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Ordinary selfdistributive rings

S. Ghoneim, M. Kechlibar, T. Kepka

Abstract. Left selfdistributive rings (i.e., xyz = xyxz) which are semidirect sums of
boolean rings and rings nilpotent of index at most 3 are studied.
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Classification: 16399

1. Introduction

The present short note is an immediate continuation of [3] and the reader is
referred to [3] as concerns terminology, notation, prerequisities, comments, further
references, etc.

2. Preliminaries

In what follows, all rings are associative, possibly non–commutative and with
or without unity.
If R is a ring, then Id(R) is the set of idempotent elements of R and Nl(R)

that of nilpotent elements of R. The ring R will be called id-generated , if R
is generated by the set Id(R) (as a ring). If A is a subset of R, then (0 : A)l =
{r ∈ R | rA = 0} and (0 : A)r = {r ∈ R |Ar = 0}. The subset A will be called
reduced , if A ∩Nl(R) ⊆ {0}.
A ring R is called left selfdistributive (an LD-ring) if it satisfies the equation

xyz = xyxz. An id-generated LD-ring will be called an ILD-ring in the sequel.

2.1 Proposition ([2]). Let R be an LD-ring, I = Id(R) and N = Nl(R). Then:

(i) a3 = an ∈ I for all a ∈ R and n ≥ 4;
(ii) 2abc = 0 for all a, b, c ∈ R (i.e., 2R3 = 0);
(iii) N is an ideal of R, N3 = 0 and R/N is a boolean ring;
(iv) RN ∪ NR ⊆ (0 : R)l ⊆ N and NR ⊆ (0 : R)r ⊆ N ;
(v) S = R/(0 : R)l is a commutative ring satisfying 2S

2 = 0 and w2 = w3,
w ∈ S;

(vi) (0 : I)l = N ;
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(vii) if R contains a right unity, then R is a boolean ring;
(viii) (0 : R)rR ⊆ (0 : R)l ∩ (0 : R)r;
(ix) if R = R2, then (0 : R)r ⊆ (0 : R)l.

2.2 Corollary. A ring R is an LD-ring if and only if R satisfies the equations
xyz = yxz and xyz = x2yz (or (x − x2)yz = 0).

2.3 Lemma. Let A be a generator set of an LD-ring R. Denote by K the ideal
generated by {a− a2 | a ∈ A} and by L the left ideal generated by {ab− ba | a, b ∈
A}. Then K + L = Nl(R).

Proof: Clearly, J = K + L ⊆ Nl(R) and J is an ideal. On the other hand, the
factor-ring S = R/J is generated by a set of pair-wise commuting idempotents.
Consequently, S is a boolean ring and Nl(R) ⊆ K. �

2.4 Remark. According to [2, 2.6], a subdirectly irreducible LD-ring is either
nilpotent of index at most 3 or a two-element field or is isomorphic to the semi-
group ring Z2(T ), T being a two-element semigroup of left units.

2.5 Lemma. Let R be an LD-ring. Then:

(i) (a − a2)2 = a2 − a3 = (a − a3)2 for every a ∈ R;
(ii) (a − a2)3 = (a − a3)2 = (a2 − a3)2 = 0 for every a ∈ R;
(iii) (a − a2)bc = 0 = (a − a3)bc for all a, b, c ∈ R;
(iv) (a2 − a3)b = 0 for all a, b ∈ R.

Proof: Use 2.1(i) and 2.2. �

2.6 Lemma. The following conditions are equivalent for an LD-ring R:

(i) Nl(R) ⊆ (0 : R)l;
(ii) Nl(R) = (0 : R)l;
(iii) (a+ a2)b = 0 for all a, b ∈ R;
(iv) (a+ a3)b = 0 for all a, b ∈ R.

Proof: Clearly, (i) is equivalent to (ii) and (ii) implies (iii) by 2.5(ii).
If (iii) is true, then 0 = (a + a3)b = (a + a2)b + (a2 + a3)b = (a + a2)b, since

a2b = a3b.
Finally, if (iv) is true, and a ∈ Nl(R), then a3 = 0 by 2.1(iii), and hence ab = 0

for every b ∈ R. �

An LD-ring satisfying the equations 2x = 0 = (x + x2)y will be called an
SILD-ring.

2.7 Proposition. Let R be an LD-ring.

(i) If R = R2, then R is an SILD-ring.
(ii) If R is an SILD-ring, then Nl(R) = (0 : R)l (i.e., Nl(R)R = 0) and
Nl(R)2 = 0.
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Proof: (i) Firstly, 2R = 0 follows from 2.1(ii). Next, by 2.2, (a + a2)bc = 0 for
all a, b, c ∈ R, and hence (a+ a2)R = 0.
(ii) Use 2.6. �

2.8 Corollary ([3]). Every ILD-ring is an SILD-ring.

2.9 Remark. It follows easily from [2, 2.6] that, up to isomorphism, the only
subdirectly irreducible SILD-rings are the two-element field Z2, the semigroup
ring Z2(T ) and the zero-multiplication ring Z

0
2 defined on Z2(+). The field Z2

has a unity, the ring Z2(T ) has just two left unities and the ring Z
0
2 is isomorphic

to a subring of Z2(T ).

2.10 Proposition. Let an LD-ring R contain a left unity e. Then R is an ILD-
ring.

Proof: Denote by S the subring of R generated by the set Id(R). Clearly, R
is an SILD-ring and, if a ∈ Nl(R), then (a + e)2 = a2 + ae + ea + e = a + e
(use also 2.1(vi)), a+ e ∈ Id(R) and a = (a+ e) + e. It follows that Nl(R) ⊆ S.
Finally, if b ∈ R, then b = b2 + (b + b2) and we have b2 ∈ Id(R) ⊆ S and
b+ b2 ∈ Nl(R) ⊆ Id(R). �

2.11 Theorem. The following conditions are equivalent for an LD-ring R:

(i) R is an SILD-ring;
(ii) R is a subring of an LD-ring with left unity;
(iii) R is a subring of an ILD-ring;
(iv) R is a subring of an LD-ring S with S = S2.

Proof: (i) implies (ii) by 2.9, (ii) implies (iii) by 2.10, (iii) implies (iv) trivially
and (iv) implies (i) by 2.8. �

3. Semidirect decompositions of LD-rings

3.1 Proposition ([3]). Let R be an LD-ring.

(i) A subset A of R is a maximal reduced left ideal of R if and only if A is
a maximal set of commuting idempotents.

(ii) If A is a maximal reduced left ideal of R, then (0 : A)l = Nl(R), A+Nl(R)
is an ideal and A contains every reduced right ideal of R.

3.2 Lemma ([3]). The following conditions are equivalent for a subset A of an
LD-ring R:

(i) A is a reduced subring of R and every reduced left ideal is in A + N ,
where N = Nl(R);

(ii) A is a set of commuting idempotents and R = A+N ;
(iii) A is a maximal reduced left ideal of R and R = A+N .
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Let R be an LD-ring. We will say that R is ordinary if R = A + Nl(R) for a
(maximal) reduced left ideal A of R (see Lemma 3.2). Any such left ideal A will
be called critical .

3.3 Theorem ([3]). Let R be an LD-ring and S = R/Nl(R). Then R is ordinary
in each of the following cases:

(i) R is countable;
(ii) the (boolean) factor-ring S is countable;
(iii) S is a ring direct sum of copies of the two-element field Z2;

(iv) R possesses a left (or right) unity;
(v) S possesses a unity;
(vi) the subring of R generated by the set Id(R) is ordinary.

3.4 Remark. An example of a non-ordinary LD-ring R is given in [4] (see also
[3, 5.2]). The ring R enjoys the properties R = R2, 2R = 0, Nl(R)2 = 0 and
Nl(R)R = 0.

3.5 Example ([2]). Let A denote the set of sequences α = (α(0), α(1), . . . ) ∈ Z
ω
2

such that at least one of the sets supp(α) = {i | i < ω, α(i) 6= 0} and ω\supp(α) is
finite. Then A is a boolean ring with unit and R is an LD-ring, where R = A×B,
B = {α | | supp(α)| < ω}, (a, b) + (c, d) = (a+ c, b+ d) and (a, b)(c, d) = (ac, ad)
for all a, c ∈ A and b, d ∈ B. Moreover I = {(b, b) | b ∈ B} is a maximal reduced
left ideal of R and I is not critical.

3.6 Example ([3]). Let A be an uncountable set and let S′ denote the set of
ordered pairs (F, f), where F ⊆ A, |F | ≤ 2 and f ∈ F . Put S = S′ ∪ {o}, o /∈ S′,
and define a multiplication on S by (F, f)(G, g) = (F ∪ G, g) if |F ∪ G| ≤ 2,
(F, f)(G, g) = o otherwise and αo = o = oα for every α ∈ S. Then S becomes an
idempotent semigroup satisfying xyz = yxz, o is an absorbing element of S and
the corresponding contracted semigroup ring R of S over the two-element field Z2

is a non-ordinary LD-ring.

3.7 Remark. (i) The class of ordinary LD-rings is closed under homomorphic
images.
(ii) According to [2], every subdirectly irreducible LD-ring is ordinary. Conse-

quently, every LD-ring is a subring of an ordinary LD-ring.

Proof: (i) Obvious.
(ii) The assertion follows immediately from [2, 2.6]. �

3.8 Corollary. Every LD-ring is a subring of an ordinary LD-ring.

3.9 Proposition. Let R be an LD-ring with a left unity e. Then R is ordinary
and Re is a critical left ideal of R.

Proof: For every a ∈ R, we have a = ae + (a + ae), where ae ∈ Re and
a+ ae ∈ Nl(R). Since Re ⊆ Id(R), Re is a reduced left ideal which is critical. �
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3.10 Theorem (cf. 2.11). The following conditions are equivalent for an LD-ring:

(i) R is an ordinary SILD-ring;
(ii) R is an ideal of an LD-ring S with left unity such that S/R ≃ Z2;

(iii) R is a right ideal of an LD-ring with left unity.

Proof: (i) implies (ii). We have R = A + N , where N = Nl(R) and A is a
(maximal) reduced left ideal of R. Then A ⊆ Id(R), A ∩ N = 0 and we put
f(a + w) = a for all a ∈ A and w ∈ N . Now, d(a + w)f(b + v) = ab =
f(ab+ av) = f(a+w(b+w)) and f(a+w) + a+w = 2a+w = w ∈ N = (0 : R)l
(2.7(ii)). It follows that f is a (ring) endomorphism of R such that Ker(f) = N ,
Im(f) ⊆ Id(R), f(R) is a boolean ring, f2 = f and f(x) + x ∈ (0 : R)l for every
x ∈ R.
Put S = R × Z2 and define an addition and a multiplication on S by (a, i) +

(b, j) = (a + b, i + j) and (a, i)(b, j) = (ab + jf(a) + ib, ij) for all a, b ∈ R and
i, j ∈ Z2. One verifies readily that S becomes an LD-ring and that the element
(0,1) is a left unity of S.
(ii) implies (iii). This implication is trivial.
(iii) implies (i). It follows from 2.10 that R is an SILD-ring. By 3.7(i), R is

ordinary. �

4. Construction of ordinary selfdistributive rings

4.1 Construction (cf. [1]). Let A be a boolean ring and M an (associative)
A-algebra nilpotent of index at most 3 and such that AM2 = 0. Put R = A×M
and define an addition and a multiplication on R by (a, u)+ (b, v) = (a+ b, u+ v)
and (a, u)(b, v) = (ab, av+uv). Then R = R(A, M) becomes an ordinary LD-ring,
Id(R) = {(a, u) | au = u}, Nl(R) = {(0, u)} ≃ M (as A-algebras), A1 = {(a, 0)} ≃
A (as rings), A ≃ R/Nl(R) and R = A1 + Nl(R). Put M1 = (0 : M)M,r = {u ∈
M |Mu = 0}; clearly, M1 is an ideal of M and AM1 ⊆ M1.
(i) Let B be an ideal of A and ρ : B → M1 an A-module homomorphism. Then

the set {(b, ρ(b)) | b ∈ B} is a reduced left ideal of R and every reduced left ideal
of R is of this type.
(ii) Every maximal reduced left ideal of R is critical if and only if the A-module

AM1 is injective with respect to all imbeddings B ⊆ A, B being an ideal of A.

4.2 Theorem. (i) If A is a boolean ring and M an A-algebra with M3 = 0 =
AM2, then R = R(A, M) is an ordinary LD-ring.
(ii) Critical left ideals of R are just left ideals of the form {(a, φ(a)) | a ∈ A},

φ :A A →A M1 being a module homomorphism, M1 = (0 :M)M,r.

(iii) Every maximal reduced left ideal of R is critical if and only if the A-
module AM1 is injective with respect to all imbeddings B ⊆ A, B being
an ideal of A.

(iv) The A-algebrasM and Nl(R) are isomorphic and the boolean rings A and
R/Nl(R) are isomorphic.
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(v) R is generated by Id(R) (as a ring) if and only if AM =M .

Proof: See 4.1. �

4.3 Proposition. R(A, M) ≃ R(B, N) if and only if there exist ring isomor-
phisms ρ : A → B and λ :M → N such that λ(au) = ρ(a)λ(u) for all a ∈ A and
u ∈ M .

Proof: An easy exercise. �

4.4 Theorem. Let R be an ordinary LD-ring, N = Nl(R) and S = R/N . Then:

(i) for every critical left ideal A, the mapping a → a = a + N , a ∈ A, is
a ring isomorphism of A onto S and N becomes both an A-algebra and
S-algebra;

(ii) AN2 = 0 = N3 and SN2 = 0 = N3;
(iii) R ≃ R(A, N) and R ≃ R(S, N);
(iv) every maximal reduced left ideal of R is critical if and only if the A-module

(S-module, respectively) A(0 : N)N,r (S(0 : NN,r), resp.) is injective with
respect to all imbeddings B ⊆ A (T ⊆ S, resp.), B being an ideal of A
(T an ideal of S, resp.);

(v) R is generated by Id(R) if and only if AN = N (or SN = N).

Proof: Combine 2.1 and 4.2. �

4.5 Corollary. There exists a one-to-one correspondence between ordinary LD-
rings and ordered pairs (A, M), A being a boolean ring andM an A-algebra with
M3 = 0 = AM2.

4.6 Remark. Let A be a boolean ring with unit. An A-module M is injective
with respect to all the inclusions B ⊆ A, B being an ideal of A, if and only if the
submodule M1 = AM is an injective A-module. Notice also that M1 is a unitary
module.

5. Free left selfdistributive rings

5.1 Construction. Let X be a non-empty set and let E be the set of ordered
triples (U, u, i), where U is a finite subset of X , u ∈ X and either i = 0 or
|U | = 1 and i = 1. Now, define a multiplication on E by (U, u, i)(V, v, j) =
(U ∪ V ∪ {u}, v, k), where k = 0 for U ∪ V 6= {u} and k = 1 for U ∪ V = {u}.
Then E becomes a free left permutable LD-semigroup freely generated by the set
{(∅, x, 0) |x ∈ X}.

5.2 Construction. Let F be a free left permutable LD-semigroup freely gener-
ated by a non-empty set X and let S = Z[F ] be the corresponding semigroup ring
of S over the ring Z of integers. Clearly, S is a left permutable ring. Now, put
G = F \ {x, xy |x, y ∈ X}, denote by I the ideal of S generated by 2G (notice
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that G is a subsemigroup of F ) and by R the corresponding factor-ring S/I; let
φ : S → R be the natural projection. Clearly, φ |F is injective and we will identify
F with its image φ(F ). Now, it is easy to check that R is a free LD-ring over X .
Every element of R can be written in a unique way as a sum

∑

x∈X

nx +
∑

x,y∈X

n(x,y) +
∑

g∈G

kg

where nx, n(x,y) ∈ Z, kg ∈ Z2 = {0, 1} and only finitely many of these coefficients

are non-zero. It follows from 3.3(i) and [3, 5.2] that R is ordinary if and only if
X is countable.
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