continuity
of φ1 and ϕε.
Let us check that φ(f) = (φ1(f), φ2(f)) satisfies the following inequalities:

(1 + ε)−1‖f‖ ≤ ‖φ(f)‖ ≤ ‖f‖ for f ∈ Cp([1, λγ ], λγ).

It is clear that ‖f‖ ≥ ‖φ1(f)‖. Thus, from Lemma 2.9(c) we get ‖φ2(f)‖ ≤
max(‖φ1(f)‖, ‖f‖) ≤ ‖f‖. We proved that ‖φ(f)‖ ≤ ‖f‖. Applying once more
Lemma 2.9(c) we obtain that for every x ∈ [1, λγ ] we have

max(|φ1(f)(x)|, |φ2(f)(x)|) ≥ (1+ ε)
−1max(|φ1(f)(x)|, |f(x)|) ≥ (1+ ε)

−1|f(x)|.
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From this it follows immediately that:

(1 + ε)−1‖f‖ ≤ ‖φ(f)‖.

Let us define ψ : X × Y → Cp([1, λγ ], λγ) by ψ(f, g)(x) = ψε(f(x), g(x)) where
ψε is as in Lemma 2.9. Obviously φ is uniformly continuous because φ1 and φ2
are uniformly continuous. The uniform continuity of ψ is also obvious because ψε

is uniformly continuous. Let us observe that the equality φ◦ψ = idCp([1,λγ ],λγ) is

an easy consequence of Lemma 2.9(a). The identity ψ ◦ φ = idX×Y also follows
from Lemma 2.9(a) and from the fact that φ1(ψ(f, g)) = f for (f, g) ∈ X × Y ,
but this is an easy consequence of the equality ψε(x, 0) = x which is a simple
application of Lemma 2.9(a) and (b). This finishes the proof of Fact 4.3.

Fact 4.4.

Cp([1, γ], γ) ≏ X.

Fact 4.5.
∏

ξ∈γ

∗
Cp([λξ + 1, λξ+1], λξ+1) ≏ Y.

In each case we can find a linear isometry with respect to the sup norm which
is also continuous in the topology of pointwise convergence thus uniformly con-
tinuous. Namely, we have

Φ : X → Cp([1, γ], γ)

and
Ψ : Y →

∏

ξ∈γ

∗
Cp([λξ + 1, λξ+1], λξ+1)

given by the following formulas:

Φ(f)(ξ) = f(λξ)

and
πξ ◦Ψ(f) ≡ f | [λξ + 1, λξ+1].

An easy verification is left to the reader.
As a consequence we get

Cp([1, λγ ], λγ) ≏ Cp([1, γ], γ)×
∏

ξ∈γ

∗
Cp([λξ + 1, λξ+1], λξ+1).

�

Proof of Theorem 4.1: We will prove this theorem by induction on α ∈ [τ, τ+)
for a given τ . If α = τ then the thesis is obvious. Let us assume that our theorem
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holds for β < α and that α ∈ [τ · κ, τ · κ+) where κ ∈ [1, τ ] ∩Card. We know
that, for some γ ∈ [1, τ+), α ∈ [τ · γ, τ · (γ + 1)). It is clear that α = τ · γ + β
where β < τ , thus [1, α] and [1, τ · γ] are homeomorphic (see Fact 2.3). Therefore
we can assume that α = τ · γ. Because α ∈ [τ · κ, τ · κ+), |γ| = κ. The case
when κ is finite is obvious. Thus we can assume that κ ≥ ω. If γ = β + 1 then
τ · γ = τ · β + τ . Using the fact that γ ≥ ω (because κ ≥ ω) we know that
[1, τ · γ] and [1, τ · β] are homeomorphic (see Fact 2.3). Because |β| = |γ|, the
thesis for α = τ · γ follows from the inductive assumption. Let γ ∈ Lim. We
have γ ∈ [κ, κ+). Let us consider a strictly increasing sequence (λξ)ξ∈η where
η = κ + cf(γ \ κ) (cf(0) = 0) such that the function ξ 7→ λξ is continuous and
limξ∈η λξ = γ. The construction of such a sequence can be like that:

Let (λ′ξ)ξ∈cf(γ\κ) be a strictly increasing sequence such that ξ 7→ λ′ξ is continu-

ous, λ′0 = κ and limξ∈cf(γ\κ) λ
′
ξ = γ. Let us define (λξ)ξ∈η:

λξ = ξ for ξ ≤ κ,

λκ+ξ = λ
′
ξ for ξ < cf(γ \ κ)

From Lemma 4.2 from Facts 2.7 and 2.10 we get:

(1) Cp([1, τ · γ]) ≏ Cp([1, η])×
∏

ξ∈η

∗
Cp([τ · λξ + 1, τ · λξ+1]).

It is obvious that for every ξ ∈ η the set [τ · λξ + 1, τ · λξ+1] is isomorphic
to [1, τ · βξ] (i.e. there exists order preserving bijection) for some 1 ≤ βξ < γ.
Therefore from the inductive assumption we know that there exists such a cardinal
number 1 ≤ θξ ≤ κ that:

Cp([τ · λξ + 1, τ · λξ+1]) ≏ Cp([1, τ · βξ]) ≏

∏

ζ∈θξ

∗
Cp([1, τ ]).

The above identity and (1) give us:

Cp([1, τ · γ]) ≏ Cp([1, η])×
∏

ξ∈η

∗
(
∏

ζ∈θξ

∗
Cp([1, τ ])).

Thus we have:
Cp([1, τ · γ]) ≏ Cp([1, η])×

∏

t∈T

∗
Cp([1, τ ])

where T =
⊕

ξ∈η θξ . Because η = κ+cf(γ \κ) and cf(γ \κ) ≤ κ (because |γ| = κ)

we have |η| = κ. From the fact that 1 ≤ θξ ≤ κ we know that |T | = κ.
Therefore:

(2) Cp([1, τ · γ]) ≏ Cp([1, η])×
∏

ξ∈κ

∗
Cp([1, τ ]).
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Let us focus on Cp([1, η]). Assume that κ = τ . We know that if cf(γ \κ) < κ then
[1, κ] and [1, η] are homeomorphic and we can conclude that Cp([1, η]) ≏ Cp([1, κ]).
If cf(γ \ κ) = κ then obviously Cp([1, η]) ≏ Cp([1, κ]) × Cp([1, κ]). Using the
assumption that κ = τ we get the thesis of Theorem 4.1 for α = τ · γ. If κ < τ
then also η < τ and:

Cp([1, τ · γ]) ≏ Cp([1, η])× Cp([1, τ ]) ×
∏

ξ∈κ

∗
Cp([1, τ ]).

It is easy to check that

Cp([1, η])× Cp([1, τ ]) ≏ Cp([1, τ + η]) ≏ Cp([1, τ ]).

This way we have eliminated the factor Cp([1, η]) in (2) and this finishes the proof
of Theorem 4.1. �

It is natural to ask if the spaces
∏∗

ξ∈κCp([1, τ ]) and
∏∗

ξ∈κ′ Cp([1, τ ]) are (uni-

formly) homeomorphic for κ′ 6= κ. The following result gives us the answer for
finite κ and κ′.

Theorem 4.6 (S.P. Gul’ko [4]). For every n,m ∈ N, every regular cardinal
number τ > ω, α ∈ [τ ·m, τ · (m+ 1)) and β ∈ [τ · n, τ · (n+ 1)), the following is
true:
Cp([1, α]) and Cp([1, β]) are (linearly) homeomorphic iff n = m. �

Although Gul’ko proved this theorem for τ = ω1 the same proof works if τ > ω
is regular. The remaining is just an obvious consequence of Theorem 3.1(c) even
for all cardinals n,m < τ . It appears that modifying Gul’ko’s reasoning we can
strengthen the above result:

Theorem 4.7. For every regular cardinal number τ > ω, all cardinals n,m ∈ τ ,
α ∈ [τ ·m, τ ·m+) and β ∈ [τ · n, τ · n+), the following is true:
Cp([1, α]) and Cp([1, β]) are (linearly) homeomorphic iff n = m.

To prove this theorem let us quote the following lemmas from Gul’ko’s paper
[4] (obviously we assume that τ is regular and uncountable):

Lemma 4.8. Let X =
⋃

{Aα;α ∈ τ}, Y =
⋃

{Bα;α ∈ τ} where Aα and Bα

are subspaces of X and Y , respectively such that Aα ⊂ Aβ and Bα ⊂ Bβ if
α < β and Aβ =

⋃

{Aα;α < β}, Bβ =
⋃

{Bα;α < β} if β is a limit ordinal

and |Aα|, |Bα| < τ . Moreover let E and F be dense subspaces of R
X and R

Y ,
respectively, and let T : E → F be a homoeomorphism. Then the set

L = {α ∈ τ ; ∀ f, g ∈ E : f |Aα = g |Aα ⇔ Tf |Bα = Tg |Bα}

is closed and unbounded in τ ([0, τ)).
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Lemma 4.9. Let E and F be linear topological spaces, T : E → F a homeomor-
phism and E =

⋃

{Eα;α ∈ τ}, F =
⋃

{Fα;α ∈ τ}, where Eα and Fα are closed
subspaces of weight less than τ = weight (E) = weight (F ). Moreover Eα ⊂ Eβ ,
Fα ⊂ Fβ if α < β and Eβ = cl

⋃

{Eα;α ∈ β}, Fβ = cl
⋃

{Fα;α ∈ β} if β is a
limit ordinal. Then the set

M = {α ∈ τ ;T (Eα) = Fα}

is closed and unbounded in τ ([0, τ)).

Although both lemmas were formulated for τ = ω1 the proofs remain the same
as in Gul’ko’s paper.

Proof of Theorem 4.7: The proof will be based on the original idea of Gul’ko
from [4]. Let us assume that both Cp([1, α]) and Cp([1, β]) are homeomorphic. We
can also assume without loss of generality thatm,n are infinite (see Theorem 4.6).
According to Theorem 4.1 we have:

E =
∏

θ∈m

∗
Cp([1, τ ], τ) ≏ Cp([1, α]) ≈ Cp([1, β]) ≏

∏

θ∈n

∗
Cp([1, τ ], τ) = F.

Let T : E → F be a homeomorphism. We can assume, without loss of generality,
that T (0) = 0. Obviously E and F can be identified in the natural way with the

dense subsets of R
[1,τ)×m, R

[1,τ)×n, respectively. Let us define Aγ = {(η, ζ) ∈
[1, τ) × m; η < γ}, Bγ = {(η, ζ) ∈ [1, τ) × n; η < γ} and Eγ = {(fζ)ζ∈m ∈
∏∗

θ∈mCp([1, τ ]); ∀ ζ ∈ m fζ | [γ, τ ] ≡ 0}, Fγ = {(fζ)ζ∈n ∈
∏∗

θ∈nCp([1, τ ]); ∀ ζ ∈
n fζ | [γ, τ ] ≡ 0} for γ < τ . It is easy to check that for the above defined sets
we can apply Lemma 4.8 and Lemma 4.9 where L and M are defined as in these
lemmas. Take ξ ∈M ∩L∩Lim. Let us put Gξ = {(fζ)ζ∈m ∈ E; ∀ ζ ∈ m fζ(ξ) =
0} and Hξ = {(fζ)ζ∈n ∈ F ; ∀ ζ ∈ n fζ(ξ) = 0}. Observe that T (Gξ) = Hξ.

Indeed, let us take (fζ)ζ∈m ∈ Gξ . Define f
′

ζ | [1, ξ) ≡ fζ | [1, ξ) and f
′

ζ | [ξ, τ ] ≡ 0.

Since ξ ∈ M we have that T ((f
′

ζ)ζ∈m) = (g
′

ζ)ζ∈n ∈ Fξ . But ξ ∈ L; therefore

gζ(x) = g
′

ζ(x) for x < ξ and because ξ ∈ Lim we have gζ(ξ) = g
′

ζ(ξ) = 0 where

(gζ)ζ∈n = T ((fζ)ζ∈m), hence T ((fζ)ζ∈m) ∈ Hξ . Analogically we prove that

T−1(Hξ) ⊂ Gξ . To finish the proof we need

Lemma 4.10. Let E be a dense subset of R
X and T : E → R

Y be a continuous
function. Then for every infinite subset B ⊂ Y there is a set A of cardinality
not greater than cardinality of B such that for every f, g ∈ E, f |A = g |A ⇒
Tf |B = Tg |B.

This lemma is just an immediate consequence of the Factorization lemma (see
[1, 0.2.3]). Let us consider Cm

ξ = {(ξ, θ); θ ∈ m} and Cn
ξ = {(ξ, θ); θ ∈ n}.
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Applying the above lemma for Cn
ξ we get the set A ⊂ [1, τ)×m of cardinality not

greater than n such that for every f, g ∈ E, f |A = g |A ⇒ Tf |Cn
ξ = Tg |Cn

ξ .

If m > n then there exists x such that [1, τ) × {x} ∩ A = ∅. Let us take f =
(fζ)ζ∈m ∈ E such that fζ ≡ 0 for ζ 6= x and fζ ≡ 1 for ζ = x. Obviously
f /∈ Gξ but from the choice of x we know that Tf ∈ Hξ which contradicts the
equality T (Gξ) = Hξ. Therefore we proved that m ≤ n. Analogically we prove
that m ≥ n. �

5. Summary

Summarizing the results of the previous chapter we can prove the following:

Theorem 5.1. Let α, β, γ are ordinals satisfying α ≤ γ ≤ β. If Cp([1, α])
and Cp([1, β]) are (uniformly) homeomorphic then also Cp([1, γ]) is (uniformly)
homeomorphic to Cp([1, α]) and Cp([1, β]).

Proof: It is clear that α, β, γ have the same cardinality, say κ (see Theorem 2.2).
We can assume that κ ≥ ω. From Theorem 3.1(b) and Theorem 4.6, without loss
of generality, we can assume that κ · ω ≤ β. From Theorem 4.1 we get

Cp([1, α]) ≏

∏

η∈κα

∗
Cp([1, κ])

Cp([1, β]) ≏

∏

η∈κβ

∗
Cp([1, κ])

Cp([1, γ]) ≏
∏

η∈κγ

∗
Cp([1, κ])

where κβ , κα are κγ cardinals, κβ ∈ [ω, κ+) and κα, κγ ∈ [1, κ+). Moreover we
know that κα ≤ κγ ≤ κβ but, without loss of generality, we can exclude all the
equalities. We have

Cp([1, γ]) ≏
∏

η∈κγ

∗
Cp([1, κ]) ≏

∏

η∈κγ\κα

∗
Cp([1, κ])×

∏

η∈κα

∗
Cp([1, κ])

≏

(

∏

η∈κγ\κα

∗
Cp([1, κ])

)

× Cp([1, α])

(≏) ≈

(

∏

η∈κγ\κα

∗
Cp([1, κ])

)

× Cp([1, β])

≏

∏

η∈κγ\κα

∗
Cp([1, κ])×

∏

η∈κβ

∗
Cp([1, κ]).

Because |κγ \ κα| ≤ κβ and κβ ≥ ω, we have
∏

η∈κγ\κα

∗
Cp([1, κ])×

∏

η∈κβ

∗
Cp([1, κ]) ≏

∏

η∈κβ

∗
Cp([1, κ]) ≏ Cp([1, β]).
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Thus Cp([1, β]) and Cp([1, γ]) are (uniformly) homeomorphic. �

Now we can prove Theorem 1.1.

Proof of Theorem 1.1: Let us observe that (a) follows from Theorem 2.2.
Assume that α, β ≥ κ2. As a consequence of Theorem 4.1 we get that Cp([1, α])
and Cp([1, β]) are uniformly homeomorphic. If κ = ω or κ is singular then, from

Theorem 3.1(b), we have that, for α, β ∈ [κ, κ2], Cp([1, α]) and Cp([1, α]) are even
linearly homeomorphic. Therefore the proof of (b) is completed. The remaining
case (c) is just Theorem 4.7. �

All the above results do not give us a complete classification of spaces Cp([1, α])
for α ∈ Ord up to t and u-equivalence what was mentioned before. To complete
the classification we have to consider the case α = (τ+)2 and β = τ+ · τ where τ
is a cardinal. All the rest is covered by Theorem 5.1 and Theorem 1.1. Moreover
one can see that in all settled cases t and u equivalences coincide. But it is still
unknown whether it is true for the whole class of spaces [1, α] where α ∈ Ord or
even for the class of all compacta.

Acknowledgments. I am very grateful to Witold Marciszewski for many valu-
able remarks and suggestions.
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