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Spa
es of 
ontinuous fun
tions,�-produ
ts and Box TopologyJ. Angoa, �A. Tamariz-Mas
ar�uaAbstra
t. For a Ty
hono� spa
e X, we will denote by X0 the set of its isolated pointsand X1 will be equal to X \ X0. The symbol C(X) denotes the spa
e of real-valued
ontinuous fun
tions de�ned on X. �R

κ is the Cartesian produ
t R
κ with its boxtopology, and C� (X) is C(X) with the topology inherited from �R

X . By bC(X1) wedenote the set {f ∈ C(X1) : f 
an be 
ontinuously extended to all of X}. A spa
e
X is almost-ω-resolvable if it 
an be partitioned by a 
ountable family of subsets insu
h a way that every non-empty open subset of X has a non-empty interse
tion withthe elements of an in�nite sub
olle
tion of the given partition. We analyze C�(X)when X0 is Fσ and prove: (1) for every topologi
al spa
e X, if X0 is Fσ in X, and
∅ 6= X1 ⊂ 
lX X0, then C� (X) ∼= �R

X0 ; (2) for every spa
e X su
h that X0 is Fσ ,
lX X0 ∩X1 6= ∅, and X1 \ 
lX X0 is almost-ω-resolvable, then C� (X) is homeomorphi
to a free topologi
al sum of ≤ | bC(X1)| 
opies of �R
X0 , and, in this 
ase, C� (X) ∼= �R

X0if and only if | bC(X1)| ≤ 2|X0|. We 
on
lude that for a spa
e X su
h that X0 is Fσ ,
C� (X) is never normal if |X0| > ℵ0 [La℄, and, assuming CH, C�(X) is para
ompa
tif |X0| = ℵ0 [Ru2℄. We also analyze C�(X) when |X1| = 1 and when X is 
ountably
ompa
t, and we s
rutinize under what 
onditions �R

κ is homeomorphi
 to some ofits \�-produ
ts"; in parti
ular, we prove that �R
ω is homeomorphi
 to ea
h of itssubspa
es {f ∈ �R

ω : {n ∈ ω : f(n) = 0} ∈ p} for every p ∈ ω∗, and it is homeomorphi
to {f ∈ �R
ω : ∀ ǫ > 0 {n ∈ ω : |f(n)| < ǫ} ∈ F0} where F0 is the Fr�e
het �lter on ω.Keywords: spa
es of real-valued 
ontinuous fun
tions, box topology, �-produ
t, almost-

ω-resolvable spa
eClassi�
ation: 54C35, 54B10, 54D150. Introdu
tionAll topologi
al spa
es 
onsidered in this arti
le will be Ty
hono�.The spa
es of 
ontinuous fun
tions de�ned on a topologi
al spa
e X and withvalues in R, C(X), have been widely studied as a purely algebrai
 stru
ture ([GJ℄),and with a topologi
al-algebrai
 stru
ture ([BNS℄, [DH℄).One of the natural topologies asso
iated with C(X) is the pointwise 
onver-gen
e topology, whi
h is the topology in C(X) inherited from the Ty
hono� topo-logy of RX . This spa
e is usually denoted by Cp(X). A 
lassi
al general problemResear
h supported by Consejo Na
ional de Cien
ia y Te
nolog��a (CONACyT) of Mexi
o,grant U42573-F.
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ar�uaon Cp-spa
es 
onsists of determining the relations between the topologi
al prop-erties of spa
e X with the topologi
al properties of Cp(X) ([Ar℄).A generalization of the Ty
hono� topology for a produ
t of topologi
al spa
es,is the box topology (see de�nition in Se
tion 1) whi
h was introdu
ed by Tietzein [Ti℄. The study of the box produ
t of an in�nite family of topologi
al spa
eshas been a very useful sour
e to 
onstru
t some interesting topologi
al spa
es([Ru1℄, [V℄). With respe
t to para
ompa
tness of box produ
ts, in 1963, in [Kn℄,the question, due to A.H. Stone, whether the 
artesian produ
t of an in�nite
olle
tion of 
opies of the real line with its box topology is a normal spa
e, wasposed. In [Ru2℄, M.E. Rudin proved under CH that the box produ
t of 
ountablymany σ-
ompa
t lo
ally 
ompa
t metrizable spa
es is para
ompa
t; and K. Kunen[Ku℄ showed, also using CH, that the box produ
t of a 
ountable family {Kn : n <
ω} of 
ompa
t spa
es is para
ompa
t if and only if the Lindel�of degree of �n<ωKnis equal to ω1. Moreover, E.K. van Douwen [vD℄ showed that a box produ
t of a
ountable 
olle
tion of metrizable separable spa
es need not be normal. Finally,L.B. Lawren
e [La℄ proved in ZFC that the produ
t of an un
ountable family of
opies of the real line is not normal.So, it seems natural to ask about the relations between the topologi
al prop-erties of a spa
e X and those of C(X) with its box topology, whi
h we denote by
C�(X). In parti
ular, it is natural to ask under what 
onditions on X , C�(X) isnormal or para
ompa
t (the set C�(X) being a 
losed subset of �RX). In [TV℄,A. Tamariz-Mas
ar�ua and H. Villegas-Rodr��guez analyzed the spa
e C�(X) when
X is a topologi
al spa
e without isolated points. They obtained the following re-sults (see the de�nition of an almost-ω-resolvable spa
e in Se
tion 1):0.1 Theorem. Let X be a dense-in-itself spa
e. Then,(1) X is an almost-ω-resolvable spa
e i� C�(X) is a dis
rete spa
e;(2) Con(ZFC) implies Con(ZFC+ for every spa
e X , C�(X) is a dis
rete sub-spa
e of �RX);(3) if X is a Baire irresolvable spa
e, then C�(X) is not a dis
rete spa
e.We re
all here that a topologi
al spa
e X is irresolvable if it is dense-in-itselfand it is not the union of two disjoint dense subsets; and, of 
ourse, a spa
e X isBaire irresolvable if it is irresolvable and satis�es the Baire property. In [KST℄, itwas proved that the existen
e of a Baire irresolvable spa
e is equi
onsistent withthe existen
e of a measurable 
ardinal; then, the existen
e of a dense-in-itselfspa
e for whi
h C�(X) is not dis
rete, is equi
onsistent with the existen
e of ameasurable 
ardinal (see [TV, Theorem 4.16℄). In parti
ular, if X is a dense-in-itself almost-ω-resolvable spa
e, C�(X) is more than a para
ompa
t spa
e.The purpose of this arti
le is to analyze spa
es C�(X) when the subset X0 ofisolated points of X is not empty, and to show the topologi
al relations between
C�(X) and �RX0 and how the former 
an be expressed in terms of the latter.One of our main results states that for every spa
e X for whi
h Z = X \
lX X0 is
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tions, �-produ
ts and Box Topology 71almost-ω-resolvable and X0 is an Fσ-subset of X , C�(X) is a free topologi
al sumof 
opies of �RX0 . Con
luding that, by the results of Rudin and Lawren
e, if Xhas the properties mentioned, C�(X) is not normal if |X0| > ℵ0, and CH implies
C�(X) is para
ompa
t when |X0| = ℵ0. We also obtain suÆ
ient and ne
essary
onditions on X under whi
h C�(X) is homeomorphi
 to �RX0 . One immediate
on
lusion whi
h 
omes after these results is the fa
t that for spa
es X and Yeven with opposite topologi
al properties, C�(X) ∼= C�(Y ) 
an happen. Thisfa
t will allow us to de
ide when �Rκ is or is not homeomorphi
 to some of its\�-produ
ts". So, we 
an say that for a wide 
lass of topologi
al spa
esX , C�(X)is 
ompletely determined by some weak topologi
al properties (of a set-theoreti
altype) of X and X0.In Se
tion 1 we give some basi
 de�nitions and preliminary results. In Se
tion 2we dis
uss spa
es C�(X) when X0 is an Fσ-subset of X and ∅ 6= X1 = X \X0 ⊂
lX X0, and we prove that, in this 
ase, C�(X) ∼= �RX0 . Se
tion 3 is devoted toanalyzing C�(X) in a more general situation: X0 is an Fσ-subset ofX , Xb = X1∩
lX X0 6= ∅ and Z = X \ 
lX X0 is an almost-ω-resolvable spa
e; we obtain that,in this 
ase, C�(X) is homeomorphi
 to a free topologi
al sum of 
opies of �RX0 .In Se
tions 4 and 5 we study C�(X) when |X1| = 1 and when X is 
ountably
ompa
t, and we s
rutinize under what 
onditions �Rκ is homeomorphi
 to someof its \�-produ
ts"; in parti
ular, we prove that �Rω is homeomorphi
 to itssubspa
es ��

p Rω = {f ∈ �Rω : {n ∈ ω : f(n) = 0} ∈ p} for every p ∈ ω∗, and itis homeomorphi
 to ��
∗,F0Rω = {f ∈ �Rω : ∀ ǫ > 0 {n ∈ ω : |f(n)| < ǫ} ∈ F0}where F0 is the Fr�e
het �lter on ω.1. Basi
 de�nitions and preliminariesFor a set X and a 
ardinal number κ, P(X) will be the 
olle
tion of subsetsof X , [X ℄κ is the 
olle
tion of elements in P(X) having 
ardinality κ, and [X ℄<κis the 
olle
tion of elements in P(X) having 
ardinality < κ. For a fun
tion

f : X → Y and a subset B of X , f ↾ B is the restri
tion of f to B. As wehave already said, every topologi
al spa
e X 
onsidered in this arti
le will be
ompletely regular and T2; that is, Ty
hono� . For a spa
e X , βX is the Stone-�Ce
h 
ompa
ti�
ation of X .Let F = {Xα : α ∈ A} be a 
olle
tion of topologi
al spa
es. By �α∈AXα, wewill represent the Cartesian produ
t X = ∏
α∈AXα of the family F endowed withthe box topology. The box topology is that generated in X by the open boxes;that is, by the subsets of the form ∏

α∈AOα where Oα is an open subset of Xαfor ea
h α ∈ A. Re
all that the Ty
hono� topology in X is generated by sets ofthe form ∏
α∈AOα where ea
h Oα is open in Xα and the set {α ∈ A : Oα 6= Xα}is �nite. It is obvious that the Ty
hono� topology in X is 
ontained in the boxtopology, and that they 
oin
ide i� |A| < ℵ0.It is well known that, for an in�nite family {Xα : α ∈ A} of non-trivial topo-
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ar�ualogi
al spa
es, �α∈AXα is neither �rst 
ountable nor lo
ally 
ompa
t, and it isnever a topologi
al ve
tor spa
e, but it is a topologi
al group if ea
h of the spa
es
Xα is a topologi
al group, with group operation +α, when we 
onsider the sumof two elements (xα)α∈A and (bα)α∈A in �α∈AXα to be (aα+α bα)α∈A. A goodsurvey of the 
hara
teristi
s of the box topology 
an be found in [Wi℄.For a topologi
al spa
e X we denote by RX the Cartesian produ
t of |X | 
opiesof the real line R whi
h 
an be 
onsidered as the set of fun
tions fromX to R. Thesubset of RX whose elements are the 
ontinuous fun
tions is denoted by C(X).The spa
e �RX (resp., TRX) will be the set RX with the box topology (resp.,the Ty
hono� topology), and C�(X) (resp., Cp(X)) is the set C(X) 
onsideredas a subspa
e of �RX (resp., TRX).A spa
e X is almost-ω-resolvable if there is a partition {Fn : n < ω} of X su
hthat every non-empty open subset V of X has a non-empty interse
tion with ea
h
Fn for every n ∈ JV , where JV is an in�nite subset of ω. It will be useful to
onsider the empty spa
e ∅ in
luded in the 
lass of almost-ω-resolvable spa
es.For a spa
e X , we will denote by X0 the set of isolated points in X , and X1is its 
omplement X \X0. The symbol Xb represents the set X1 ∩ 
lX X0 and Zwill denote the set X \ (Xb ∪X0).Observe that, by Theorem 0.1, if Z is an almost-ω-resolvable spa
e and Xb isempty, then C�(X) = C�(Z ⊕ X0) ∼= C�(Z) × C�(X0) is the free topologi
alsum of |C(X1)| 
opies of the spa
e �Rκ where κ = |X0|. So, in this 
ase, we havealready obtained a 
lear relation between C�(X) and �RX0 . Hen
e, from nowon we will assume that every spa
e X satis�es Xb 6= ∅.The symbol Ĉ(X1) stands for the set {f ∈ C(X1) : f has a 
ontinuous extensionto all of X}. For ea
h x̂ ∈ Ĉ(X1), we take Abx(X) = {f ∈ C(X) : f ↾X1= x̂}.We will denote by 0̂ the fun
tion in C(X1) whi
h is equal to 0 everywhere. For
f, g ∈ RX , the fun
tion f + g ∈ RX is de�ned as (f + g)(x) = f(x) + g(x) forea
h x ∈ X . Every mention to an algebrai
 stru
ture on RX will refer to thisoperation. For two topologi
al spa
es X and Y , we will write X ∼= Y if theyare homeomorphi
, and for topologi
al groups G and H , the symbol H ≃ G willsignify that H and G are topologi
ally isomorphi
. Finally, for an element x of atopologi
al spa
e X , N (x) will denote the system of neighborhoods of x in X . Itis easy to prove the following results.1.1 Proposition. For a topologi
al spa
e X we have:(1) �RX is a topologi
al group;(2) C�(X) is a 
losed topologi
al subgroup of �RX ;(3) Abx(X) is a 
losed topologi
al subgroup of C�(X) for every x̂ ∈ Ĉ(X1);(4) for x̂ ∈ Ĉ(X1), Abx(X) and Ab0(X) are topologi
ally isomorphi
;(5) the family {Abx(X) : x̂ ∈ Ĉ(X1)} is a partition of C(X).(The referee pointed out to the authors that Erik van Douwen was probably



Spa
es of 
ontinuous fun
tions, �-produ
ts and Box Topology 73the �rst to observe, in 1975, that the box produ
t of topologi
al groups is atopologi
al group.)For a subset Y of X , the symbol πY will represent the natural proje
tion from
�RX to �RY ; that is, πY is the fun
tion de�ned by πY (f) = f ↾ Y . If Y is theone-point set {y}, we will write πy instead of π{y}. The following lemma is veryuseful.1.2 Lemma. Let X be a topologi
al spa
e and let Y be a subset of X 
ontain-ing X0. Then, the fun
tion φ = πY ↾ Ab0(X) : Ab0(X) → �RY is an isomorphi
embedding.Proof: It is trivial that φ is one-to-one and furthermore φ(f − g) = (f − g) ↾

Y = (f ↾ Y ) − (g ↾ Y ) = φ(f) − φ(g). Besides, if for ea
h x ∈ Y we take anopen subset Gx of R whi
h has 0 as one of its elements, then φ−1[∏x∈Y Gx℄ =
Ab0(X) ∩ ∏

x∈X Hx where Hx = Gx if x ∈ Y and Hx = R if x /∈ Y . So, φ isa 
ontinuous fun
tion. Finally, if for ea
h x ∈ X , Hx is an open subset of R
ontaining 0, then φ[∏x∈X Hx ∩Ab0(X)℄ = ∏
x∈Y Hx ∩ φ[Ab0(X)℄. �Let Y be a set, S ⊂ Y , T = Y \S and let F = {Fn : n < ω} be a partition of S(that is, ⋃

n<ω Fn = S, Fn 6= ∅ for ea
h n < ω, and if n 6= m, then Fn ∩Fm = ∅).We de�ne E(F) ⊂ RY as E(F) = ⋂
k<ω Ek(F), and Ek(F) = ⋃

m<ω Ek,m(F),where
Ek,m(F)(x) = 





R if x ∈ Fi and i ≤ m,[
− 12i+k ,

12i+k

] if x ∈ Fi and m < i,

R if x ∈ T.Let us obtain some properties of the sets just de�ned (see [Ru3℄).1.3 Proposition. Let Y be a topologi
al spa
e and let F be a partition of S ⊂ Y .Then, E(F) is a 
lopen topologi
al subgroup of �RY .Proof: Let F = {Fn : n < ω} be a partition of S. If z ∈ E(F), there is a stri
tlyin
reasing sequen
e {mk : k < ω} su
h that z ∈ Ek,mk
(F) for ea
h k < ω. Wede�ne the following open box W whi
h 
ontains z:

W (x) = 



R if x ∈ Fi, i ≤ m1,(
− 12i+k−1 , 12i+k−1 ) if x ∈ Fi, mk < i ≤ mk+1 and k ≥ 1,

R if x /∈ S.Let h ∈ W . We take tk−1 = mk for k ≥ 1. Trivially, the sequen
e {tk−1 :1 ≤ k < ω} is stri
tly in
reasing and h ∈ Ek−1,tk−1(F) for all k ≥ 1. Thus,
W ⊂ E(F); that is, E(F) is open.Now, let w /∈ E(F). There exists k0 < ω su
h that for every m there are
im > m and xim ∈ Fim su
h that w(xim) /∈ [− 12im+k0 , 12im+k0 ℄. We take A ⊂ ω
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ar�uafor whi
h {im : m ∈ A} = {im : m < ω} and for all n,m ∈ A with n 6= m, im 6= in.For ea
h m ∈ A, let Vim be an open subset of R su
h that w(xim ) ∈ Vim and
Vim ∩ [− 12im+k0 , 12im+k0 ℄ = ∅. Take O as the open box de�ned by O(xim) = Vimfor ea
h m ∈ A, and O(x) = R if x /∈ {xim : m ∈ A}. It happens that w ∈ O and
O ⊂ �RY \ E(F); so, E(F) is 
losed.Now, let f, g ∈ E(F). Take two sequen
es {mk : k < ω} and {lk : k < ω}satisfying: for all k < ω and for all i > mk, if x ∈ Fi then f(x) ∈ [

− 12i+k ,
12i+k

],and for all j > lk, if y ∈ Fj then g(y) ∈
[
− 12j+k ,

12j+k

]. We take tk−1 =max{mk, lk} for k ≥ 1. We have that f − g ∈ Ek−1,tk−1(F) for all k ≥ 1.Therefore, f − g ∈ E(F) and, sin
e 0̂ ∈ E(F), we 
on
lude that E(F) is atopologi
al subgroup of �RY . �We need to introdu
e the following de�nition whi
h relativizes the 
on
ept ofalmost-ω-resolvability.1.4 De�nition. Let X be a topologi
al spa
e, and let A and B be subsets of X .We say that A is almost-ω-resolvable with respe
t to B (brie
y: A is a-ω-rwrtB),if there is a partition {Fn : n < ω} of A, su
h that for every open subset O of
X whi
h has a non-empty interse
tion with B, |{n : Fn ∩ O 6= ∅}| = ℵ0. Su
h apartition is 
alled a resolution of A with respe
t to B.In the following proposition we emphasize the relation between the 
on
eptsjust de�ned and the stru
ture of C�(X). Re
all that Abx(X) is 
losed in C�(X)for all x̂ ∈ Ĉ(X1). First, a te
hni
al result.1.5 Lemma. Let S and T be two subsets of a topologi
al spa
e Y . If S is a-
ω-rwrtT , {Fn : n < ω} is a resolution of S with respe
t to T , g ∈ C(Y ) and
Og is the open box 
onstituted by those elements f in C(Y ) su
h that f(x) ∈(g(x) − 12n , g(x) + 12n ) if x ∈ Fn, then g ↾ T = h ↾ T holds for every h ∈ Og .Proof: Assume that there are h ∈ Og and z ∈ T su
h that 0 < |h(z)− g(z)| = ǫ.Sin
e g and h are 
ontinuous, we 
an take an element V in N (z), the system ofneighborhoods of z, su
h that g(V ) ⊂ (g(z) − ǫ3 , g(z) + ǫ3 ) and h(V ) ⊂ (h(z) −
ǫ3 , h(z) + ǫ3 ). There is x ∈ S su
h that x ∈ Fn ∩ V for an n ∈ ω su
h that12n < ǫ3 . For this x, |h(x) − g(x)| < ǫ3 , |h(z)− h(x)| < ǫ3 and |g(x) − g(z)| < ǫ3 ;so, |h(z)− g(z)| < ǫ, a 
ontradi
tion. Then, h(z) = g(z) for every z ∈ T . �1.6 Proposition. A spa
e X is a-ω-rwrtX1 if and only if Ab0(X) is an opensubset of C�(X).Proof: That Ab0(X) is open in C�(X) is a 
onsequen
e of Lemma 1.5; we justhave to take X = S and X1 = T .Now, let us assume that Ab0(X) is an open subset of C�(X). Sin
e the fun
-tion 0̂, whi
h is equal to 0 everywhere, belongs to Ab0(X), for ea
h x ∈ X there
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ontinuous fun
tions, �-produ
ts and Box Topology 75exists an open subset Gx of R su
h that 0̂ ∈
(∏

x∈X Gx
)
∩ C(X) ⊂ Ab0(X). Wede�ne d(x) = min{n < ω : (

− 12n ,
12n

)
⊂ Gx} and Fn = {x ∈ X : d(x) = n}. It is
lear that {Fn : n < ω} is a partition of X .We will prove that {Fn : n < ω} is a resolution for X with respe
t to X1.Assume the 
ontrary; that is, there are z ∈ X1, an open V ∈ N (z) and n0 < ωsatisfying V ∩Fn = ∅ for every n > n0. Let H : X −→

[0, 12n0+1 ] be a 
ontinuousfun
tion for whi
h H(X \V ) ⊂ {0} and H(z) = 12n0+1 . If x ∈ V , then d(x) ≤ n0.So, for every x ∈ V we have 12n0+1 < 12d(x) , and H(x) ≤ 12n0+1 . Thus, forevery x ∈ V , H(x) ∈
(
− 12d(x) , 12d(x)) ⊂ Gx. On the other hand, if x ∈ X \ V ,

H(x) = 0 ∈ Gx. So H ∈
(∏

x∈X Gx
)
∩C(X) ⊂ Ab0(X). Hen
e, H(z) = 0 whi
h isa 
ontradi
tion. We 
on
lude that {Fn : n < ω} is a resolution of X with respe
tto X1. �As a 
onsequen
e of Propositions 1.1 and 1.6, we obtain:1.7 Corollary. Let X be a-ω-rwrtX1. Then,(1) for ea
h x̂ ∈ Ĉ(X1), Abx(X) is a 
lopen subset of C�(X), and(2) C�(X) = ⊕

bx∈ bC(X1)Abx(X) ≃ ⊕
bx∈ bC(X1)(Ab0(X))bx where ea
h (Ab0(X))bxis a 
opy of Ab0(X).If X0 is a-ω-rwrtX1, then X is a-ω-rwrtX1, and there exists a spa
e X whi
his a-ω-rwrtX1 and X0 is not a-ω-rwrtX1 (see an example in the paragraph beforeProblem 2.8). From now on, under a 
omplete minimal system of representativesof the 
osets belonging to a quotient spa
e X/∼ we will understand a subset J of

X su
h that X/∼= ⋃
x∈J [x℄ and [x℄ 6= [y℄ for ea
h pair x, y of di�erent elementsin J , where [x℄ is the 
lass of equivalen
e of x related to the equivalen
e relation ∼.It is not diÆ
ult to prove the following result.1.8 Proposition. If X1 is almost-ω-resolvable, then X is a-ω-rwrtX1.1.9 Remark. For a partition F of the set X0 of isolated points of a spa
e X ,we 
an 
onsider the 
lopen topologi
al subgroup E(F) of �RX , as was de-�ned before Proposition 1.3. For ea
h f, g ∈ Ab0(X), (

E(F) ∩Ab0(X)) + f and(
E(F) ∩Ab0(X))+g are 
lopen topologi
ally isomorphi
 subgroups of Ab0(X). So,for a 
omplete minimal system D1 of representatives of the 
osets belonging tothe quotient group Ab0(X)/[E(F) ∩Ab0(X)℄, we have

Ab0(X) = ⊕
f∈D1 [

E(F) ∩Ab0(X)]+ f .So, we obtain:1.10 Proposition. If X is a-ω-rwrtX1, F is a resolution of X with respe
t to
X1 andD1 is a 
omplete minimal system of representatives of the 
osets belonging
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ar�uato the quotient Ab0(X)/[E(F) ∩Ab0(X)℄, then
C�(X) ≃ ⊕

bx∈ bC(X1),f∈D1 [
E(F) ∩Ab0(X)]

bx,f
,where ea
h (E(F) ∩Ab0)bx,f is a 
opy of E(F) ∩Ab0.Now we are going to give some results about box produ
ts and their σ-produ
tswhi
h will be useful for our purposes. The important role whi
h the σ-produ
tsplay in the general study of box produ
ts was emphasized in [NyP℄.As usual, for a topologi
al spa
e X , l(X), d(X), c(X) and e(X) denote theLindel�of number, density, 
ellularity and extent of X , respe
tively (see [H℄ forde�nitions).For a family {Xα : α ∈ A} of topologi
al spa
es and x ∈

∏
α∈AXα = X , let σxbe the σ-produ
t of X ; that is, σx = {y ∈ X : |{α ∈ A : y(α) 6= x(α)}| < ℵ0}. Wedenote by σ�

x (∏α∈AXα) (or simply, σ�
x ) the set σx with the topology inheritedfrom �α∈AXα.The following result is due to M.E. Rudin ([Ru3, p. 55℄).1.11 Proposition. Let κ be an in�nite 
ardinal number, and let {Xα : α < κ} bea family of 
onne
ted Ty
hono� spa
es. If x ∈ �α<κXα and Cx is the 
onne
ted
omponent of x in �α<κXα, then Cx = σx.1.12 Proposition. For ea
h in�nite 
ardinal number κ and every x ∈ �Rκ,

l(σ�
x Rκ) = e(σ�

x Rκ) = d(σ�
x Rκ) = c(σ�

x Rκ) = κ.Proof: For ea
h J ∈ [κ℄<ℵ0 = {A ⊂ κ : |A| < ℵ0}, let HJ ⊂ �Rκ be thebox de�ned by HJ (α) = R if α ∈ J and HJ (α) = {x(α)} if α /∈ J . The set
HJ with the box topology is homeomorphi
 to TRJ , whi
h is a Lindel�of spa
e.Thus, for ea
h open 
over C of σ�

x Rκ, and for ea
h J ∈ [κ℄<ℵ0 , we 
an sele
t a
ountable subfamily CJ of C su
h that HJ ⊂
⋃
CJ . Sin
e σ�

x Rκ = ⋃
J∈[κ℄<ℵ0 HJ ,

D = ⋃
J∈[κ℄<ℵ0 CJ is a sub
olle
tion of C whi
h 
overs σ�

x Rκ and has 
ardinality
≤ κ. So, l (σ�

x Rκ
)
≤ κ.Now, for ea
h δ < κ, we take zδ ∈ R \ {x(δ)}. We de�ne for ea
h α < κ

tα(δ) = {
zδ if α = δ,

x(δ) if α 6= δ.The subset D = {tα : α < κ} of σ�
x Rκ is 
losed and dis
rete. We 
on
lude that

κ ≤ e(σ�
x Rκ) ≤ l(σ�

x Rκ) ≤ κ.Now, we are going to make some 
al
ulations in order to obtain the densityof σ�
x Rκ. For ea
h J ∈ [κ℄<ℵ0 , we have that d (

TRJ
) = ℵ0. So, for ea
h
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J ∈ [κ℄<ℵ0 , there exists DJ ⊂ HJ whi
h is 
ountable and dense in HJ . Thus, theset D = ⋃

J∈[κ℄<ℵ0 DJ is dense in σ�
x Rκ. Sin
e |D| ≤ κ, d(σ�

x Rκ) ≤ κ.Let A be a subset of σ�
x Rκ with 
ardinality< κ. For ea
h a ∈ A, let Ja ∈ [κ℄<ℵ0be su
h that a ∈ HJa

. We take T = ⋃
a∈A Ja. We have that |T | ≤ |A| < κ. Let

α0 be an element of κ \ T and O = ∏
α<κOα where Oα = R if α 6= α0, and Oα0is an open subset of R whi
h does not 
ontain x(α0). It is 
lear that A ∩O = ∅;then A 
annot be dense in σ�

x Rκ. So, we 
an 
on
lude that d(σ�
x Rκ) = κ. �1.13 Corollary. Let κ and τ be in�nite 
ardinal numbers. Then, �Rκ ≃ �Rτif and only if �Rκ ∼= �Rτ , if and only if κ = τ .Proof: Let ψ : �Rκ −→ �Rτ be a homeomorphism, and let x ∈ �Rκ. ByProposition 1.11, we must have σ�

x Rκ ∼= σ�

ψ(x)Rτ . Now, Proposition 1.12 pro-du
es κ = τ . �We will prove something more general than this 
orollary in Se
tion 3 (seeCorollary 3.4).In order to des
ribe C�(X), it will be 
onvenient to keep in mind some re-sults 
on
erning the 
ardinality of C(X). The following result was proved byW.W. Comfort and A.W. Hager in [CH℄.1.14 Proposition. For a spa
e X , |C(X)| = w(βX)ω .2. Spa
es C�(X) when X0 is an Fσ-set and Z = ∅Re
all that for a spa
e X we are denoting by X0 its subset of isolated points,and X1 is equal to X \X0. In this se
tion we will analyze spa
es C�(X) when
X0 is an Fσ-subset of X and ∅ 6= X1 ⊂ 
lX X0. Some examples of spa
es havingthese 
hara
teristi
s are: the 
onvergent sequen
e {0} ∪ {1/n : n ∈ N} ⊂ R,the Stone-�Ce
h 
ompa
ti�
ation βω of the natural numbers, every Mr�owka-Isbellspa
e (or 	-spa
e, see [GJ℄) 	(A), and the 
ountable Fr�e
het-Urysohn fan V (ℵ0)([Ar℄). The main result of this se
tion (Theorem 2.4) pro
laims that for everyspa
e X satisfying these properties, its related spa
e of real-valued 
ontinuousfun
tions C�(X) is a box produ
t of real lines.Let F = {Fn : n < ω} be a partition of X0. We denote simply by E(F)the subset of �RX as was 
onstru
ted before Proposition 1.3, when Y = X and
S = X0; and we denote by E0(F) the subset of �RX0 obtained in a similar waybut when Y = S = X0.The following lemma des
ribes the relation between E(F) and E0(F) for apartition F of X0.2.1 Lemma. Let F = {Fn : n < ω} be a partition of X0, where ea
h Fn is a
losed subset of X . Then, φ′ = πX0 ↾ (E(F)∩Ab0(X)) : E(F)∩Ab0(X) −→ E0(F)is a topologi
al isomorphism.



78 J.Angoa, �A.Tamariz-Mas
ar�uaProof: Be
ause of Lemma 1.2 and the fa
t that E(F) is open, we 
on
lude that
φ′ is an embedding, and obviously φ′[E(F) ∩ Ab0(X)℄ ⊂ E0(F). The only partof the proof not entirely trivial refers to the surje
tion of φ′. Let h ∈ E0(F),and let h′ ∈ RX with h′ ↾ X0 = h and h′(z) = 0 for every z ∈ X1; then,
h′ ∈ Ab0(X). In fa
t, let z ∈ X1 and ǫ > 0, and let {mk < ω : k < ω} be a stri
tlyin
reasing sequen
e of natural numbers su
h that h ∈ Ek,mk0 for all k < ω. Letus take k > 0 su
h that 12mk

< ǫ. The set X \
( ⋃

i≤mk
Fi

) is a neighborhoodof z, h′(X \
( ⋃

i≤mk
Fi

))
⊂ (−ǫ, ǫ) and h′(z) = 0 ∈ (−ǫ, ǫ). We 
on
lude that

h′ ∈ Ab0(X). It is 
lear that h′ ∈ E(F) and φ′(h′) = h. �We de�ne a relation of equivalen
e ∼ on RX0 : for f, g ∈ RX0 , f ∼ g ifand only if for ea
h ǫ > 0 and ea
h z ∈ X1, there exists V ∈ N (z) su
h that(f − g) [V ∩X0℄ ⊂ (−ǫ, ǫ). For ea
h f ∈ RX0 , [f ℄ is the ∼-
lass of equivalen
eof f .2.2 Lemma. The relation ∼ is a relation of equivalen
e, and for f, g ∈ RX0 , if
f − g ∈ E0(F), then f ∼ g.Proof: It is easy to 
on�rm that ∼ is of equivalen
e. Now, assume that thereare z0 ∈ X1 and ǫ0 > 0 su
h that for ea
h V ∈ N (z0), there is xV ∈ V ∩X0 su
hthat (f − g)(xV ) /∈ (−ǫ0, ǫ0). Let k < ω be su
h that 12k < ǫ0. Fix a m < ω.It is 
lear that V1 = (

X \
⋃
i≤m Fi

)
∈ N (z0). Let xV1 ∈ V1 ∩ X0 satisfying(f − g)(xV1) /∈ (−ǫ0, ǫ0). In parti
ular, there exist im > m, su
h that xV1 ∈ Fim .Hen
e, (f − g)(xV1 ) /∈ [

− 12im+k ,
12im+k

]; that is, f − g /∈ E0(F). �In order to prove the main result of this se
tion (Theorem 2.4) we are nextgoing to prove a proposition whi
h is apparently less general.2.3 Proposition. Assume that a spa
e X satis�es:(1) ∅ 6= X1 ⊂ 
lX X0,(2) there is a partition {Fn : n < ω} of X0 
onstituted by 
losed subsetsof X , and(3) there is a partition {Cα ⊂ X0 : α < |X0|} of X0 su
h that(a) |Cα ∩ Fn| ≤ 1 for ea
h α < |X0| and ea
h n < ω, and(b) Jα = {n < ω : Cα ∩ Fn 6= ∅} is in�nite for ea
h α < |X0|.Then, Ab0(X) ∼= �RX0 ∼= C�(X).Proof: Let F = {Fn : n < ω} be a partition of X0 whi
h testi�es (2) and (3) inthis proposition. Let D0 ⊂ RX0 be a minimal 
omplete system of representativesof the 
osets in �RX0/E0(F), and let D1 ⊂ Ab0(X) be a 
omplete minimal systemof representatives of Ab0(X)/[Ab0(X) ∩ E(F)℄. By Proposition 1.3, Remark 1.9and Lemma 2.1, we have that (a) �RX0 = ⊕
f∈D0(E0(F)+f) and (b) C�(X) ≃⊕

bx∈ bC(X1),f∈D1 ([
Ab0(X) ∩ E(F)] + f

)
bx
, where ea
h term that appears in the
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ally isomorphi
 to ea
h term that appears in the sumin (b).Be
ause of the de�nitions of E0(F) and E(F), we have that for f, g ∈ Ab0(X),
f − g ∈ E(F) if and only if (f ↾ X0) − (g ↾ X0) ∈ E0(F). For this reason
|D1| ≤ |D0|.We are going to prove now that |Ĉ(X1)| ≤ |D0|. Let RX0/∼ be the quotientset determined by the relation ∼ de�ned before Lemma 2.2. The relation H :
Ĉ(X1) −→ RX0/∼ whi
h sends ea
h x̂ to [fbx ↾ X0℄ (where fbx is an element of
Abx(X)) is a well de�ned inje
tive fun
tion. So, ∣∣∣Ĉ(X1)∣∣∣ ≤ ∣∣RX0/∼∣∣. Now, usingLemma 2.2 we obtain ∣∣∣Ĉ(X1)∣∣∣ ≤ |D0|.Hen
e, we have already proved that |Ĉ(X1)| · |D1| ≤ |D0|. Now we are goingto prove that in fa
t |Ĉ(X1)| · |D1| is equal to |D0|.Re
all that we are assuming that X has properties (1), (2) and (3) listed inour proposition. For ea
h α < |X0|, we 
an enumerate Cα as {xα,n : n ∈ Jα} insu
h a way that for every n ∈ Jα, xα,n ∈ Fn. So, for ea
h A ∈ P(|X0|), we de�ne
fA ∈ RX as:

fA(y) = { 12n if y = xα,n, α ∈ A and n ∈ Jα,0 otherwise.Observe that fA ∈ Ab0(X). Moreover, for every two di�erent subsets A,B ∈
P(|X0|), fA − fB /∈ E(F) be
ause of 
ondition (3). Therefore, the fun
tion

T : P(|X0|) −→ Ab0(X)/Ab0(X) ∩ E(F)where T (A) = Ab0(X) ∩ E(F) + fA, is inje
tive. We 
on
lude that 2|X0| ≤ |D1|.Sin
e |D0| ≤ 2|X0|, |D0| = ∣∣∣Ĉ(X1)∣∣∣ · |D1|.Therefore, Ab0(X) ∼= �RX0 ∼= C�(X). �Next, the main result of this se
tion.2.4 Theorem. Let X be a spa
e su
h that X0 is an Fσ-subset of X and ∅ 6=
X1 ⊂ 
lX X0. Then,

Ab0(X) ∼= C�(X) ∼= �RX0 .Proof: In order to prove this theorem we only have to 
onstru
t two partitions
F = {Fn : n < ω} and C = {Cα : α < |X0|} of X0 satisfying (2) and (3) inProposition 2.3.Sin
e X0 is an Fσ-subset of X , there is a disjoint family E = {Ei : i < ω} of
losed subsets of X 
overing X0.First 
ase: For ea
h i < ω, |Ei| < ℵ0.
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ar�uaIn this 
ase, we 
an modify the partition E in su
h a way that we obtain anew partition F = {Fi : i < ω} of X0 
onstituted by 
losed subsets of X with
|Fi| = 1. We name xn the only element belonging to Fn for ea
h n < ω. Now,we take a partition A0, A1, . . . , An, . . . of ω where ea
h Ai is in�nite. We de�ne
Ck = {xn : n ∈ Ak} for ea
h k < ω. The 
olle
tions F and {Ck : k < ω} satisfy(2) and (3) in Proposition 2.3.Se
ond 
ase: There is an in�nite subset of natural numbers J su
h that, for ea
h
n ∈ J , |En| ≥ ℵ0.In this 
ase, we modify partition E in su
h a way that we obtain a partition
{Hi : i < ω} of X0 of 
losed subsets of X with |Hi| ≥ ℵ0 for every i < ω. Now,let κi be the 
ardinality of Hi for ea
h i < ω. Let us list Hi as {xλi : λ < κi} with
xλi 6= x

ξ
i if λ 6= ξ. Of 
ourse |X0| = κ = sup{κi : i < ω}. For ea
h δ < κ, we take

Gδ = {xδi : κi > δ} and T = {δ < κ : |Gδ | = ℵ0}.If κ \ T = ∅, then {Hn : n < ω} and {Gδ : δ < κ} satisfy the requirements.Now, assume that κ\T 6= ∅. For ea
h δ ∈ κ\T , Gδ is a �nite set {xδs1 , . . . , xδst
}.We denote by Mδ the set of natural numbers {s1, . . . , st} related with Gδ . Let δ0be the �rst element of κ \ T .Claim: For ea
h δ ∈ κ \ T , Mδ ⊂Mδ0 .Indeed, let δ be an element of α \ T and Gδ = {xδs1 , . . . , xδst

}. By de�nition of
Gδ, we have that δ < κsl

for every l ∈ {1, . . . , t}. Sin
e δ0 ≤ δ, δ0 < κsl
for ea
h

l ∈ {1, . . . , t}. Then, for ea
h l ∈ {1, . . . , t}, xδ0sl
∈ Gδ0 ; that is, sl ∈Mδ0 for every

l ∈ {1, . . . , t}. We 
on
lude that Mδ ⊂Mδ0 .Let n0 be equal to the greatest element in Mδ0 , and let us 
all H the set⋃
i≤n0 Hi. We partition H in a family of in�nite 
ountable subsets:

H = ⋃
λ<|H|Dλ, |Dλ| = ℵ0 for all λ < |H |, and Dλ ∩ Dξ = ∅ for every

λ, ξ < |H | with λ 6= ξ. For ea
h λ < |H | we enumerate the elements of Dλas {zλ1 , zλ2 , . . . , zλn, . . . } in su
h a way that zλj 6= zλi if j 6= i.We take C as the family {G̃δ : δ ∈ T } ∪ {Dλ : λ < |H |}, where, for ea
h δ ∈ T ,
G̃δ = {xδi ∈ Gδ : i > n0}.Now, we are going to de�ne the family F . Let F1 = Hn0+1 ∪ {zλ1 : λ < |H |},
. . . , Fk = En0+k ∪ {zλk : λ < |H |}, . . .It is not diÆ
ult now to prove that families F and C satisfy properties (2) and(3) in Proposition 2.3.Third 
ase: There is n0 < ω su
h that {n < ω : |En| ≥ ℵ0} ⊂ {0, . . . , n0}.In this 
ase, we 
an modify partition E in su
h a way that we obtain a newpartition {Hi : i < ω} of X0 with ea
h Hi 
losed in X , |H0| ≥ ℵ0 and |Hn| = 1for every n > 0; say, Hn = {xn} for ea
h n > 0.We partition H0 in a family of in�nite 
ountable subsets: H0 = ⋃

λ<|H0|Dλ,
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|Dλ| = ℵ0 for all λ < |H0|, and Dλ∩Dξ = ∅ for every λ, ξ < |H0| with λ 6= ξ. Forea
h λ < |H0| we enumerate the elements of Dλ as {zλ1 , zλ2 , . . . , zλn, . . . } in su
h away that zλj 6= zλi if j 6= i.We take C as the family {C} ∪ {Dλ : λ < |H0|}, where C = {xn : n > 0}.Now, we are going to de�ne the family F . Let F1 = H1 ∪ {zλ1 : λ <

|H0|}, . . . , Fk = Hk ∪ {zλk : λ < |H0|}, . . .The families F and C satisfy properties (2) and (3) in Proposition 2.3.We have already �nished the proof. �2.5 Examples.(1) If the set X0 of isolated points of a topologi
al spa
e X is 
ountable (inparti
ular, if X has 
ountable 
ellularity) and ∅ 6= X \X0 = X1 ⊂ 
lX X0,then C�(X) ∼= �Rℵ0 . We then have C�(βω) ∼= �Rω. More generally, if
κ is an in�nite 
ardinal number of 
ountable 
o�nality, and Y is a subsetof uniform ultra�lters on κ, then Y ⊂ 
lκ∪Y κ and (κ ∪ Y )1 = Y is a Gδsubset of κ ∪ Y ; so, C�(κ ∪ Y ) ∼= �Rκ. Also, for every almost disjointfamily A of ω, C�(	(A)) ∼= �Rω.(2) Of 
ourse, ifX is perfe
t, X0 is Fσ inX ; so, spa
es of a wide 
lass ful�ll the
onditions in Theorem 2.4. In parti
ular, if X is metrizable (or even semi-strati�able or developable) and ∅ 6= X1 ⊂ 
lX X0, then C�(X) ∼= �RX0 .In parti
ular, for every 
ountable ordinal number α, C�([0, α)) ∼= �Rω.On the other hand, [0, ω1) is a lo
ally 
ompa
t �rst 
ountable orderablespa
e su
h that its subset of isolated points is not an Fσ-subset, and theMi
hael line M is an hereditarily para
ompa
t quasi-developable spa
esu
h that M0 = {irrational numbers} is not an Fσ-subset of M .(3) A way to obtain examples of spa
es X whi
h satisfy the 
onditions in The-orem 2.4, now that we have mentioned the Mi
hael line, is the following:Take a dense-in-itself non-
ountable separable spa
e (X, T ). Let Q be a
ountable dense subset of X . We de�ne a new spa
e (XQ, TQ) as follows:let XQ = X and B ∈ TQ if and only if B = C ∪D with C ∈ T and D ⊂ Q(see [E, p. 306℄). The spa
e XQ satis�es 
onditions in Theorem 2.4, so
C�(XQ) ∼= �Rω. Observe that (XQ)0 = Q and (XQ)1 = X \Q.(4) Let Y be a spa
e with iw(Y ) = ℵ0. So Cp(Y ) is a dense-in-itself non-
ountable separable spa
e ([Ar℄). Let Q be a 
ountable dense subset of
Cp(Y ). Be
ause of the previous example we obtain: C�(Cp(Y )Q) ∼= �Rω.When Y = R, the set Q of polynomials with rational 
oeÆ
ients is a
ountable dense subset of Cp(R). Then, C�(Cp(R)Q) ∼= �Rω.For ea
h x ∈ X , we have denoted by N (x) the system of neighborhoods of xin X . We will use the symbol N0(x) to designate the set {V ∩X0 : V ∈ N (x)}.Observe that if x ∈ 
lX X0, N0(x) is a �lter on X0. We are going to obtain a
onverse of Theorem 2.4 when N0(x) is an ultra�lter for every x ∈ X1. First weprove the following:
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ar�ua2.6 Proposition. If X0 is an Fσ-subset of X , then X0 is a-ω-rwrtXb.Proof: Let F = {Fn : n < ω} be a partition of X0 
onstituted by 
losedsubsets of X . We are going to prove that F is a resolution of X0 with respe
tto Xb. Let p ∈ Xb and V ∈ N (p). Sin
e p ∈ 
lX(X0), then V ∩ X0 6= ∅. Let
A = {n < ω : Fn ∩ V 6= ∅}, and assume that there exists n0 < ω su
h thatfor all n > n0, V ∩ Fn = ∅. We know that V ∩ (X \

⋃
n≤n0 Fn) ∈ N (p), but

V ∩ (X \
⋃
n≤n0 Fn) ∩X0 = ∅, whi
h is not possible. So, A must be in�nite. �2.7 Theorem. Let ∅ 6= X1 ⊂ 
lX X0 and assume that N0(x) is an ultra�lter on

X0 for ea
h x ∈ X1. Then the following assertions are equivalent.(1) X0 is Fσ in X .(2) X0 is a-ω-rwrtX1.(3) C�(X) ∼= �RX0 and X0 is a-ω-rwrtX1.Proof: (1) ⇒ (2): This is a 
onsequen
e of Proposition 2.6.(2)⇒ (1): Let {Fn : n < ω} be a resolution ofX0 with respe
t toX1. Let us �x
n < ω, and suppose that there exists x ∈ 
lFn ∩X1. That is, for ea
h V ∈ N (x),we have V ∩Fn 6= ∅. Thus, for ea
h V ∩X0 ∈ N0(x), V ∩Fn = (V ∩X0)∩Fn 6= ∅.Sin
e N0(x) is an ultra�lter, Fn must belong to N0(x). Let V ′ be an element of
N (x) su
h that Fn = V ′ ∩X0. Then we obtain Fm ∩ V ′ = ∅ when n 6= m. Butthis last assertion 
ontradi
ts our hypotheses. Therefore, Fn must be 
losed in X .We obtain (1) ⇒ (3) by Theorem 2.4 and Proposition 2.6, and (3) ⇒ (2) istrivial. �The statement \X0 is a-ω-rwrtX1" in (2) and (3) in the previous theorem
annot be repla
ed by the weaker proposition \X is a-ω-rwrtX1". In fa
t, let αbe an in�nite 
ardinal number with un
ountable 
o�nality. Sin
eX = βα is an ℵ0-resolvable spa
e, X is a-ω-rwrtX1 and Ab0(βα) is open in C�(βα). Nevertheless,
X0 is not an Fσ-subset of X .2.8 Problem. Assume that we have the same assumptions given in Theorem 2.7.Suppose also that C�(X) ∼= �RX0 . Is X0 then a-ω-rwrtX1?3. Spa
es C�(X) when X0 is an Fσ-subset of XIn this se
tion we are going to 
onsider spa
es C�(X) when the set of isolatedpoints of X , X0, is an Fσ-subset of X and ∅ 6= X \ 
lX X0 = Z. For example, forthe subspa
e Y = {r ∈ R : r ≤ 0} ∪ {1/n : n ∈ N} of R, Y0 = {1/n : n ∈ N} isan Fσ-subset of Y , Y b = {0} and Z = {r ∈ R : r < 0}. As usual, CN is the 
lassof 
ardinal numbers, and for a 
ardinal number κ, κ+ is the minimum 
ardinalnumber stri
tly greater than κ.Observe that the produ
t spa
e E(κ) = [0, ω℄×D(κ) where [0, ω℄ is the spa
eof ordinals ≤ ω with its order topology, and D(κ) is the dis
rete spa
e of 
ar-dinality κ, satis�es the 
onditions in Theorem 2.4. Thus, by Corollary 1.7 and
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ts and Box Topology 83Theorem 2.4, we have
�Rκ ∼= C�(E(κ)) ∼= ⊕bx∈C((E(κ))1)(�Rκ)bx.Sin
e (E(κ))1 
oin
ides with D(κ), we have C((E(κ))1) = Rκ. Furthermore,

|C((E(κ))1)| = 2κ. So we have proved:3.1 Lemma. For ea
h in�nite 
ardinal κ, �Rκ a

epts a partition of 2κ 
lopensubsets, ea
h of them homeomorphi
 to �Rκ.3.2 De�nitions. A partition C of a topologi
al spa
e X is a homeomorphi

lopen partition of X if ea
h element of C is 
lopen and homeomorphi
 to X .The homeomorphi
 
lopen partition number of X , hop(X), is the 
ardinal numbermin{κ ∈ CN : there is no homeomorphi
 
lopen partition of X of 
ardinality κ}.It is easy to see that hop(X) ≤ |X |+ for every spa
e X .3.3 Proposition. For ea
h in�nite 
ardinal κ, hop(�Rκ) = (2κ)+.Proof: Be
ause of Lemma 3.1, (2κ)+ ≤ hop(Rκ). Moreover, hop(Rκ) ≤ |Rκ|+ =(2κ)+; so, hop(�Rκ) = (2κ)+. �3.4 Corollary. Let τ , γ and κ be in�nite 
ardinals. Then
⊕

α<κ

(�Rτ )α ∼= �Rγ ⇔ κ ≤ 2τ and γ = τ.Proof: Suppose that ψ : ⊕α<κ (�Rτ )α −→ �Rγ is a homeomorphism. Let α <
κ and x ∈ (�Rτ )α. We have that the 
onne
ted 
omponent of x in ⊕α<κ (�Rτ )α,
σ�
x Rτ , must be homeomorphi
 to σ�

ψ(x)Rγ . Then, be
ause of Proposition 1.12,
τ = γ. Therefore, sin
e | ⊕α<κ (�Rτ )α | = |�Rγ |, κ · 2τ = 2γ = 2τ ; thus, κ ≤ 2τ .Now, assume that κ ≤ 2τ and γ = τ . By Proposition 3.3, we have
⊕α<κ (�Rτ )α ∼= �Rτ . Hen
e, ⊕α<κ (�Rτ )α ∼= �Rγ . �As has been the 
ustom in this arti
le, for a spa
eX , we denote byX0 the set ofisolated points of X , X1 = X \X0, Xb = (
lX X0)∩X1 6= ∅ and Z = X \ 
lX X0.Our next result generalizes Proposition 1.6.3.5 Proposition. Let X be a spa
e su
h that X0 is Fσ and Xb 6= ∅ 6= Z. Then,the following assertions are equivalent.(1) Z is almost-ω-resolvable.(2) X is a-ω-rwrtX1.(3) Ab0(X) = {f ∈ C(X) : f ↾ X1 ≡ 0} is a 
lopen subgroup of C�(X).
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ar�uaProof: (1) ⇒ (2): Let H = {Hn : n < ω} be a resolution of Z, and let
F = {Fn : n < ω} be a partition of X0 
onstituted by 
losed subsets of X .We de�ne C0 = H0 ∪ Xb ∪ F0 and Ci = Hi ∪ Fi for i ≥ 1. It happens that
C = {Cn : n < ω} is a resolution of X with respe
t to X1.(2) ⇒ (1): Let C = {Cn : n < ω} be a resolution of X with respe
t to X1.Then, H = {Cn ∩ Z : n < ω} is a resolution of Z.The equivalen
e (2) ⇔ (3) is Proposition 1.6. �3.6 Corollary. If X0 is an Fσ-subset of X , Xb 6= ∅ and Z is almost-ω-resolvable,then

C�(X) = ⊕
bx∈ bC(X1)Abx(X).3.7 Theorem. Let X be a topologi
al spa
e with X0 being an Fσ-subset of Xand Xb 6= ∅. If Z is almost-ω-resolvable, then Ab0(X) ∼= �RX0 and C�(X) is thefree topologi
al sum of ≤ |Ĉ(X1)| 
opies of �RX0 .Proof: We take the subspa
e Y = X0∪Xb of X . The set of isolated points of Y ,

Y0, is an Fσ-subset of Y and Y1 is not empty; in fa
t, Y0 = X0 and Y1 = Xb.Hen
e, Ab0(Y ) is equal to {f ∈ C(Y ) : f ↾ Xb ≡ 0}. We 
laim that the naturalproje
tion πY : Ab0(X) → Ab0(Y ) de�ned by πY (f) = f ↾ Y is a homeomorphism.By Lemma 1.2, πY ↾ Ab0(X) is an embedding.Let h ∈ Ab0(Y ). We de�ne h′ ∈ RX as h′(z) = 0 for every z ∈ Z and h′ ↾ Y = h.Let z ∈ Z = X1 \Xb and ǫ > 0. Sin
e Z is open in X and h′[Z℄ = {0} ⊂ (−ǫ, ǫ),
h′ is 
ontinuous in z. Now let z ∈ Xb. By the 
ontinuity of h, there is anopen neighborhood W of z in X su
h that h[W ∩ Y ℄ ⊂ (−ǫ, ǫ). Sin
e W =(W ∩ Y )∪ (W ∩Z), h′[W ℄ ⊂ (−ǫ, ǫ). It is 
lear that h′ ∈ Ab0(X) and πY (h′) = h.Thus πY [Ab0(X)℄ = Ab0(Y ).Be
ause of Corollary 3.6, C�(X) = ⊕

bx∈ bC(X1)(Ab0(X))bx where (Ab0(X))bx is a
opy of Ab0(X). Thus, C�(X) ∼= ⊕
bx∈ bC(X1)(Ab0(Y ))bx. On the other hand, Y0 isan Fσ-subset of Y , ∅ 6= Y1 ⊂ 
lY Y0 and Y0 = X0; so Ab0(X) ∼= Ab0(Y ) ∼= �RX0(Theorem 2.4). �As a 
onsequen
e of the previous theorem and Corollary 3.4 we obtain:3.8 Corollary. Assume that X0 is an Fσ-subset of X , Xb 6= ∅ and Z is almost-

ω-resolvable. Then C�(X) ∼= �RX0 if and only if |Ĉ(X1)| ≤ 2|X0|.The following result is a 
onsequen
e of Theorems 0.1 and 3.7.3.9 Corollary. It is 
onsistent with ZFC that for every spa
e X for whi
h X0 isan Fσ-subset and Xb 6= ∅, C�(X) ∼= ⊕
f∈ bC(X1)(�RX0)f , and C�(X) ∼= �RX0 if,in addition, |Ĉ(X1)| ≤ 2|X0|.
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ts and Box Topology 85It is known (see [CH℄) that |C(X)| ≤ (wX)wcX ≤ 2d(X) for every in�nitespa
e X , where wX is the least 
ardinal of an open basis, and wcX is the least κfor whi
h ea
h open 
over of X has a subfamily with κ or fewer elements whoseunion is dense; so:3.10 Corollary. Let X be a topologi
al spa
e satisfying: X0 is an Fσ-subsetof X , Xb 6= ∅ and Z is almost-ω-resolvable. If (wX1)wcX1 ≤ 2|X0| (in parti
ular,if w(X) ≤ |X0| or d(X1) ≤ |X0|), then C�(X) ∼= �RX0 .3.11 Examples.(1) Sin
e every �rst 
ountable spa
e is almost-ω-resolvable, C�(X) ∼= �RX0if X is semi-strati�able or developable (metrizable), Xb 6= ∅ and w(X) ≤
|X0|.(2) We now use the ideas of Example 2.5.(3). Let X be an almost-ω-resolvableseparable spa
e with a non-
ountable open subset A su
h that X \
lX A 6=
∅. Let Q be a 
ountable dense subset of A. The spa
e XQ satis�es
onditions in Corollary 3.10, so C�(XQ) ∼= �Rω. Observe that, in this
ase, (XQ)0 = Q, (XQ)b = 
lX A \Q, and Z(XQ) = X \ 
lX A 6= ∅ whi
his an almost-ω-resolvable spa
e.(3) Be
ause of the previous example, C�(R2

Q) ∼= �Rω, where Q = {(x, y) ∈
Q2 : y > 0}.Now we are going to prove a generalization of Theorem 2.7.3.12 Theorem. Let X be a spa
e with Xb 6= ∅ and Z being an almost-ω-resolvable spa
e. Assume that for ea
h p ∈ Xb, N0(p) is an ultra�lter on X0.Then, the following assertions are equivalent.(1) X0 is Fσ in X .(2) X0 is a-ω-rwrtXb.(3) C�(X) is a free topologi
al sum of ≤ |Ĉ(X1)| 
opies of �RX0 and X0 isa-ω-rwrtXb.(4) Ab0(X) is open in C�(X) and X0 is a-ω-rwrtXb.(5) Ab0(X) ∼= �RX0 and X0 is a-ω-rwrtXb.Proof: The impli
ation (1) ⇒ (2) is Proposition 2.6, (2) ⇒ (1) 
an be provedin a similar way to (2) ⇒ (1) in Theorem 2.7, and (1) ⇒ (5) is a 
onsequen
e ofTheorem 3.7.(1) ⇒ (3): If X0 is Fσ , then, using Theorem 3.7, we obtain that C�(X) is afree topologi
al sum of ≤ |Ĉ(X1)| 
opies of �RX0 . The remainder is obtained byProposition 2.6.(3) ⇒ (2), (4) ⇒ (2) and (5) ⇒ (2) are obvious.(2)⇒ (4): This is (2)⇒ (3) in Theorem 2.7 plus Theorem 2.4 if Z = ∅. Assumenow that Z 6= ∅. Sin
e X0 is 
-ω-r
raXb, X is a-ω-rwrtX1, and we have only toapply Proposition 3.5. �
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ar�uaWe �nish this se
tion with the following result whi
h summarizes everythingwe have obtained until now in this se
tion, plus Rudin's and Lawren
e's results[Ru2℄, [La℄.3.13 Corollary. Let X be a topologi
al spa
e su
h that X0 is an Fσ-subset of
X , ∅ 6= Xb and Z is almost-ω-resolvable. Then:(1) C�(X) is not normal if |X0| > ℵ0;(2) The Continuum Hypothesis implies that C�(X) is para
ompa
t if |X0| =

ℵ0.4. �-produ
ts and spa
es C�(X)We are now going to 
onsider spa
es X with |X1| = 1 and we will 
al
ulate
C�(X) for this kind of spa
es. Re
all that a �lter F on a set X0 is ω+-
ompleteif for every {Fn : n < ω} ⊂ F , the set ⋂

n<ω Fn belongs to F . For a �lter F on aset X0, we de�ne �FRX0 , �∗,FRX0 , �̂FRX0 in the following way:�FRX0 = {f ∈ RX0 : {x ∈ X0 : f(x) = 0} ∈ F},�∗,FRX0 = {f ∈ RX0 : for all ǫ > 0, {x ∈ X0 : |f(x)| < ǫ} ∈ F},�̂FRX0 = {f ∈ RX0 : for all ǫ > 0, {x ∈ X0 : |f(x)| ≥ ǫ} /∈ F}.For a �lter F on X0, �FRX0 ⊂ �∗,FRX0 ⊂ �̂FRX0 . When F is an ultra�lter,then �∗,FRX0 = �̂FRX0 .The symbols ��
FRX0 , ��

∗,FRX0 , �̂�
FRX0 mean that we are 
onsidering the sets�FRX0 , �∗,FRX0 , �̂FRX0 with their box produ
t topology.Re
all that for a spa
e X , X0 is the set of isolated points of X , X1 = X \X0and always ∅ 6= X1 ⊂ 
lX X0.We begin our analysis by obtaining some results about resolvability of X when

|X1| = 1.4.1 Proposition. Let X be a spa
e su
h that X1 = {p}. Then, X is a-ω-rwrtX1i� X0 is a-ω-rwrtX1.Proof: Assume that X is a-ω-rwrtX1 and let {Fn : n < ω} be a resolutionof X with respe
t to X1. Let n0 be a natural number su
h that p ∈ Fn0 . So,
{Fn : n ∈ ω \ {n0}} ∪ {Fn0 ∩X0} is a resolution of X0 with respe
t to X1. �4.2 Proposition. Let X1 = {p}, and assume that N0(p) = {X0 ∩ N : N is aneighborhood of p} is a non-ω+-
omplete �lter. Then, X0 is a-ω-rwrtX1.Proof: Let {Vn : n < ω} ⊂ N0(p) su
h that ⋂

n<ω Vn /∈ N0(p) with V0 = X0.Let Wn = ⋂
i≤n Vi, F0 = ⋂

n<ωWn and Fn+1 = Wn \Wn+1. We are going toprove that {Fn : n < ω} is a resolution of X0 with respe
t to X1.
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ts and Box Topology 87Suppose the 
ontrary; that is, assume that there are V ∈ N (p) and n0 < ωsu
h that V ∩ Fn = ∅ for all n ≥ n0. We take M0 = Wn0+1 ∩ V . The set M0belongs to N (p) and M0 ∩ Fn = ∅ for all n ≥ n0. We 
laim that M0 is 
ontainedin ⋂
n>n0 Wn. In fa
t, if x ∈M0, then x ∈Wn0+1. If x /∈Wn0+2, x must belongto Fn0+2, whi
h is not possible. The same reasoning used in an indu
tive pro
essgives us that x must belong to ⋂

n>n0 Wn. But N (p) is a �lter, M0 ∈ N (p) and
M0 ⊂

⋂
n>n0 Wn = ⋂

n<ωWn; so, we obtain a 
ontradi
tion. Thus {Fn : n < ω}is a resolution of X0 with respe
t to X1. �As a 
onsequen
e of Theorem 2.7 and Proposition 4.2 we 
an prove:4.3 Theorem. If N0(p) is an ultra�lter whi
h is not an ω+-
omplete �lter, then
X0 is Fσ in X and C�(X) ∼= �RX0 .So, for an in�nite 
ardinal number κ, if p ∈ βκ \ κ is not ω+-
omplete, and
{p} ∪ κ is 
onsidered with its topology inherited from βκ, then

C�({p} ∪ κ) ∼= �Rκ.Now, we are going to see that the \�-produ
ts" de�ned at the beginning ofthis se
tion are related to our study of C�(X).4.4 Proposition. If X1 = {p}, then Ab0(X) ∼= ��

∗,N0(p)RX0 .Proof: The range of the isomorphi
 embedding φ : Ab0(X) → RX0 de�ned as
φ(f) = f ↾ X0 (see Lemma 1.2) is equal to ��

∗,N0(p)RX0 . Indeed, if ǫ > 0 and
f ∈ Ab0(X), there is V ∈ N (p) su
h that f [V ℄ ⊂ (−ǫ, ǫ). Thus, V ∩X0 ∈ N0(p)and V ∩X0 ⊂ {x ∈ X : |f(x)| < ǫ}. Therefore, {x ∈ X0 : |f(x)| < ǫ} ∈ N0(p).This means that f ↾ X0 ∈ ��

∗,N0(p)RX0 . Moreover, if g ∈ ��

∗,N0(p)RX0 and
ĝ ∈ RX is su
h that ĝ ↾ X0 = g and ĝ(p) = 0, then ĝ ∈ Ab0(X) and φ(ĝ) = g. �4.5 Proposition. If X1 = {p} and N0(p) is an ω+-
omplete �lter, then��

N0(p)RX0 = ��

∗,N0(p)RX0 .Proof: We only have to prove that ��

∗,N0(p)RX0 ⊂ ��

N0(p)RX0 . Let F ∈��

∗,N0(p)RX0 , and for ea
h n < ω we take Dn = {x ∈ X0 : |f(x)| < 12n }.It is 
lear that Dn ∈ N0(p) for all n < ω. So, ⋂
n<ωDn ∈ N0(p). But⋂

n<ωDn = {x ∈ X0 : f(x) = 0}. Therefore, f ∈ ��

N0(p)RX0 . �Be
ause of the last two propositions we obtain the following 
orollary.
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ar�ua4.6 Corollary. If X1 = {p} and N0(p) is an ω+-
omplete �lter, then
Ab0(X) ∼= ��

N0(p)RX0 .So, if X1 = {p}, then the following assertions hold.(1) If N0(p) is an ω+-
omplete �lter, and X is a-ω-rwrtX1, then
C�(X) ∼= ⊕

x∈R

[��

N0(p)RX0 ℄x.(2) If N0(p) is a �lter whi
h is not ω+-
omplete, then
C�(X) ∼= ⊕

x∈R

[��

∗,N0(p)RX0 ℄x.Now we are going to 
onsider the one-point 
ompa
ti�
ation K(X0) of thedis
rete spa
e X0. Let p be the point of K(X0) whi
h 
ompa
ti�es X0.4.7 Proposition. Let X1 = {p}. Then, X = K(X0) if and only if, for every
A ∈ [X0℄ℵ0 and V ∈ N (p), we have A ∩ V 6= ∅.4.8 Theorem. If X = K(X0), then N (p) is not ω+-
omplete. So, in this 
asewe have

C�(X) ∼= ⊕

x∈R

[��

∗,N0(p)RX0 ℄x.Proof: Let A ∈ [X0℄ℵ0 with A = {an : n < ω} and an 6= am if n 6= m. The set
Vn = X0 \ {a0, . . . , an} belongs to N0(p) for every n < ω, and ⋂

n<ω Vn /∈ N0(p).
�In order to redu
e (1) and (2) formulated after Corollary 4.6, we need to 
al-
ulate the hop number of our \�-produ
ts".4.9 Theorem. Let X1 = {p} and let κ ≥ ℵ0. If there is A ∈ [X0℄κ su
h that

X \A ∈ N (p), then hop(��

∗,N0(p)RX0) ≥ (2κ)+and hop(��

N0(p)RX0) ≥ (2κ)+.Proof: We will sket
h the proof of the �rst inequality. The proof of the se
ondinequality is similar. Let A ∈ [X0℄κ su
h that X \A ∈ N (p). Be
ause of Proposi-tion 3.3, there exists a 
lopen partition of �RA of 
ardinality 2κ su
h that ea
h ofits elements is homeomorphi
 to �RA. Let {Aλ : λ < 2κ} be su
h a partition. For
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h λ < 2κ we take a homeomorphism ψλ : Aλ → �RA, and we take Bλ ⊂ RX0su
h that πx(Bλ) = R if x /∈ A and πA[Bλ℄ = Aλ. Now we de�ne for λ < 2κ,
Cλ = Bλ ∩ ��

∗,N0(p)RX0 . The set Cλ is a non-empty subset of ��

∗,N0(p)RX0 forea
h λ < 2κ be
ause X \ A ∈ N (p). The fun
tion 	λ : Cλ → ��

∗,N0(p)RX0de�ned by πA ◦ 	λ(f) = ψλ(f ↾ A) and for x /∈ A, πx ◦ 	λ(f) = f(x), is ahomeomorphism. (The hypothesis X \A ∈ N (p) also gives us the surje
tivity of	λ.) Furthermore, it is possible to prove that {Cλ : λ < 2κ} is a 
lopen partitionof ��

∗,N0(p)RX0 . �As a 
onsequen
e of Proposition 4.7 and Theorem 4.9 we have:4.10 Corollary. Let X1 = {p} and X 6= K(X0). Then,hop(��

∗,N0(p)RX0) ≥ (2ℵ0)+and hop(��

N0(p)RX0) ≥ (2ℵ0)+.For a set S, the \�-produ
t" � = {f ∈ RS : ∀ ǫ > 0, |{x ∈ S : |f(x)| ≥ ǫ}| <

ℵ0} of RS 
oin
ides with the �-produ
t ��
∗,F0RS , where F0 is the Fr�e
het �lteron S (F ∈ F0 i� S \ F is �nite). That is, � = ��

∗,N (p)RS where p is the pointwhi
h 
ompa
ti�es the dis
rete spa
e S.4.11 Proposition. Let X = K(X0). Then, hop(��

∗,N0(p)RX0) ≥ (2ℵ0)+.Proof: We have already mentioned that ��

∗,N0(p)RX0 is equal to the subspa
e
{f ∈ RX0 : ∀ ǫ > 0, |{x ∈ X0 : |f(x)| ≥ ǫ}| < ℵ0} of �RX0 . Let us �x an in�nite
ountable subset of X0: B = {xn : n < ω}. The 
olle
tion F = {{xn} : n < ω} isa partition of B. So, we 
an 
onsider the 
lopen subgroup E(F) of �RX0 de�nedby F (see the de�nition before Proposition 1.3). It is now easy to verify that
C = ��

∗,N0(p)RX0 ∩E(F) is a non-empty 
lopen subgroup of ��

∗,N0(p)RX0 . Thus,��

∗,N0(p)RX0 
an be expressed as the free topologi
al sum of the 
osets of thequotient group G = ��

∗,N0(p)RX0/C:��

∗,N0(p)RX0 ∼= ⊕

D∈G

D ∼= ⊕

β<|G|

(C)β .Now, we are going to prove that |G| is greater or equal to 2ω. In fa
t, takean almost disjoint family B of B of 
ardinality 2ω, and for ea
h T ∈ B we de�ne
fT : X0 → R as

fT (x) = { 12n−1 if x = xn and xn ∈ T0 otherwise.
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ar�uaIt is 
lear that fT ∈ ��

∗,N0(p)RX0 . Furthermore, if T1, T2 ∈ B are di�erent,
fT1 − fT2 does not belong to C. In fa
t, sin
e T1 \ T2 is an in�nite set, thereis a sequen
e {nk : k < ω} of natural numbers, stri
tly in
reasing, su
h that
{xnk

: k < ω} ⊂ T1 \ T2. For ea
h m < ω, there is km su
h that nkm
> m;so, (fT1 − fT2)(xnkm

) = 12nkm
−1 /∈ [− 12nkm

, 12nkm
℄. Then, fT1 − fT2 /∈ E0,m(F).Therefore, fT1 − fT2 /∈ E0(F). We 
on
lude that |G| ≥ 2ω.Now, be
ause of Theorem 4.8 and the fa
ts we have already shown in thisproof,

C�(X) ∼= ⊕

α<2ℵ0 ��

∗,N0(p)RX0 ∼= ⊕

α<2ℵ0 ·|G|

(C)α ∼= ⊕

α<|G|

(C)α ∼= ��

∗,N0(p)RX0 .This means that hop(��

∗,N0(p)RX0) ≥ (2ℵ0)+. �Next, we summarize the results given in Theorem 4.8, Corollary 4.10, Propo-sition 4.11 and in formulas (1), (2) whi
h appear after Corollary 4.6.4.12 Theorem. Let X be a spa
e with X1 = {p}. Then, the following proposi-tions hold.(1) If N0(p) is ω+-
omplete and X is a-ω-rwrtX1, then
C�(X) ∼= ��

N0(p)RX0 .(2) If N0(p) is not ω+-
omplete, then
C�(X) ∼= ��

∗,N0(p)RX0 .4.13 Examples.(1) Let κ be an in�nite 
ardinal and let p ∈ βκ \ κ. Consider the subspa
e
X = κ ∪ {p} of βκ. If p is not ω+-
omplete, then��

∗,pR
κ ∼= �Rκ(see Theorem 4.12.(2) and the remark after Theorem 4.3).(2) Let Lκ(X0) = {p} ∪X0 be the <κ+-Lindel�o�
ation of the dis
rete spa
e

X0 where p /∈ X0 (that is, every point in X0 is isolated and a system ofneighborhoods of p is {V ⊂ Lκ(X0) : p ∈ V and |Lκ(X0) \ V | < κ+}).The �lter N0(p) is ω+-
omplete, and if 
of(|X0|) > κ, then Lκ(X0) isa-ω-rwrt{p}. Sin
e {p} = (Lκ(X0))1, C�(Lκ(X0)) ∼= ��

N0(p)RX0 .(3) In parti
ular, if |X0| = ℵ1, then the spa
e of the real-valued 
ontinuousfun
tions de�ned in the Lindel�o�
ation of X0 with the box produ
t to-pology, C�(L(X0)), is homeomorphi
 to the �-produ
t ��
b0 Rℵ1 of �Rℵ1based on 0̂ with the box produ
t topology.This last example raises the following problem:
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ts and Box Topology 914.14 Problem. Is ��
b0 Rℵ1 homeomorphi
 to �Rℵ1 if 2ω = 2ω1?The last results of this se
tion take advantage, on
e more, of Theorem 2.7 inorder to obtain relations between produ
t spa
es �Rκ and their �-produ
ts, andthey give positive answers to some variations of Problem 4.14.For in�nite 
ardinal numbers γ and κ with γ ≤ κ, we de�ne��

b0,γRκ = {f ∈ �Rκ : |{λ < κ : f(λ) 6= 0}| < γ}.4.15 Proposition. For un
ountable 
ardinals γ and κ with γ ≤ κ, 
of(γ) > ℵ0and 
of(κ) = ℵ0, �Rκ is homeomorphi
 to ⊕
λ<2κ(��

b0,γRκ)λ.Proof: Let Y = {q ∈ κ∗ : |F | ≥ γ ∀ F ∈ q}. Take X = κ ∪ Y with itstopology inherited from βκ. Sin
e 
of(κ) = ℵ0, κ (= X0) is a-ω-rwrtX1. Then,Theorem 2.7 guarantees that C�(X) is homeomorphi
 to �Rκ.On the other hand, the isomorphi
 embedding φ from Ab0(X) to �Rκ, de-�ned in Lemma 1.2, satis�es φ[Ab0(X)℄ = ��
b0,γRκ (here we use the hypothesis
of(γ) > ω). Moreover, X is normal and Y is 
losed in X , so Ĉ(Y ) = C(Y ).Sin
e Y is a 
ompa
t spa
e, |C(Y )| = 2κ (Proposition 1.14). Hen
e, by Corol-lary 1.7, C�(X) ∼= ⊕

λ<2κ(��
b0,γRκ)λ.

�As a 
onsequen
e of the previous result we obtain:4.16 Corollary. Let κ and γ be two 
ardinal numbers whi
h satisfy the sameproperties given in the hypotheses of Proposition 4.15. Then, �Rκ ∼= ��
b0,γRκ i�hop(��

b0,γRκ) = (2κ)+.4.17 Corollary. Let γ < κ, 
of(κ) = ω, 
of(γ) > ω. Assume that there is a
ardinal number τ < γ su
h that 2τ = 2κ. Then, hop(��
b0,γRκ) = (2κ)+ and

�Rκ ∼= ��
b0,γRκ.Proof: We have that ��

b0,γRκ is equal to ��
b0,N (p)RX0 where X is the < γ-Lindel�o�
ation of the dis
rete spa
e of 
ardinality κ. Corollary 4.9 implies thathop(��

b0,γRκ) ≥ (2τ )+. This inequality plus the hypothesis 2τ = 2κ plus Proposi-tion 4.15 imply �Rκ ∼= ��
b0,γRκ. �5. Spa
es C�(X) when X is 
ountably 
ompa
tWe have already pointed out that for a set S the \�-produ
t" � = {f ∈

RS : ∀ ǫ > 0, |{x ∈ S : |f(x)| ≥ ǫ}| < ℵ0} of RS , 
oin
ides with the �-produ
t
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∗,F0RS where F0 is the Fr�e
het �lter on S (F ∈ F0 i� S \ F is �nite). Thatis, � is equal to ��

∗,N (p)RS where p is the point whi
h 
ompa
ti�es the dis
retespa
e S. Re
all that for a topologi
al spa
e X , X0 is its subset of isolated points,
X1 = X \X0, Xb = X1 ∩ 
lX X0 and Z = X1 \Xb. Moreover, every spa
e X inthis arti
le satis�es X0 6= ∅ 6= Xb.5.1 Proposition. Let X be su
h that every in�nite subspa
e of X0 has a 
lusterpoint in X . Then Ab0(X) is homeomorphi
 to ��

∗,F0RX0 .Proof: It is easy to verify that the range of the isomorphi
 embedding φ :
Ab0(X) → �RX0 (see Lemma 1.2) 
oin
ides with ��

∗,F0RX0 . �5.2 Theorem. Let X be su
h that every in�nite subset of X0 has a 
lusterpoint in X , and su
h that X is a-ω-rwrtX1. Then C�(X) is homeomorphi
 to⊕
bx∈ bC(X1)(��

∗,F0RX0)bx. In parti
ular, C�(X) ∼= ��
∗,F0RX0 if |Ĉ(X1)| ≤ 2ω.Proof: Sin
e X is a-ω-rwrtX1, Ab0(X) is 
lopen in C�(X). So,

C�(X) ∼= ⊕

bx∈ bC(X1)Abx(X) ∼= ⊕

bx∈ bC(X1)(��
∗,F0RX0)bx(Proposition 5.1). The last assertion follows from Proposition 4.11. �Sin
e every 
ountably 
ompa
t spa
e is almost-ω-resolvable, the following resultis a 
onsequen
e of the previous theorem.5.3 Corollary. If X is a 
ountably 
ompa
t spa
e, then

C�(X) ∼= ⊕

bx∈ bC(X1)(��
∗,F0RX0)bx.If in addition |Ĉ(X1)| ≤ 2ω, we obtain C�(X) ∼= ��

∗,F0RX0 .Observe that if X is a pseudo
ompa
t spa
e and N is an in�nite 
ountablesubset of X0, hen
e N must have a 
luster point in X . So, it is natural to ask:5.4 Problem. Is X a-ω-rwrtX1 if X is a pseudo
ompa
t spa
e?5.5 Corollary. (1) For every in�nite 
ardinal number κ, C�(βκ) is homeo-morphi
 to ⊕
λ<2κ(��

∗,F0Rκ)λ.(2) For every q ∈ ω∗, �Rω ∼= ��
∗,F0Rω ∼= ��

∗,qR
ω .Proof: Assertion (1) follows from Corollary 5.3 and from the equalities: (βκ)1 =

κ∗, Ĉ(κ∗) = C(κ∗), w(κ∗) = 2κ and (by Proposition 1.14) |C(κ∗)| = w(κ∗)ω =2κ.Assertion (2) is implied by Theorem 2.7 and Corollary 5.3. �Again, using Proposition 1.14, we will prove the following lemma.
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ts and Box Topology 935.6 Lemma. For every in�nite ordinal number α, |C([0, α))| = |α|ω .Proof: For every ordinal number α, the spa
e [0, α℄ is 
ompa
t; so, |C([0, α℄)| =
|α|ω by Proposition 1.14. If α is a su

essor ordinal, [0, α) is 
ompa
t and, again,
|C([0, α))| = |α|ω . Moreover, if α is a limit ordinal with un
ountable 
o�nality,then |C([0, α))| = |C([0, α℄)| = |α|ω .Now, we only have to prove the equality |C([0, α))| = |α|ω when α is a limitordinal with 
ountable 
o�nality. In this 
ase, if α0 < α1 < · · · < αn < . . . and
sup{αn : n < ω} = α, thus C([0, α)) ∼= ∏

n<ω C((αn, αn+1℄). Then, |C([0, α))| ≤∏
n<ω |C([0, αn℄)| = ∏

n<ω |αn|ω ≤ |α|ω.On the other hand, |α|ω = |C([0, α℄)| ≤ |C([0, α))| be
ause the relation f →
f ↾ [0, α) is a one-to-one fun
tion from C([0, α℄) to C([0, α)). �So, the following results are a 
onsequen
e of Corollary 5.3 and Lemma 5.6.5.7 Corollary. Let α be an in�nite ordinal. Then,(1) C�([0, α℄) ∼= ⊕

λ<|α|ω (��
∗,F0R|α|)λ;(2) C�([0, α)) ∼= ⊕

λ<|α|ω (��
∗,F0R|α|)λ if 
of(α) > ℵ0;(3) �Rω ∼= C�([0, ω℄) and C�([0, ω1℄) ∼= C�([0, ω1)) ∼= ��

∗,F0Rω1 .Observe that the 
onne
ted 
omponent of a point x in ��
∗,F0R|α| is homeomor-phi
 to σ�

x R|α|. By Proposition 1.12 and the previous results we obtain:5.8 Corollary. Let α and β be two in�nite ordinals, both with 
o�nality di�erentfrom ℵ0. Then, C�([0, α)) ∼= C�([0, β)) if and only if |α| = |β|.Consider the set�̃∗,F0R[0,α) = {
f ∈ R[0,α) : for all ǫ > 0 and β < α,

|{λ < β : |f(λ)| ≥ ǫ}| < ℵ0}.We denote this set with its box topology by �̃�
∗,F0R[0,α). We leave the proof ofthe following result to the reader.5.9 Proposition. Let α be an ordinal number su
h that |α| > ℵ0 and 
of(α) =

ℵ0. Then,
C�([0, α)) ∼= ⊕

λ<|α|ω

(�̃�
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Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional
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