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Remarks on an article of J.P. King

Heiner Gonska, Paula Piţul

Abstract. The present note discusses an interesting positive linear operator which was
recently introduced by J.P. King. New estimates in terms of the first and second modulus

of continuity are given, and iterates of the operators are considered as well. For general
King operators the second moments are minimized.

Keywords: positive linear operators, degree of approximation, contraction principle, sec-
ond order modulus, second moments

Classification: 41A25, 41A36, 47H10

1. Introduction

In [4] J.P. King defined the following interesting (and somewhat exotic) se-
quence of linear and positive operators Vn : C[0, 1]→ C[0, 1] which generalize the
classical Bernstein operators Bn:

(1) Vn(f ;x) =

n
∑

k=0

(

n

k

)

(rn(x))
k(1 − rn(x))

n−kf

(

k

n

)

for all f ∈ C[0, 1], 0 ≤ x ≤ 1, where rn : [0, 1]→ [0, 1] are continuous functions.
We list some of their properties.

Property 1.1. If {Vn}n∈N are the operators defined in (1) we have

(2)

Vn(e0;x) = e0(x)

Vn(e1;x) = rn(x) and

Vn(e2;x) =
rn(x)

n
+

n − 1

n
(rn(x))

2

where ei(x) = xi, i = 0, 1, 2, are the classical test functions for positive linear
operator approximation.

The equation Vn(e1;x) = rn(x) shows that the classical Bernstein operator Bn,
which is obtained for rn(x) = x, is the unique mapping of the form (1) which
reproduces linear functions.
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Theorem 1.2. One has limn→∞ Vnf(x) = f(x) for each f ∈ C[0, 1], x ∈ [0, 1],
if and only if limn→∞ rn(x) = x.

Choosing the “right” rn function, J.P. King proved the following:

Theorem 1.3. Let {V ∗
n }n∈N be the sequence of operators defined in (1) with

(3) r∗n(x) :=







r∗1(x) = x2, n = 1,

r∗n(x) = − 1
2(n−1) +

√

n
n−1x

2 + 1
4(n−1)2 , n = 2, 3, . . .

Then:

(i) V ∗
n (e2;x) = e2(x), n ∈ N; x ∈ [0, 1],

(ii) V ∗
n (e1;x) 6= e1(x),

(iii) limn→∞ V ∗
n (f ;x) = f(x) for each f ∈ C[0, 1].

Remark 1.4. Since V ∗
n e1 = r∗n, it is clear that V ∗

n is not a polynomial operator.

J.P. King also gave quantitative estimates for V ∗
n in terms of the classical first

order modulus ω1(f ; ·) using a result of O. Shisha and B. Mond [8].

Theorem 1.5. For {V ∗
n }n∈N defined in (1) we have

(4) |V ∗
n (f ;x)− f(x)| ≤ 2ω1

(

f ;
√

2x(x − V ∗
n (e1;x))

)

, f ∈ C[0, 1]; x ∈ [0, 1].

Remark 1.6. From the fact that V ∗
n (e1;x) = r∗n(x) and x ≥ r∗n(x) the square

root in (4) indeed represents a real number.

From Theorem 1.5 one can easily obtain that V ∗
n interpolates f at the end-

points:

Proposition 1.7. With {V ∗
n }n∈N from (1) we have V ∗

n (f ; 0) = f(0) and
V ∗

n (f ; 1) = f(1), i.e., V ∗
n interpolates at the endpoints 0 and 1.

Proof: We put αn(x) :=
√

2x(x − V ∗
n (e1;x)). For x = 0 we have αn(0) = 0, so

ω1(f ;αn(0)) = 0. That means V ∗
n (f ; 0) = f(0). For x = 1 we have V ∗

n (e1; 1) =
r∗n(1), and if we insert in (3) the value 1, we obtain r∗n(1) = 1. That leads us
again to ω1(f ;αn(1)) = 0 and V ∗

n (f ; 1) = f(1). �

Remark 1.8. For a linear and positive operator L : C[0, 1]→ C[0, 1] with Lei =
ei, i = 0, 1, it is known that L interpolates f in 0 and 1. This follows easily, if we
insert x = 0 and x = 1 in

|L(f ;x)− f(x)| ≤ 2 · ω1(f ;L(|t − x|;x)).

The latter inequality can be found in Mamedov’s article [5]. We observe now,
with the help of the operators introduced by J.P. King, that the above property
is only necessary and not sufficient. Indeed, the V ∗

n , n ∈ N, interpolate f in 0
and 1, they are linear and positive, but V ∗

n e1 6= e1.
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2. Quantitative estimates with ω2

From Păltănea’s Theorem in [6, p. 28], the following is known:

Theorem 2.1. Let L : C[0, 1]→ C[0, 1] be a positive and linear operator. Then
we have

|L(f ;x)− f(x)| ≤ |L(e0;x)− e0(x)| · |f(x)|

+ |L(e1 − x;x)| ·
1

h
ω1(f ;h)

+

(

L(e0;x) +
1

2
·
1

h2
· L((e1 − x)2;x)

)

ω2(f ;h);

where h > 0, f ∈ C[0, 1], x ∈ [0, 1], and ω2 is the classical second order modulus
defined by

ω2(f ;h) := sup
|t|≤h

{|f(x+ t)− 2f(x) + f(x − t)| | x, x ± t ∈ [0, 1]}.

For V ∗
n this means:

|V ∗
n (f ;x)− f(x)| ≤ (x − r∗n(x)) ·

1

h
ω1(f ;h)

+

(

1 +
1

h2
x(x − r∗n(x))

)

ω2(f ;h),

and for h :=
√

x − r∗n(x) we arrive at
(5)

|V ∗
n (f ;x)− f(x)| ≤

√

x − r∗n(x) · ω1(f ;
√

x − r∗n(x)) + (1 + x)ω2(f ;
√

x − r∗n(x)).

If f ∈C1[0, 1] then due to the fact that ω1(f ;h) =O(h) and also ω2(f ;h) =O(h)

we have the approximation order O(
√

x − r∗n(x)), when n → ∞. For f ∈ C2[0, 1]

having similar properties for the moduli ω1(f ;h) =O(h) and ω2(f ;h) =O(h
2) we

obtain O(x − r∗n(x)), n → ∞.

3. Iterates of V ∗
n

This section is motivated by recent papers of O. Agratini and I.A. Rus ([1], [7])
in which the contraction principle was used to show the following result of Kelisky
and Rivlin [3].

Theorem 3.1. If n ∈ N is fixed, then for all f ∈ C[0, 1], x ∈ [0, 1]

lim
m→∞

Bm
n (f ;x) = f(0) + [f(1)− f(0)] · x = B1(f ;x).

For “over-iterated” King operators V ∗
n we have a similar result, but with a

different limiting operator.
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Theorem 3.2. If n ∈ N is fixed, then for all f ∈ C[0, 1], x ∈ [0, 1]

lim
m→∞(V

∗
n )

m(f ;x) = f(0) + [f(1)− f(0)] · x2 = V ∗
1 (f ;x).

Proof: Following Rus we consider the Banach space (C[0, 1], ‖·‖∞) where ‖·‖∞
is the Chebyshev norm. Let

Xα,β = {f ∈ C[0, 1] : f(0) = α, f(1) = β}, α, β ∈ R.

We note that

a) Xα,β is a closed subset of C[0, 1];
b) Xα,β is an invariant subset of V

∗
n for all α, β ∈ R, n ∈ N

(see Proposition 1.7);
c) C[0, 1] =

⋃

α,β∈R
Xα,β is a partition of C[0, 1].

Now we show that

V ∗
n |Xα,β

: Xα,β → Xα,β

is a contraction for all α, β ∈ R.

Let f, g ∈ Xα,β. From (1) we have

|V ∗
n (f ;x)− V ∗

n (g;x)| = |V ∗
n (f − g;x)|

=

∣

∣

∣

∣

∣

n−1
∑

k=1

(

n

k

)

(r∗n(x))
k(1− r∗n(x))

n−k · (f − g)

(

k

n

)

∣

∣

∣

∣

∣

≤ |1 − (r∗n(x))
n − (1− r∗n(x))

n| · ‖f − g‖∞

≤

(

1−
1

2n−1

)

‖f − g‖∞,

recalling that r∗n : [0, 1]→ [0, 1].

Hence ‖V ∗
n f−V ∗

n g‖∞ ≤
(

1− 1
2n−1

)

‖f−g‖∞, and thus V ∗
n |Xα,β

is contractive.

On the other hand α+ (β − α)e2 ∈ Xα,β is a fixed point for V ∗
n .

If f ∈ C[0, 1] is arbitrarily given, then f ∈ Xf(0),f(1) and from the contraction

principle [2] we know that

lim
m→∞

(V ∗
n )

mf = f(0) + (f(1)− f(0))e2,

which concludes the proof. �
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4. Polynomial operators of King’s type

Can we find polynomial operators of the form (1) that reproduce e2? The
answer is negative!
Indeed, by the last two equations of (2) and the condition Vn(e2;x) = x2, rn

must be a polynomial of first degree. We put rn(x) = ax+ b and we get:

x2 =
n − 1

n
a2x2 +

(

a

n
+
2(n − 1)ab

n

)

x+

(

b

n
+

n − 1

n
b2

)

.

This leads to the equations:















1 = n−1
n a2,

0 = a
n +

2(n−1)ab
n ,

0 = b
n +

n−1
n b2.

So a = ±
√

n
n−1 and b = 0 or b = 1

1−n . But for these values the second equation

is not satisfied. One open question remains: Can we find another type of linear
and positive polynomial operators L for which Le2 = e2?

5. General case

In this section we want to “optimize” the second moments Vn((e1 − x)2;x),
x ∈ [0, 1], of the general Vn and study in this case which properties remain.
The second moments are in the general case

(6)
α2n(x) = Vn((e1 − x)2;x) =

rn(x)

n
+

n − 1

n
(rn(x))

2 − 2xrn(x) + x2

=
1

n
rn(x)(1 − rn(x)) + (rn(x) − x)2,

where 0 ≤ rn(x) ≤ 1 are continuous functions. We want to find rn so that α2n is
minimal.
We define gx : [0, 1] → [0, 1], x ∈ [0, 1] a fixed parameter, by gx(y) :=

1
ny(1 −

y) + (y − x)2. We can write gx(y) =
(

1− 1
n

)

y2 +
(

1
n − 2x

)

y + x2. Because

1− 1
n > 0, n = 2, 3, . . . , the function gx admits a minimum point:

ymin = −
1
n − 2x

2− 2
n

=
2nx − 1

2n − 2
.

We need 0 ≤ ymin ≤ 1, which means
1
2n ≤ x ≤ 1− 1

2n , n = 2, 3, . . .

We define rminn : [0, 1]→ [0, 1] by
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(7) rminn (x) :=















0, x ∈
[

0, 12n
)

,

2nx−1
2n−2 , x ∈

[

1
2n , 1− 1

2n

]

,

1, x ∈
(

1− 1
2n , 1

]

.

Theorem 5.1. The function rminn defined in (7) yields the minimum value for α2n.

Proof: For x ∈
[

1
2n , 1− 1

2n

]

this was proven before. It remains to show the

above affirmation for x ∈
[

0, 12n
)

and x ∈
(

1− 1
2n , 1

]

.

First case: x ∈
[

0, 12n
)

⇒ rminn (x) = 0 and we have to prove that gx(y) ≥ gx(0)

for each y ∈ [0, 1] or 1ny(1− y) + (y − x)2 ≥ x2 for each x ∈ [0, 1]. But the latter

is equivalent to 12n + y
(

1
2 −

1
2n

)

≥ x, which is true due to our choice of x.

Second case: x ∈
(

1− 1
2n , 1

]

⇒ rminn (x) = 1 and we have to prove that gx(y) ≥

gx(1) for each y ∈ [0, 1] or 1ny(1−y)+(y−x)2 ≥ (1−x)2. This means
(

1− 1
2n

)

−

(1− y)
(

1
2 −

1
2n

)

≤ x, which is again true due to our choice of x. �

The operators Vn defined via rminn we denote by V minn .

Property 5.2. For the (minimal) second moments α2n of Vminn we have the
representation

α2n(x) =















x2, x ∈
[

0, 12n
)

,

1
n−1

(

x(1 − x)− 1
4n

)

, x ∈
[

1
2n , 1− 1

2n

]

,

(1 − x)2, x ∈
(

1− 1
2n , 1

]

.

Proof: This follows immediately from the general form

1

n
rn(x)(1 − rn(x)) + (rn(x)− x)2

and the above representation of rminn (x). �

Using Păltănea’s theorem again we arrive at

|V minn (f ;x)− f(x)| ≤ |x − rminn (x)| ·
1

h
· ω1(f ;h)

+

(

1 +
1

2
·
1

h2
· α2n(x)

)

· ω2(f ;h), h > 0.

For h = |αn(x)| we obtain

|V minn (f ;x)− f(x)| ≤
|x − rminn (x)|

|αn(x)|
· ω1(f ; |αn(x)|) +

3

2
· ω2(f ; |αn(x)|).

Note that |x − rminn (x)| = |V minn (e1 − x;x)| ≤ V minn (|e1 − x|;x) ≤
√

V minn ((e1 − x)2;x) = |αn(x)|, and thus
|x−rminn (x)|

|αn(x)| ≤ 1, x ∈ [0, 1].
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Remark 5.3. (i) From the definition of rminn we have limn→∞ rminn (x) = x and
from Theorem 1.2 limn→∞ Vn(f ;x) = f(x).
The latter fact is also a consequence of our second application of Theo-
rem 2.1 for V minn .

(ii) V minn does not reproduce e2. Starting from (2) we see that V minn (e2;x) =

0 6= x2, x ∈
(

0, 12n
)

.

(iii) The interpolation properties at the endpoints remain. Indeed, V minn (f ; 0)

=
(

n
0

)

(1− rn(0))
nf(0) = f(0), and V minn (f ; 1) =

(

n
n

)

f(nn) = f(1).

(iv) For f ∈ C1[0, 1] we have, with a constant c independent of x,

|V minn (f ;x)− f(x)| ≤ c · (|x − rminn (x)| + |αn(x)|) =

= c·















2x, x ∈
[

0, 12n
)

, hence O
(

1
n

)

,

| 1
2
−x|

n−1 +
√

1
n−1

(

x(1 − x)− 1
4n

)

, x ∈
[

1
2n , 1− 1

2n

]

, hence O
(

1√
n

)

,

2(1− x), x ∈
(

1− 1
2n , 1

]

, hence O
(

1
n

)

.

So the degree of approximation is better close to the endpoints, a fact
shared by the Bernstein operators where rn(x) = x.

(v) If f ∈ C2[0, 1], then

|V minn (f ;x)− f(x)| ≤ c · (|x − rminn (x)| + α2n(x)) =

= c ·















x+ x2, x ∈
[

0, 12n
)

,

| 1
2
−x|

n−1 +
1

n−1
(

x(1 − x)− 1
4n

)

, x ∈
[

1
2n , 1− 1

2n

]

,

(1− x) + (1− x)2, x ∈
(

1− 1
2n , 1

]

.

So for C2-functions we get a global degree of approximation of order O
(

1
n

)

which is also the case for the classical Bernstein operators.
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