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Spaces of continuous functions,
Y-products and Box Topology

J. ANGOA, A. TAMARIZ-MASCARUA

Abstract. For a Tychonoff space X, we will denote by Xo the set of its isolated points
and X; will be equal to X \ Xg. The symbol C(X) denotes the space of real-valued
continuous functions defined on X. [OR”* is the Cartesian product R® with its box
topology, and C(X) is C(X) with the topology inherited from CORX. By C(X1) we
denote the set {f € C(X1) : f can be continuously extended to all of X}. A space
X is almost-w-resolvable if it can be partitioned by a countable family of subsets in
such a way that every non-empty open subset of X has a non-empty intersection with
the elements of an infinite subcollection of the given partition. We analyze Ch(X)
when Xg is F; and prove: (1) for every topological space X, if Xg is F5 in X, and
0 # X1 C clx Xg, then Co(X) =~ ORXo; (2) for every space X such that Xg is Fs,
clx XoN X1 #0, and X \ clx Xp is almost-w-resolvable, then C(X) is homeomorphic
to a free topological sum of < |C(X1)| copies of (JRX0, and, in this case, Cp (X) = (IR0
if and only if |C(X1)|] < 2/%0l. We conclude that for a space X such that Xg is Fy,
Cp(X) is never normal if | Xo| > No [La], and, assuming CH, C5(X) is paracompact
if | Xo| = Rg [Ru2]. We also analyze C(X) when |X;| = 1 and when X is countably
compact, and we scrutinize under what conditions [JR* is homeomorphic to some of
its “¥-products”; in particular, we prove that [JR¥ is homeomorphic to each of its
subspaces {f € OR¥ : {n € w: f(n) = 0} € p} for every p € w*, and it is homeomorphic
to{feldRY: Ve>0{n€w:|f(n)| <e} €Fo} where Fq is the Fréchet filter on w.

Keywords: spaces of real-valued continuous functions, box topology, >-product, almost-
w-resolvable space

Classification: 54C35, 54B10, 54D15

0. Introduction

All topological spaces considered in this article will be Tychonoff.

The spaces of continuous functions defined on a topological space X and with
values in R, C(X), have been widely studied as a purely algebraic structure ([GJ]),
and with a topological-algebraic structure ([BNS], [DH]).

One of the natural topologies associated with C(X) is the pointwise conver-
gence topology, which is the topology in C'(X) inherited from the Tychonoff topo-
logy of RX. This space is usually denoted by Cp(X). A classical general problem
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on Cjp-spaces consists of determining the relations between the topological prop-
erties of space X with the topological properties of Cp(X) ([Ar]).

A generalization of the Tychonoff topology for a product of topological spaces,
is the box topology (see definition in Section 1) which was introduced by Tietze
in [Ti]. The study of the box product of an infinite family of topological spaces
has been a very useful source to construct some interesting topological spaces
([Rul], [V]). With respect to paracompactness of box products, in 1963, in [Kn],
the question, due to A.H. Stone, whether the cartesian product of an infinite
collection of copies of the real line with its box topology is a normal space, was
posed. In [Ru2], M.E. Rudin proved under CH that the box product of countably
many o-compact locally compact metrizable spaces is paracompact; and K. Kunen
[Ku] showed, also using CH, that the box product of a countable family {K, : n <
w} of compact spaces is paracompact if and only if the Lindel6f degree of Oy, <, K,
is equal to wy. Moreover, E.K. van Douwen [vD] showed that a box product of a
countable collection of metrizable separable spaces need not be normal. Finally,
L.B. Lawrence [La] proved in ZFC that the product of an uncountable family of
copies of the real line is not normal.

So, it seems natural to ask about the relations between the topological prop-
erties of a space X and those of C'(X) with its box topology, which we denote by
Co(X). In particular, it is natural to ask under what conditions on X, C(X) is
normal or paracompact (the set C(X) being a closed subset of ORX). In [TV],
A. Tamariz-Mascarida and H. Villegas-Rodriguez analyzed the space C7(X) when
X is a topological space without isolated points. They obtained the following re-
sults (see the definition of an almost-w-resolvable space in Section 1):

0.1 Theorem. Let X be a dense-in-itself space. Then,

(1) X is an almost-w-resolvable space iff Cq(X) is a discrete space;

(2) Con(ZFC) implies Con(ZFC+ for every space X, C(X) is a discrete sub-
space of ORX);

(3) if X is a Baire irresolvable space, then C7(X) is not a discrete space.

We recall here that a topological space X is irresolvable if it is dense-in-itself
and it is not the union of two disjoint dense subsets; and, of course, a space X is
Baire irresolvable if it is irresolvable and satisfies the Baire property. In [KST], it
was proved that the existence of a Baire irresolvable space is equiconsistent with
the existence of a measurable cardinal; then, the existence of a dense-in-itself
space for which Ch(X) is not discrete, is equiconsistent with the existence of a
measurable cardinal (see [TV, Theorem 4.16]). In particular, if X is a dense-in-
itself almost-w-resolvable space, C(X) is more than a paracompact space.

The purpose of this article is to analyze spaces C(X) when the subset X of
isolated points of X is not empty, and to show the topological relations between
C(X) and ORX0 and how the former can be expressed in terms of the latter.
One of our main results states that for every space X for which Z = X\ clx X is
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almost-w-resolvable and X is an Fg-subset of X, C(X) is a free topological sum
of copies of OR¥X0. Concluding that, by the results of Rudin and Lawrence, if X
has the properties mentioned, C(X) is not normal if | Xo| > Rg, and CH implies
CH(X) is paracompact when | Xg| = Rg. We also obtain sufficient and necessary
conditions on X under which C(X) is homeomorphic to JRX?. One immediate
conclusion which comes after these results is the fact that for spaces X and Y
even with opposite topological properties, C(X) = C(Y) can happen. This
fact will allow us to decide when [JR” is or is not homeomorphic to some of its
“¥-products”. So, we can say that for a wide class of topological spaces X, C(X)
is completely determined by some weak topological properties (of a set-theoretical
type) of X and Xj.

In Section 1 we give some basic definitions and preliminary results. In Section 2
we discuss spaces C(X) when X is an Fy-subset of X and ) # X; = X \ X C
clx Xo, and we prove that, in this case, C(X) = ORX0. Section 3 is devoted to
analyzing C(X) in a more general situation: X is an Fy-subset of X, X? = X1n
clx Xo # 0 and Z = X \ clx Xj is an almost-w-resolvable space; we obtain that,
in this case, Cq(X) is homeomorphic to a free topological sum of copies of ORXo.
In Sections 4 and 5 we study C(X) when |X;| = 1 and when X is countably
compact, and we scrutinize under what conditions COJR” is homeomorphic to some
of its “Y-products”; in particular, we prove that [JR“ is homeomorphic to its
subspaces EER“ ={feR¥:{ne€w: f(n) =0} € p} for every p € w*, and it
is homeomorphic to EE}-OR“’ ={feldR¥: Ve>0{necw:|f(n) <e}eFo}
where Fg is the Fréchet filter on w.

1. Basic definitions and preliminaries

For a set X and a cardinal number , P(X) will be the collection of subsets
of X, [X]" is the collection of elements in P(X) having cardinality , and [X]<F
is the collection of elements in P(X) having cardinality < x. For a function
f: X — Y and a subset B of X, f | B is the restriction of f to B. As we
have already said, every topological space X considered in this article will be
completely regular and Ty; that is, Tychonoff. For a space X, X is the Stone-
Cech compactification of X.

Let F = {Xqo : @ € A} be a collection of topological spaces. By OyeaXo, we
will represent the Cartesian product X = [],c 4 Xa of the family F endowed with
the box topology. The box topology is that generated in X by the open boxes;
that is, by the subsets of the form [],c 4 Oa Where Oy is an open subset of X
for each a € A. Recall that the Tychonoff topology in X is generated by sets of
the form J],c 4 Oa where each Oy, is open in X, and the set {a € A: O # Xa}
is finite. It is obvious that the Tychonoff topology in X is contained in the box
topology, and that they coincide iff | 4] < V.

It is well known that, for an infinite family {X, : a € A} of non-trivial topo-
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logical spaces, O, 4 X« is neither first countable nor locally compact, and it is
never a topological vector space, but it is a topological group if each of the spaces
X is a topological group, with group operation +,, when we consider the sum
of two elements (zq)aca and (ba)aca in Ooc aXa to be (aq +a ba)aca- A good
survey of the characteristics of the box topology can be found in [Wi].

For a topological space X we denote by R the Cartesian product of | X | copies
of the real line R which can be considered as the set of functions from X to R. The
subset of R whose elements are the continuous functions is denoted by C(X).
The space ORX (resp., TRX) will be the set RX with the box topology (resp.,
the Tychonoff topology), and Cg(X) (resp., Cp(X)) is the set C(X) considered
as a subspace of ORX (resp., TRX).

A space X is almost-w-resolvable if there is a partition {F}, : n < w} of X such
that every non-empty open subset V' of X has a non-empty intersection with each
Fy, for every n € Jy, where Jy is an infinite subset of w. It will be useful to
consider the empty space (} included in the class of almost-w-resolvable spaces.

For a space X, we will denote by X the set of isolated points in X, and X1
is its complement X \ Xy. The symbol Xb represents the set X1 N clx Xo and Z
will denote the set X \ (X°U X).

Observe that, by Theorem 0.1, if Z is an almost-w-resolvable space and Xt is
empty, then Co(X) = Co(Z @ Xy) = Co(Z) x Co(Xp) is the free topological
sum of |C(X7)| copies of the space OR® where k = | Xg|. So, in this case, we have
already obtained a clear relation between C(X) and ORX0. Hence, from now
on we will assume that every space X satisfies X £ 0.

The symbol C(X1) stands for the set {f € C(X) : f has a continuous extension
to all of X}. For each 7 € C(X}), we take Az(X) = {f € C(X) : f Ix,= =}
We will denote by 0 the function in C(X1) which is equal to 0 everywhere. For
f.g € RX, the function f + g € R¥ is defined as (f + g)(z) = f(z) + g(z) for
each z € X. Every mention to an algebraic structure on RX will refer to this
operation. For two topological spaces X and Y, we will write X = Y if they
are homeomorphic, and for topological groups G and H, the symbol H ~ G will
signify that H and G are topologically isomorphic. Finally, for an element x of a
topological space X, AV(x) will denote the system of neighborhoods of x in X. Tt
is easy to prove the following results.

1.1 Proposition. For a topological space X we have:

(1) ORX is a topological group;

(2) Co(X) is a closed topological subgroup of R ;

(3) Az(X) is a closed topological subgroup of C(X) for every 7 € C(X1);
(4) for T € O(X1), Az ( ) and Ag(X) are topologically isomorphic;

(5) the family {Az(X) :Z € a(Xl)} is a partition of C(X).

(The referee pointed out to the authors that Erik van Douwen was probably
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the first to observe, in 1975, that the box product of topological groups is a
topological group.)

For a subset Y of X, the symbol 7wy will represent the natural projection from
ORX to ORY'; that is, 7y is the function defined by my(f) = f [ Y. If Y is the
one-point set {y}, we will write 7y instead of m¢yy- The following lemma is very
useful.

1.2 Lemma. Let X be a topological space and let Y be a subset of X contain-
ing Xo. Then, the function ¢ = Ty [ A5(X) : A5(X) — ORY is an isomorphic
embedding.

PrROOF: It is trivial that ¢ is one-to-one and furthermore ¢(f —g) = (f —g) |
Y=(TY)=(g91Y)=0¢(f) — p(g). Besides, if for each x € Y we take an
open subset G of R which has 0 as one of its elements, then qﬁ_l[Hwa Gg] =
AB(X) N]lyex Hz where Hy = Gy if v € Y and Hy = Rif 2 ¢ Y. So, ¢ is
a continuous function. Finally, if for each z € X, H, is an open subset of R
containing 0, then @[[ [, x Hx N AG(X)] = [[,ey Ha N ¢[A5(X)]. O

Let Y beaset, SCY,T=Y\S andlet F = {F, : n < w} be a partition of S
(that is, ,,<, Frn = S, Fn # 0 for each n < w, and if n # m, then F,, Ny, = 0).
We define E(F) C RY as E(F) = ey, Ex(F), and Ex(F) = U,pew, Bkm(F),

where

R if xe€ F; and i <m,
Epm(F)(z) = {—ﬁ,ﬁ} if x€ F; and m <1,
R if veT.

Let us obtain some properties of the sets just defined (see [Ru3]).

1.3 Proposition. LetY be a topological space and let F be a partitionof S C Y.
Then, E(F) is a clopen topological subgroup of CRY .

PROOF: Let F = {F}, : n < w} be a partition of S. If z € E(F), there is a strictly
increasing sequence {my, : k < w} such that z € E, ,, (F) for each k < w. We
define the following open box W which contains z:

R if o€ F, i<my,
Wi(x) = (—ﬁ,ﬁ) if € F;, mp<i<mgyy and k>1,
R it ©¢S8S.

Let h € W. We take t_1; = my, for k > 1. Trivially, the sequence {tj_q :
1 < k < w} is strictly increasing and h € Ep_q,, ,(F) for all & > 1. Thus,
W C E(F); that is, E(F) is open.

Now, let w ¢ E(F). There exists ky < w such that for every m there are

im >m and z; € F; such that w(z;,,) ¢ [_mv m] We take A C w
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for which {iy, : m € A} = {isp, : m < w} and for alln,m € A with n # m, iy # in.
For each m € A, let V; , be an open subset of R such that w(z;,,) € V;,, and
Vi N [—m, 21m+ko] = (). Take O as the open box defined by O(z;,,) = V;
for each m € A, and O(x) =R if = ¢ {z;,, : m € A}. It happens that w € O and
O c ORY \ E(F); so, E(F) is closed.

Now, let f,g € E(F). Take two sequences {my, : k < w} and {l; : k < w}

satisfying: for all k < w and for all § > my, if v € F then f(x) € [~ 5hr, 74z,

and for all j > I, if y € Fj then g(y) € {—ﬁ,ﬁ} We take t,_; =
max{my, I} for k& > 1. We have that f —g € Ej_q, ,(F) for all & > 1.
Therefore, f — g € E(F) and, since 0 € E(F), we conclude that E(F) is a

topological subgroup of ORY . ([

We need to introduce the following definition which relativizes the concept of
almost-w-resolvability.

1.4 Definition. Let X be a topological space, and let A and B be subsets of X.
We say that A is almost-w-resolvable with respect to B (briefly: A is a-w-rwrtB),
if there is a partition {Fy, : n < w} of A, such that for every open subset O of
X which has a non-empty intersection with B, [{n: F, N O # 0}| = Xg. Such a
partition is called a resolution of A with respect to B.

In the following proposition we emphasize the relation between the concepts
just defined and the structure of C(X). Recall that Az(X) is closed in C(X)
for all z € C(Xy). First, a technical result.

1.5 Lemma. Let S and T be two subsets of a topological space Y. If S is a-
w-rwrtT, {Fp : n < w} is a resolution of S with respect to T, g € C(Y') and
Oy is the open box constituted by those elements f in C(Y') such that f(x) €
(9(x) — o, 9(x) + o) if © € Fy, then g | T = h | T holds for every h € Oj.

PROOF: Assume that there are h € Oy and z € T such that 0 < |h(z) —g(2)| = €.
Since g and h are continuous, we can take an element V' in N(z), the system of
neighborhoods of z, such that g(V) C (g9(2) — §,9(2) + §) and h(V) C (h(z) —
5,h(2) + §). There is x € S such that 2 € F,, NV for an n € w such that
o < §. For this z, |h(z) — g(z)| < §, |h(z) — h(z)| < § and |g(z) — g(2)| < §;
so, |h(z) — g(2)] < €, a contradiction. Then, h(z) = g(z) for every z € T. O

1.6 Proposition. A space X is a-w-rwrtXy if and only if Az(X) is an open
subset of C(X).

Proor: That Ag(X) is open in C(X) is a consequence of Lemma 1.5; we just
have to take X = S and X; =T.
Now, let us assume that Ag(X) is an open subset of C(X). Since the func-

tion 6, which is equal to 0 everywhere, belongs to AB(X)7 for each x € X there
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exists an open subset G, of R such that 0 € (ITaex Gz) NC(X) C AG(X). We
define d(z) = min{n < w : (—gr, 5w ) C Gz} and F, = {z € X : d(z) = n}. It is
clear that {Fy, : n < w} is a partition of X.

We will prove that {Fy, : n < w} is a resolution for X with respect to Xj.
Assume the contrary; that is, there are z € X1, an open V 6 N(z) and ny < w

satisfying VN F, = 0 for every n > ng. Let H : X — [0 be a continuous

function for which H(X \ V) c {0} and H(z )

9 2n0+1

2n0+1 If z € V, then d(z) < np.

So, for every x € V we have 2,10% < W’ and H(z) < 2710%. Thus, for
every x € V, H(z) € (—Qd%, #) C Gg. On the other hand, if x € X \ V,

H(z) =0 € Gy So H € ([[ex Gz) NC(X) C A5(X). Hence, H(z) = 0 which is
a contradiction. We conclude that {F, : n < w} is a resolution of X with respect
to X. O

As a consequence of Propositions 1.1 and 1.6, we obtain:

1.7 Corollary. Let X be a-w-rwrtX;. Then,

(1) for each 7 € C(X1), Az(X) is a clopen subset of C(X), and
(2) Co(X) = @ieé(Xl)Afv\(X) ~ Gafeé(Xl)(Aﬁ(X))f where each (Ag(X))z
is a copy of Ag(X).

If Xg is a-w-rwrtXq, then X is a-w-rwrtX7, and there exists a space X which
is a-w-rwrt X7 and X is not a-w-rwrtX; (see an example in the paragraph before
Problem 2.8). From now on, under a complete minimal system of representatives
of the cosets belonging to a quotient space X/~ we will understand a subset J of
X such that X/~ = J,c;[z] and [z] # [y] for each pair z,y of different elements
in J, where [z] is the class of equivalence of x related to the equivalence relation ~.
It is not difficult to prove the following result.

1.8 Proposition. If X is almost-w-resolvable, then X is a-w-rwrtXj.

1.9 Remark. For a partition F of the set X of isolated points of a space X,
we can consider the clopen topological subgroup E(F) of ORX, as was de-
fined before Proposition 1.3. For each f,g € A5(X), (E(F) ﬂAﬁ(X)) + f and
(E(F)N Aﬁ(X)) + g are clopen topologically isomorphic subgroups of A5(X). So,
for a complete minimal system D; of representatives of the cosets belonging to
the quotient group Ag(X)/[E(F) N Ag5(X)], we have

A5(X) = B jep, [E(F) 0 Agi)| + 1
So, we obtain:

1.10 Proposition. If X is a-w-rwrtXy, F is a resolution of X with respect to
X1 and Dy is a complete minimal system of representatives of the cosets belonging
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to the quotient Ag(X)/[E(F)N A

5(X)], then

Co(X) ~ @ E(F) N 45(X)],

zeC(X1),fe [

where each (E(F) N Ag)z, s is a copy of E(F) N Ag.

Now we are going to give some results about box products and their o-products
which will be useful for our purposes. The important role which the o-products
play in the general study of box products was emphasized in [NyP].

As usual, for a topological space X, I(X), d(X), ¢(X) and e(X) denote the
Lindeléf number, density, cellularity and extent of X, respectively (see [H] for
definitions).

For a family { X, : a € A} of topological spaces and = € [[ e 4 Xa = X, let 0z
be the o-product of X; thatis, o, = {y € X : [{a € A: y(a) # z(a)}] < Rg}. We
denote by UE(HQEA Xa) (or simply, UE) the set o, with the topology inherited
from OpecaXa-

The following result is due to M.E. Rudin ([Ru3, p. 55]).

1.11 Proposition. Let k be an infinite cardinal number, and let { X, : o < Kk} be
a family of connected Tychonoff spaces. If v € Uy<xXq and Cy is the connected
component of x in Oy« Xq, then Cyp = 0.

1.12 Proposition. For each infinite cardinal number « and every x € (JR",

I(oZRY) = (DR = d(cPR") = ¢(0PR") = k.

PrOOF: For each J € [x]<N0 = {A C s : |A| < Rg}, let H; C OR" be the
box defined by Hj(a) = Rif @ € J and Hj(a) = {z(a)} if a ¢ J. The set
H; with the box topology is homeomorphic to TR, which is a Lindelof space.
Thus, for each open cover C of c=2JR”, and for each J € [k]<N0, we can select a
countable subfamily C; of C such that H; C |JC;. Since UER“ = UJE[H}<R0 Hy,

D= UJE[K;}<N0 Cy is a subcollection of C which covers UER“ and has cardinality
< k. So, [ (JIDR“) < K.
Now, for each § < k, we take z5 € R\ {z(0)}. We define for each o < &

. z5 if a= 5,
ta(9) = { z(0) if a#6é.

The subset D = {tq : @ < K} of UIDR“ is closed and discrete. We conclude that
r < e(cHRF) < I(6TRF) < k.

Now, we are going to make some calculations in order to obtain the density
of UIDR“. For each J € [Ii]<NO7 we have that d(TR‘]) = Ny. So, for each
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J € [k]<Ro_ there exists Dy C H; which is countable and dense in H ;. Thus, the
set D = UJE[HFNO Dy is dense in o JR". Since |D| < &, d(cFR") < k.

Let A be a subset of O’ERK with cardinality < k. Foreach a € A, let J, € [x]<N0
be such that a € Hjy,. We take T' = |J,c 4 Jo. We have that |T'| < |A| < k. Let
ag be an element of x\ T" and O =[], ., Oa Where Oy = R if a # ag, and Oq,
is an open subset of R which does not contain z(ag). It is clear that AN O = (;
then A cannot be dense in olJR®. So, we can conclude that d(cJR") = &. O

1.13 Corollary. Let k and 7 be infinite cardinal numbers. Then, (OR" ~ OR"
if and only if OR® =2 OR7, if and only if k = T.

PROOF: Let ¢ : OR®” — [OR” be a homeomorphism, and let x € OR". By
Proposition 1.11, we must have UER“ ~ JE(E)RT. Now, Proposition 1.12 pro-

duces Kk = 7. O

We will prove something more general than this corollary in Section 3 (see
Corollary 3.4).

In order to describe C(X), it will be convenient to keep in mind some re-
sults concerning the cardinality of C(X). The following result was proved by
W.W. Comfort and A.W. Hager in [CH].

1.14 Proposition. For a space X, |C(X)| = w(BX)%.

2. Spaces C(X) when Xj is an F,-set and Z = ()

Recall that for a space X we are denoting by X its subset of isolated points,
and X7 is equal to X \ Xg. In this section we will analyze spaces Cy(X) when
Xy is an Fy-subset of X and ) # X; C clx Xp. Some examples of spaces having
these characteristics are: the convergent sequence {0} U {1/n : n € N} C R,
the Stone-Cech compactification Sw of the natural numbers, every Mréwka-Isbell
space (or ¥-space, see [GJ]) ¥(A), and the countable Fréchet-Urysohn fan V/(Rg)
([Ar]). The main result of this section (Theorem 2.4) proclaims that for every
space X satisfying these properties, its related space of real-valued continuous
functions C(X) is a box product of real lines.

Let F = {F, : n < w} be a partition of Xy. We denote simply by E(F)
the subset of ORX as was constructed before Proposition 1.3, when ¥ = X and
S = Xy; and we denote by Eg(F) the subset of OJRX0 obtained in a similar way
but when ¥ = S5 = Xj.

The following lemma describes the relation between E(F) and Ey(F) for a
partition F of Xj.

2.1 Lemma. Let F = {F},, : n < w} be a partition of X, where each F,, is a
closed subset of X. Then, ¢ = wx, | (E(F)NA5(X)) : E(F)NAG(X) — Eo(F)
is a topological isomorphism.
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PROOF: Because of Lemma 1.2 and the fact that E(F) is open, we conclude that
¢/ is an embedding, and obviously ¢'[E(F) N A5(X)] C Eg(F). The only part
of the proof not entirely trivial refers to the surjection of ¢'. Let h € Ey(F),
and let #/ € RX with &/ | Xo = hand W/ (z) = 0 for every z € X;; then,
W € A5(X). In fact, let z € X7 and € > 0, and let {m, <w : k < w} be a strictly

increasing sequence of natural numbers such that h € Eé“mk for all k£ < w. Let
us take £ > 0 such that jlrrk < €. The set X \ (Uzgmk FZ) is a neighborhood
of z, W (X \ (Uzgmk F;)) C (—€,€) and h/(z) = 0 € (—¢,€). We conclude that
W € Ag(X). Tt is clear that b’ € E(F) and ¢/(h') = h. O

We define a relation of equivalence ~ on RX0: for f g € RXo, f ~ g if
and only if for each € > 0 and each z € X, there exists V € N(z) such that
(f —9) [V N Xo] C (—€¢). For each f € RX0, [f] is the ~-class of equivalence
of f.

2.2 Lemma. The relation ~ is a relation of equivalence, and for f,g € RX0, if
f—g€Ey(F), then f ~ g.

PRrROOF: It is easy to confirm that ~ is of equivalence. Now, assume that there
are zg € X1 and ¢y > 0 such that for each V € N (zp), there is zy € V' N X such
that (f — ¢g)(zy) ¢ (—e€o0,€0)- Let k < w be such that 2% < ¢. Fixam < w.
It is clear that Vi = (X \ Uj<,n Fi) € N(20). Let zy, € V3 N Xg satisfying
(f —9)(zv,) ¢ (—€0,€0). In particular, there exist i,, > m, such that xy, € F; .
Hence, (f_g)($V1)¢ [—ﬁ,ﬁ};that is, f—g & Eo(F). U

In order to prove the main result of this section (Theorem 2.4) we are next
going to prove a proposition which is apparently less general.

2.3 Proposition. Assume that a space X satisfies:
(1) 0 # Xy C cly Xo,
(2) there is a partition {Fy, : n < w} of Xy constituted by closed subsets
of X, and
(3) there is a partition {Co C X : o < | Xg|} of Xg such that
(a) |Co N Fy| <1 for each o < | Xg| and each n < w, and
(b) Jo = {n <w:CyNFy #0} is infinite for each o < | Xy|.
Then, Ag(X) = ORX0 = Ch(X).

PRrOOF: Let F = {F}, : n < w} be a partition of Xy which testifies (2) and (3) in
this proposition. Let Dy € RX0 be a minimal complete system of representatives
of the cosets in ORX0 /Ey(F), and let Dy C Ag(X) be a complete minimal system
of representatives of A5(X)/[A5(X) N E(F)]. By Proposition 1.3, Remark 1.9
and Lemma 2.1, we have that (a) ORX0 = D rep, (Eo(F) + f) and (b) C(X) ~

@iea(Xl),feDl ([Aﬁ(X) NE(F)] + f)fc\’ where each term that appears in the
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sum in (a) is topologically isomorphic to each term that appears in the sum
in (b).

Because of the definitions of Ey(F) and E(F), we have that for f,g € A5(X),
f—g € E(F) if and only if (f | Xo) — (¢ | Xo) € Eo(F). For this reason
|D1] < |Dol- R

We are going to prove now that |C(X1)| < |Dgl|. Let RX0/~ be the quotient
set determined by the relation ~ defined before Lemma 2.2. The relation H :
C(X1) — R¥X0/~ which sends each Z to [f; | Xo] (where f; is an element of

Az(X)) is a well defined injective function. So, ‘G(Xl)‘ < |RX0 /N‘ Now, using
Lemma 2.2 we obtain ‘G(XI)} < |Dy|.

Hence, we have already proved that |[C(X1)| - [D1] < |Do|. Now we are going
to prove that in fact |C(X)| - | D1 is equal to [Dyl.

Recall that we are assuming that X has properties (1), (2) and (3) listed in
our proposition. For each a < |Xy|, we can enumerate Co, as {Zan : 1 € Jo} in
such a way that for every n € Ju, a,n € Fpn. So, for each A € P(|Xg|), we define
fa € RX as:

if y=zan, a€A and n € Ju,

faly) = { (%

otherwise.

Observe that fy € Ag(X). Moreover, for every two different subsets A, B €

P(Xol);s fa — fB ¢ E(F) because of condition (3). Therefore, the function
T: P(|Xo]) — Ag(X)/A5(X) N E(F)

where T'(A) = A5(X) N E(F) + fa, is injective. We conclude that 21Xl < 1Dy
Since |Dy| < 21%0l, |Dy| = ‘é(xl)‘ 1Dy,
Therefore, A5(X) = OR¥0 = C(X). 0
Next, the main result of this section.
2.4 Theorem. Let X be a space such that X is an Fy-subset of X and () #

X1 Cclx Xg. Then,

Ag(X) = Cn(X) = ORY.

PROOF: In order to prove this theorem we only have to construct two partitions
F=A{F,:n <w}and C = {Cq : a < |Xg|} of Xy satisfying (2) and (3) in
Proposition 2.3.

Since Xy is an F-subset of X, there is a disjoint family & = {E; : i < w} of
closed subsets of X covering Xj.

First case: For each i < w, |E;| < Ng.
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In this case, we can modify the partition £ in such a way that we obtain a
new partition F = {F; : i < w} of Xg constituted by closed subsets of X with
|F;] = 1. We name xy, the only element belonging to F, for each n < w. Now,
we take a partition Ag, A1,..., An,... of w where each A; is infinite. We define
Cr = {xn : n € A} for each k < w. The collections F and {C}, : k < w} satisfy
(2) and (3) in Proposition 2.3.

Second case: There is an infinite subset of natural numbers J such that, for each

ne J, |En| > Ro.

In this case, we modify partition £ in such a way that we obtain a partition
{H; : i <w} of Xy of closed subsets of X with |H;| > Xg for every i < w. Now,
let x; be the cardinality of H; for each ¢ < w. Let us list H; as {azl)‘ i A < Kk;} with
a # xf if A # &, Of course |Xg| = k = sup{k; : i <w}. For each § < k, we take
Gs= {2 :rx; >0} and T = {6 < r : |G5| = o}

If k\T =0, then {H, : n <w} and {Gy : 6 < k} satisfy the requirements.

Now, assume that k\T # 0. For each 6 € k\T, G is a finite set {Igw . ,xgt}.
We denote by My the set of natural numbers {s1, ..., s} related with Gs. Let &g
be the first element of k \ T.

Claim: For each 6 € K\ T, My C Ms,.

Indeed, let § be an element of «\ T and Gs = {xgl, e ,x‘gt}. By definition of
Gy, we have that § < kg, for every [ € {1,...,t}. Since dy < 6, dy < ks, for each
le{l,...,t}. Then, foreachl € {1,...,t}, wg? € Gs,; that is, s; € Mj, for every
le{1,...,t}. We conclude that Ms C Ms,.

Let ng be equal to the greatest element in My , and let us call H the set
UiSTLO H;. We partition H in a family of infinite countable subsets:

H = UxcuDas [DA] = Ro for all A < [H|, and Dy N D¢ =  for every
A § < |H| with X # £ For each A < |H| we enumerate the elements of D)
as {zf‘,zg‘,...,zé,...} in such a way that z;‘ + zZ)‘ if j #14.

We take C as the family {Gg: 6 € T}U{D) : A < |H|}, where, for each § € T,
65:{;10?66'5:2'>n0}.

Now, we are going to define the family F. Let F} = Hy,1 U {20 : A < |H|},

 F = Eppp U{z) t A< |HY, ...

It is not difficult now to prove that families F and C satisty properties (2) and
(3) in Proposition 2.3.

Third case: There is ng < w such that {n <w:|Ep| > Ng} € {0,...,n0}.

In this case, we can modify partition £ in such a way that we obtain a new
partition {H; : ¢ < w} of X with each H; closed in X, |Hy| > Rg and |Hp| =1
for every n > 0; say, Hp, = {xn} for each n > 0.

We partition Hy in a family of infinite countable subsets: Hy = U>\<\H0| D,,
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|Dy| = R for all A < [Hyl, and DyN D¢ = ) for every \,§ < |Hg| with A # . For
A

each \ < |Hy| we enumerate the elements of D) as {zf‘, 25‘, ey Zpy e

way that z;‘ # zl)‘ if j #1.
We take C as the family {C'} U{Dy : A < |Hp|}, where C = {xy, : n > 0}.
Now, we are going to define the family F. Let F} = H; U {zf‘ P <
|Hol},..., By = HyU{z) : A < |Hol}, ...
The families F and C satisfy properties (2) and (3) in Proposition 2.3.
We have already finished the proof. O

} in such a

2.5 Examples.

(1) If the set X of isolated points of a topological space X is countable (in
particular, if X has countable cellularity) and ) # X\ Xg = X7 C clx Xy,
then C(X) = ORYN0. We then have Ch(fw) = OOR. More generally, if
K is an infinite cardinal number of countable cofinality, and Y is a subset
of uniform ultrafilters on k, then Y C cl,yy x and (kUY); =Y is a Gy
subset of K UY’; so, Co(k UY) = OR®. Also, for every almost disjoint
family A of w, Co(¥(A)) = ORY.

(2) Of course, if X is perfect, Xg is Fy in X; so, spaces of a wide class fulfill the
conditions in Theorem 2.4. In particular, if X is metrizable (or even semi-
stratifiable or developable) and () # X1 C clx X, then Co(X) = ORXo0,
In particular, for every countable ordinal number «, C([0, «)) = OR¥.
On the other hand, [0,w;) is a locally compact first countable orderable
space such that its subset of isolated points is not an F,-subset, and the
Michael line M is an hereditarily paracompact quasi-developable space
such that My = {irrational numbers} is not an Fg-subset of M.

(3) A way to obtain examples of spaces X which satisfy the conditions in The-
orem 2.4, now that we have mentioned the Michael line, is the following:
Take a dense-in-itself non-countable separable space (X,7). Let @ be a
countable dense subset of X. We define a new space (Xq,7q) as follows:
let Xg = X and B € Tg if and only if B=CUD with C € 7 and D C Q
(see [E, p.306]). The space X satisfies conditions in Theorem 2.4, so
Co(Xg) = ORY. Observe that (Xg)o = Q and (Xg)1 = X \ Q.

(4) Let Y be a space with iw(Y) = Rg. So Cp(Y) is a dense-in-itself non-
countable separable space ([Ar]). Let @ be a countable dense subset of
Cp(Y'). Because of the previous example we obtain: C(Cp(Y)g) = ORY.
When Y = R, the set @ of polynomials with rational coefficients is a
countable dense subset of Cp(R). Then, C(Cp(R)q) = OR™.

For each x € X, we have denoted by N (z) the system of neighborhoods of x
in X. We will use the symbol My(z) to designate the set {V N Xy :V € N(z)}.
Observe that if z € clx Xo, Ng(z) is a filter on Xy. We are going to obtain a
converse of Theorem 2.4 when Ay(z) is an ultrafilter for every z € X;. First we
prove the following:
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2.6 Proposition. If X is an Fy-subset of X, then Xq is a-w-rwrtX?.

PrROOF: Let F = {F, : n < w} be a partition of Xy constituted by closed
subsets of X. We are going to prove that F is a resolution of Xy with respect
to X Let p € X® and V € N(p). Since p € clx(Xp), then V N Xy # 0. Let
A={n<w: F,NV # 0}, and assume that there exists ng < w such that
for all n > ng, VN F, = 0. We know that V' N (X \ U,<,, Fn) € N(p), but
VNn(X\ Un<n0 F,) N Xy = (), which is not possible. So, A must be infinite. [

2.7 Theorem. Let () # X1 C clx X and assume that Ny(z) is an ultrafilter on
Xy for each x € X1. Then the following assertions are equivalent.

(1) Xg is Fy in X.

(2) Xy is aw-rwrtX;.

(3) Co(X) = ORX0 and Xq is a-w-rwrtX7.

PrOOF: (1) = (2): This is a consequence of Proposition 2.6.

(2) = (1): Let {Fy : n < w} be aresolution of Xy with respect to X;. Let us fix
n < w, and suppose that there exists x € cl Fj, N1 Xy. That is, for each V € N (x),
we have VN F,, # (. Thus, for each VN Xy € My(z), VNE, = (VNXg)NE, £ 0.
Since Np(x) is an ultrafilter, F,, must belong to Ny(x). Let V'’ be an element of
N (z) such that F,, = V' N Xy. Then we obtain F,,, NV’ = () when n # m. But
this last assertion contradicts our hypotheses. Therefore, Fj, must be closed in X .

We obtain (1) = (3) by Theorem 2.4 and Proposition 2.6, and (3) = (2) is
trivial. O

The statement “Xj is a-w-rwrtX;” in (2) and (3) in the previous theorem
cannot be replaced by the weaker proposition “X is a-w-rwrtX;”. In fact, let «
be an infinite cardinal number with uncountable cofinality. Since X = [« is an Ng-
resolvable space, X is a-w-rwrt Xy and Ag(Ba) is open in C(Ba). Nevertheless,
X is not an F,-subset of X.

2.8 Problem. Assume that we have the same assumptions given in Theorem 2.7.
Suppose also that C(X) = ORX0. Is Xy then a-w-rwrtX;?

3. Spaces C(X) when Xj is an F,-subset of X

In this section we are going to consider spaces Cq(X) when the set of isolated
points of X, Xy, is an Fy-subset of X and ) # X \ clx Xy = Z. For example, for
the subspace Y = {r e R: r < 0}U{l/n:n €N} of R, Yy = {1/n: n € N} is
an F,-subset of Y, Y? = {0} and Z = {r € R : 7 < 0}. As usual, CN is the class
of cardinal numbers, and for a cardinal number &, k1 is the minimum cardinal
number strictly greater than x.

Observe that the product space E(x) = [0,w] x D(k) where [0,w] is the space
of ordinals < w with its order topology, and D(k) is the discrete space of car-
dinality k, satisfies the conditions in Theorem 2.4. Thus, by Corollary 1.7 and
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Theorem 2.4, we have
OR" = CO(E(K)) = ®zec((B(x)),) (OR")z-

Since (F(k))1 coincides with D(x), we have C((E(k))1) = RF. Furthermore,
|C((E(k))1)| = 2"%. So we have proved:

3.1 Lemma. For each infinite cardinal k, (JR" accepts a partition of 2" clopen
subsets, each of them homeomorphic to COJR".

3.2 Definitions. A partition C of a topological space X is a homeomorphic
clopen partition of X if each element of C is clopen and homeomorphic to X.
The homeomorphic clopen partition number of X, hop(X), is the cardinal number
min{x € CN : there is no homeomorphic clopen partition of X of cardinality x}.

It is easy to see that hop(X) < |X|T for every space X.
3.3 Proposition. For each infinite cardinal x, hop(CJRF) = (2%)7,

PRrOOF: Because of Lemma 3.1, (2%)" < hop(R¥). Moreover, hop(R¥) < [R*|* =
(27)%; so, hop(OR®) = (2F)*. O

3.4 Corollary. Let 7, v and k be infinite cardinals. Then

@(DRT)QEDRV@HSZT and y=T.

a<k

PROOF: Suppose that 9 : @o<x (ORT),, — OR7Y is a homeomorphism. Let o <

xand x € (OR7),. We have that the connected component of « in @o<x (ORT),,

UERT, must be homeomorphic to JE(E)R'Y. Then, because of Proposition 1.12,

7 = 7. Therefore, since | ®a<x (ORT), | = |[ORY|, k- 27 =27 = 27; thus, x < 27.
Now, assume that £ < 27 and v = 7. By Proposition 3.3, we have

Ba<k (ORT), = OR". Hence, Ba<x (ORT), = OR". O

As has been the custom in this article, for a space X, we denote by X the set of
isolated points of X, X1 = X\ X, X = (clx Xo)NX; # 0 and Z = X\ clx X.
Our next result generalizes Proposition 1.6.

3.5 Proposition. Let X be a space such that X is Fyy and X° # () # Z. Then,
the following assertions are equivalent.

(1) Z is almost-w-resolvable.

(2) X is aw-rwrtX;.

(3) A5(X) ={f € C(X): f | X1 =0} is a clopen subgroup of C(X).
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PrOOF: (1) = (2): Let H = {H, : n < w} be a resolution of Z, and let
F = {F, : n < w} be a partition of X( constituted by closed subsets of X.
We define Cy = Hy U XU Fy and C; = H; U F; fori > 1. It happens that
C ={Cy : n < w} is a resolution of X with respect to Xj.

(2) = (1): Let C = {Cy, : n < w} be a resolution of X with respect to Xj.
Then, H ={C, NZ : n < w} is a resolution of Z.

The equivalence (2) < (3) is Proposition 1.6. O

3.6 Corollary. If Xj is an F,-subset of X, X° # () and Z is almost-w-resolvable,
then

CoX)=a Az(X).

zeC(X,)

3.7 Theorem. Let X be a topological space with Xy being an F,-subset of X
and X # (. If Z is almost-w-resolvable, then AG(X) = ORX0 and Cq(X) is the

free topological sum of < |C(X1)| copies of CRX0.

PROOF: We take the subspace Y = XyUX? of X. The set of isolated points of Y,
Yp, is an F,-subset of Y and Y] is not empty; in fact, Yy = Xo and V; = X°.
Hence, A5(Y) is equal to {f € C(Y) : f | X = 0}. We claim that the natural
projection 7y : A5(X) — Ag(Y) defined by 7y (f) = f ['Y is a homeomorphism.
By Lemma 1.2, my | A5(X) is an embedding.

Let hh € A5(Y). We define b/ € RX as h/(z) = 0 for every z € Zand I/ | Y = h.
Let z € Z = X1\ X" and € > 0. Since Z is open in X and h'[Z] = {0} C (—¢,¢),
B’ is continuous in z. Now let z € Xb. By the continuity of h, there is an
open neighborhood W of z in X such that A[W NY] C (—¢,¢). Since W =
(WNY)U(WNZ), W] C (=€) Tt is clear that h' € A5(X) and 7y (h') = h.
Thus Fy[Aa(X)] = Aﬁ(Y)

Because of Corollary 3.6, Cq(X) = Dred(x1) 5(X))z where (45(X))z is a
copy of Ag(X). Thus, Co(X) = EBEc\e@(Xl)(Aﬁ(Y))f' On the other hand, Yj is

an Fy-subset of Y, ) # Y] C cly Yy and Yy = Xj; so Aﬁ(X) = AB(Y) =~ ORXo
(Theorem 2.4). O

(A

As a consequence of the previous theorem and Corollary 3.4 we obtain:

3.8 Corollary. Assume that Xg is an F,-subset ofAX, Xb £ () and Z is almost-
w-resolvable. Then C(X) = ORX0 if and only if |C/(X;)| < 2%l

The following result is a consequence of Theorems 0.1 and 3.7.

3.9 Corollary. It is consistent with ZFC that for every space X for which X is
an F,-subset and X # (), Co(X) ORX0) s, and C(X) = ORXo f,

in addition, |C(X)| < 2/%ol,

= 69]”66(X1)(
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It is known (see [CH]) that |C(X)| < (wX)weX < 24X) for every infinite
space X, where wX is the least cardinal of an open basis, and wcX is the least s
for which each open cover of X has a subfamily with x or fewer elements whose

union is dense; so:

3.10 Corollary. Let X be a topological space satisfying: Xg is an F-subset
of X, XY 0 and Z is almost-w-resolvable. If (wX;)weX1 < 2l Xol (in particular,
if w(X) <|Xo| or d(X1) < |Xg|), then Co(X) = ORX0,

3.11 Examples.

(1) Since every first countable space is almost-w-resolvable, C(X) = CJRX0
if X is semi-stratifiable or developable (metrizable), X® # ¢ and w(X) <
| Xol-

(2) We now use the ideas of Example 2.5.(3). Let X be an almost-w-resolvable
separable space with a non-countable open subset A such that X \clx A #
(. Let @ be a countable dense subset of A. The space X satisfies
conditions in Corollary 3.10, so C(Xg) = OR¥. Observe that, in this
case, (Xg)o = @, (XQ)b =cly A\ Q, and Z(Xg) = X \ clx A # () which
is an almost-w-resolvable space.

(3) Because of the previous example, C’D(Ré) =~ ORY, where Q = {(z,y) €

Q?:y > 0}.
Now we are going to prove a generalization of Theorem 2.7.

3.12 Theorem. Let X be a space with X # () and Z being an almost-w-
resolvable space. Assume that for each p € X°, Ny (p) is an ultrafilter on Xj.
Then, the following assertions are equivalent.

(1) Xo is Fy in X.

(2) Xp is a-w-rwrtX?.

(3) Co(X) is a free topological sum of < |6(X1)| copies of ORX0 and X is

a-w-rwrtX?.
(4) A5(X) is open in C(X) and X is a-w-rwrtX?.
(5) Ag(X) = ORX0 and Xy is a-w-rwrtX?.

PrOOF: The implication (1) = (2) is Proposition 2.6, (2) = (1) can be proved
in a similar way to (2) = (1) in Theorem 2.7, and (1) = (5) is a consequence of
Theorem 3.7.

(1) = (3): If Xy is Fy, then, using Theorem 3.7, we obtain that C(X) is a
free topological sum of < |5(X1)| copies of JRX0. The remainder is obtained by
Proposition 2.6.

(3) = (2), (4) = (2) and (5) = (2) are obvious.

(2) = (4): Thisis (2) = (3) in Theorem 2.7 plus Theorem 2.4 if Z = ). Assume
now that Z # (). Since X is c—w—rcraXb, X is a-w-rwrt X7, and we have only to
apply Proposition 3.5. O
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We finish this section with the following result which summarizes everything
we have obtained until now in this section, plus Rudin’s and Lawrence’s results
[Ru2], [La).

3.13 Corollary. Let X be a topological space such that X is an Fy-subset of
X, 0# XY and Z is almost-w-resolvable. Then:
(1) Co(X) is not normal if | Xg| > Ng;
(2) The Continuum Hypothesis implies that C(X) is paracompact if | Xg| =
Ng.

4. Y-products and spaces C(X)

We are now going to consider spaces X with |X;| = 1 and we will calculate
C(X) for this kind of spaces. Recall that a filter F on a set X is w™-complete
if for every {F, : n <w} C F, the set (,,_, F belongs to F. For a filter 7 on a

set X, we define E]:RXO, E*,}-RXO, E]:RXO in the following way:

YrRYX0 = {f e R¥0 : {x € Xq: f(z) =0} € F},
S, FRY = {f e R¥0: forall €>0, {x€ Xo:|f(x)| <e} € F},
SFRY = {f eRX0: forall >0, {zeXg:|f(z) >e} ¢ F}

For a filter F on X, Z}-RXU - 2*7]:RX0 C i}‘RXO. When F is an ultrafilter,
then ¥, FRY0 = £ R0,

The symbols ZE—RXO, EE}-RXO, ijm_-RXO mean that we are considering the sets
Z]:RXO, E*J:]RXO, EJ:RXO with their box product topology.

Recall that for a space X, Xy is the set of isolated points of X, X7 = X \ X
and always ) # X7 C clx Xj.

We begin our analysis by obtaining some results about resolvability of X when
X1 =1

4.1 Proposition. Let X be a space such that X1 = {p}. Then, X is a-w-rwrtX;
iff Xg is a-w-rwrtX;.

ProOF: Assume that X is a-w-rwrtX; and let {F}, : n < w} be a resolution
of X with respect to Xj. Let ng be a natural number such that p € F,,. So,
{Frn:new\{no}} U{Fn, N Xo} is a resolution of Xy with respect to X;. O

4.2 Proposition. Let X1 = {p}, and assume that Ny(p) = {Xg NN : N is a
neighborhood of p} is a non-w™-complete filter. Then, X is a-w-rwrtXy.

ProOOF: Let {V,, : n < w} C Ny(p) such that (), Vi ¢ No(p) with Vy = Xo.
Let W, = mignVi= Fo = Nyycw Wn and Fp1 = Wi \ Wiy, We are going to
prove that {Fy, : n < w} is a resolution of Xy with respect to X.
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Suppose the contrary; that is, assume that there are V € N(p) and ng < w
such that V N F, = 0 for all n > ng. We take My = W41 N V. The set M
belongs to N (p) and My N F,, = ( for all n > ng. We claim that Mj is contained
in ﬂn>n0 Wy In fact, if z € My, then © € Wy 41. If © ¢ Wy 49, « must belong
to Fp,+2, which is not possible. The same reasoning used in an inductive process
gives us that = must belong to (,,5,,, Wn. But N(p) is a filter, My € N(p) and
Mo C Npsng Wn = Ny<w Wai s0, we obtain a contradiction. Thus {Fy, : n < w}
is a resolution of X with respect to Xj. ([

As a consequence of Theorem 2.7 and Proposition 4.2 we can prove:

4.3 Theorem. If Ny(p) is an ultrafilter which is not an w™-complete filter, then
Xy is Fy in X and Co(X) = ORX0,

So, for an infinite cardinal number &, if p € Bk \ & is not wT-complete, and
{p} Uk is considered with its topology inherited from (&, then

o({p} U k) = OR™.

Now, we are going to see that the “¥-products” defined at the beginning of
this section are related to our study of C(X).

4.4 Proposition. If X; = {p}, then A5(X) = E*D/\/'o( )RXO.

Proor: The range of the isomorphic embedding ¢ : A5(X) — RX0 defined as
o(f) = f | Xo (see Lemma 1.2) is equal to E*D/\/'o(p)RXO' Indeed, if € > 0 and

f € A5(X), there is V' € N (p) such that f[V] C (—¢,¢). Thus, VN Xy € Ny(p)
and VNXyc{zeX:|f(z )|<e} Therefore, {:ceXo If(z )|<e}€./\/0( ).
This means that f [ Xg € E*N( )R 0. Moreover, if g € Z*N (p)R 0 and

g € R is such that § | Xo = g and G(p) =0, then § € A5(X) and ¢(g) =g. O

4.5 Proposition. If X = {p} and Ny(p) is an wT-complete filter, then

RY =50, RX0.

O
2 No(p) (p)
Proor: We only have to prove that E*/\/’( )R 0 C E/\/( )RXO. Let F' €

E*D,No(p)RXO’ and for each n < w we take D, = {z € Xg : |f(z)] < o=}
It is clear that D, € Ng( ) for all n < w. So, N, Dn € Ny(p). But
MNp<w Dn = {z € Xg : f(z) = 0}. Therefore, f € E/\/ (p )RXO. O

Because of the last two propositions we obtain the following corollary.
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4.6 Corollary. If X| = {p} and Ny(p) is an w'-complete filter, then

Ag(X) = =5 R0,

So, if X7 = {p}, then the following assertions hold.
(1) If Ny(p) is an w™-complete filter, and X is a-w-rwrt X7, then

co(X) = PR, Rl
zeR

(2) If Ny(p) is a filter which is not w™-complete, then

Co(X) = DIy, ()R e
zeR

Now we are going to consider the one-point compactification K(Xg) of the
discrete space Xy. Let p be the point of K(Xg) which compactifies Xj.

4.7 Proposition. Let X1 = {p}. Then, X = K(Xy) if and only if, for every
A€ [Xo®0 and V € N(p), we have ANV # §.

4.8 Theorem. If X = K(Xj), then N (p) is not w™-complete. So, in this case
we have -
ColX) = @D )Rl
z€eR

PROOF: Let A € [Xo]N0 with A = {an, : n < w} and ay # am, if n # m. The set
Vi = X0\ {ao, - .., an} belongs to Ny(p) for every n < w, and N, Vn & No(p).
[l

In order to reduce (1) and (2) formulated after Corollary 4.6, we need to cal-
culate the hop number of our “¥-products”.

4.9 Theorem. Let X; = {p} and let k > Wg. If there is A € [Xo|" such that
X\ AeN(p), then
hOP(EENO(p)RXO) > (27)*

and
hOP(EE/O(p)RXO) > (2T

PROOF: We will sketch the proof of the first inequality. The proof of the second
inequality is similar. Let A € [X(]* such that X \ A € N (p). Because of Proposi-
tion 3.3, there exists a clopen partition of OR4 of cardinality 2% such that each of
its elements is homeomorphic to OR4. Let {A) : A < 2"} be such a partition. For
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each A < 2F we take a homeomorphism 1 : Ay — ORA, and we take B, c RX0
such that Wm(B)\) Rif ¢ ¢ A and w4[B)] = A). Now we deﬁne for A < 2%,

Cy,=DB)ynN E*N’( )RXO. The set C'y is a non-empty subset of Z N( )R o for
each A < 2" because X \ A € N(p). The function ¥y : C\ — E*/\/’( )RXO

defined by m4 o Uy(f) = n(f | A) and for x ¢ A, 7y 0o U\ (f) = f(x), is a
homeomorphism. (The hypothesis X \ A € N(p) also gives us the surjectivity of
U,.) Furthermore, it is possible to prove that {C) : A < 27} is a clopen partition
of Ty R¥®. O

As a consequence of Proposition 4.7 and Theorem 4.9 we have:

4.10 Corollary. Let X; = {p} and X # K(Xy). Then,
hop(= g (p BY) > 2%0)

and
hOp(EE/O(p)RXO) > (2R0)*

For a set S, the “S-product” ¥ = {f e RY: Ve >0, [{z € S:|f(x) >e€}] <
Rg} of RS coincides with the ¥-product ED RS, where Fq is the Fréchet filter
on S (F € Fy iff S\ F is finite). That is, Z = ZD Np )RS where p is the point
which compactifies the discrete space S.

4.11 Proposition. Let X = K(Xy). Then, hop(Z RX0) > (2R0)+

No(p)
Proor: We have already mentioned that Z*N( )RXO is equal to the subspace

{feRX0: Vex>0, [{zeXy:|f(x)] > e} <No}of ORX0. Let us fix an infinite
countable subset of Xo: B = {zp : n < w}. The collection F = {{zn} : n <w} is
a partition of B. So, we can consider the clopen subgroup E(F) of ORXo defined
by F (see the definition before Proposition 1.3). It is now easy to verify that
C = Z ( )RXO N E(F) is a non-empty clopen subgroup of Z* No(p )RXO Thus,

Z*/\/’o( )R 0 can be expressed as the free topological sum of the cosets of the

quotient group G = E* No(p) ]RXO/C:

Y wemR =P p P ©)

DeG B<|G|

Now, we are going to prove that |G| is greater or equal to 2¢. In fact, take
an almost disjoint family B of B of cardinality 2%, and for each T' € B we define
fr:Xo— R as

if rt=x, and z, €T

iy ={ 7

0 otherwise.
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It is clear that fp € E*D/\/’O(p)RXO' Furthermore, if 77,75 € B are different,
fr, — fr, does not belong to C. In fact, since Ty \ 7> is an infinite set, there
is a sequence {n; : k < w} of natural numbers, strictly increasing, such that
{@n, + k < w} C T \Tp. For each m < w, there is kj, such that ng > m;
50, (fT1 - fTQ)(xnkm) = 27%;71 ¢ [_Q"im ) Q"im]' Then: le - fT2 ¢ E07m(*7:)
Therefore, fr, — fr, ¢ Eo(F). We conclude that |G| > 2¢.

Now, because of Theorem 4.8 and the facts we have already shown in this
proof,

coX)= P EENO(p)RXo =~ P ©.= P (C)angNo(p)RXO.
a<2®o a<2R0.|G| a<|G|

This means that hop(Z*DNO(p)RXo) > (2No)+, O

Next, we summarize the results given in Theorem 4.8, Corollary 4.10, Propo-
sition 4.11 and in formulas (1), (2) which appear after Corollary 4.6.

4.12 Theorem. Let X be a space with X1 = {p}. Then, the following proposi-
tions hold.
(1) If Ny(p) is wT-complete and X is a-w-rwrtXy, then

CoX) = ZE/()(JD)RXO'
(2) If Ny(p) is not wT-complete, then

CoX) = Z AR

4.13 Examples.

(1) Let x be an infinite cardinal and let p € Sk \ k. Consider the subspace
X = kU {p} of Br. If p is not wF-complete, then

= R = OR®
(see Theorem 4.12.(2) and the remark after Theorem 4.3).

(2) Let Lg(Xo) = {p} U Xy be the <xT-Lindeldfication of the discrete space
X where p ¢ X (that is, every point in Xy is isolated and a system of
neighborhoods of p is {V C Lx(Xg) : p € V and |Lk(Xo) \ V| < T}).
The filter Ny(p) is wT-complete, and if cof(|Xg|) > &, then Lx(Xp) is
a~w-rwrt{p}. Since {p} = (Lx(X0))1, Co(Lx(Xo)) = EE/O(MRXO

(3) In particular, if | Xg| = Ny, then the space of the real-valued continuous

functions defined in the Lindelofication of Xy with the box product to-
pology, Co(L(Xjp)), is homeomorphic to the X-product EGDRM of OR™

based on 0 with the box product topology.

This last example raises the following problem:
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4.14 Problem. Is zaﬂmm homeomorphic to ORN jf 29 = 2w1 7

The last results of this section take advantage, once more, of Theorem 2.7 in
order to obtain relations between product spaces CJR" and their X-products, and
they give positive answers to some variations of Problem 4.14.

For infinite cardinal numbers v and x with v < x, we define
zaﬂﬁw = {f€OR": [{A < r: f(\) #0} <~}

4.15 Proposition. For uncountable cardinals v and k with v < k, cof(y) > Rg
and cof (k) = Ry, OR" is homeomorphic to @A<2K(EGDVR“))\.

PrOOF: Let Y = {q € v* : |[F| > yVF € q}. Take X = xUY with its
topology inherited from Sk. Since cof(k) = Vg, & (= Xg) is a-w-rwrtX;. Then,
Theorem 2.7 guarantees that C(X) is homeomorphic to OR".

On the other hand, the isomorphic embedding ¢ from Ag(X) to OR", de-

fined in Lemma 1.2, satisfies ¢[Ag5(X)] = ZGD—\/RH (here we use the hypothesis

cof(7) > w). Moreover, X is normal and Y is closed in X, so C(Y) = C(Y).
Since Y is a compact space, |C(Y)| = 2% (Proposition 1.14). Hence, by Corol-

lary 1.7, C(X) = EBMQH(EGDVRN)A.
O

As a consequence of the previous result we obtain:

4.16 Corollary. Let x and v be two cardinal numbers which satisfy the same
properties given in the hypotheses of Proposition 4.15. Then, COJR" = E%WRH iff

O kY — (9k)+ ’
hop(EaﬁR ) =(27)7.
4.17 Corollary. Let v < k, cof(k) = w, cof(y) > w. Assume that there is a
cardinal number 7 < 7 such that 27 = 2%. Then, hop(EaD’yR“) = (2%)" and
OR® = x5 R,
0,y

)

Proor: We have that Zam R" is equal to EGDN RX0 where X is the < ¥-

Lindel6fication of the discrete space of cardinali’ty k. Corollary 4.9 implies that
hop(ZGDWR“) > (27)*. This inequality plus the hypothesis 27 = 2% plus Proposi-

tion 4.15 imply (JR® = EﬁDWR“. O

5. Spaces C(X) when X is countably compact

We have already pointed out that for a set S the “¥-product” ¥ = {f €
RS : Ve>0, {z€S:|f(x)] > e} <No} of RS, coincides with the Y-product
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202 RY where Fj is the Fréchet filter on S (F' € Fy iff S\ F is finite). That
is, ¥ is equal to E*DN(p)RS where p is the point which compactifies the discrete

space S. Recall that for a topological space X, X is its subset of isolated points,
X; =X\ Xg, Xb = X Nnecly Xg and Z = X; \ Xb. Moreover, every space X in
this article satisfies Xo # 0 # X°.

5.1 Proposition. Let X be such that every infinite subspace of Xy has a cluster
point in X. Then A5(X) is homeomorphic to Z*D]_-ORXO.

PROOF: It is easy to verify that the range of the isomorphic embedding ¢ :
A(X) — ORX0 (see Lemma 1.2) coincides with E*D}-ORXO. O

5.2 Theorem. Let X be such that every infinite subset of Xy has a cluster
point in X, and such that X is a-w-rwrtXj. Then C(X) is homeomorphic to
@aea(xl)(ZEFORXO)E. In particular, Co(X) 2 X0 RX0 if |C(X)| < 2.

PRrOOF: Since X is a-w-rwrt Xy, A5(X) is clopen in Ch(X). So,

o) = P 4x)= P ErR:
#zeC(X1) #zeC(X1)
(Proposition 5.1). The last assertion follows from Proposition 4.11. O

Since every countably compact space is almost-w-resolvable, the following result
is a consequence of the previous theorem.

5.3 Corollary. If X is a countably compact space, then
CoX)= P ElaR);
EE@(Xl)
If in addition |C(X1)| < 2%, we obtain C(X) = x5, R¥0.

Observe that if X is a pseudocompact space and N is an infinite countable
subset of X, hence N must have a cluster point in X. So, it is natural to ask:

5.4 Problem. Is X a-w-rwrtX; if X is a pseudocompact space?

5.5 Corollary. (1) For every infinite cardinal number x, C(8k) is homeo-
morphic to ®>\<2"(EE}‘0RH)>\'
(2) For every q € w*, ORY = Z*D]_-OR“ = EEqR“.

PROOF: Assertion (1) follows from Corollary 5.3 and from the equalities: (8k)1 =
k*, C(k*) = C(k*), w(k*) = 2" and (by Proposition 1.14) |C(x*)| = w(k*)¥
2k,

Assertion (2) is implied by Theorem 2.7 and Corollary 5.3.

O

Again, using Proposition 1.14, we will prove the following lemma.
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5.6 Lemma. For every infinite ordinal number «, |C([0, «))| = ||

PROOF: For every ordinal number «, the space [0, a] is compact; so, |C([0, a])| =
|a|“ by Proposition 1.14. If « is a successor ordinal, [0, «) is compact and, again,
|C([0,a))| = |a|*. Moreover, if « is a limit ordinal with uncountable cofinality,
then C([0, )] = |C(0,a])| = |a]*.

Now, we only have to prove the equality |C([0,@))| = |a|* when « is a limit
ordinal with countable cofinality. In this case, if g < a1 < -+ < apn < ... and
sup{an : n < w} = a, thus C([0,a)) = ] C((an, ap+1]). Then, |C([0,a))| <
Hn<w |C([07an])| = Hn<w |an|w S |a|w'

On the other hand, |a|* = |C([0,a])| < |C([0,))| because the relation f —
f 110,a) is a one-to-one function from C([0, a]) to C([0, @)). O

n<w

So, the following results are a consequence of Corollary 5.3 and Lemma 5.6.
5.7 Corollary. Let a be an infinite ordinal. Then,

(1) C(10,al) = @)oo (E25, BRI,

(2) Ca((0,) = B ojafe (7RI if cof(a) > Ro;

(3) OR = C([0,w]) and C([0,w1]) = Co([0,w1)) = BTz RV

Observe that the connected component of a point x in EE}-OR|°“ is homeomor-

phic to UERW. By Proposition 1.12 and the previous results we obtain:

5.8 Corollary. Let o and 3 be two infinite ordinals, both with cofinality different
from Rg. Then, C([0,a)) = C([0, 8)) if and only if |«| = |3].

Consider the set

e RO = {fe RO forall €>0 and 5 <a,
{A<B:1f(N] = e}] < o}

We denote this set with its box topology by E*D]_-OR[O’O‘). We leave the proof of
the following result to the reader.

5.9 Proposition. Let a be an ordinal number such that |a| > Rg and cof () =
Ng. Then,

co(0,0) = P EHAROM),.
A< ||
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