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On weighted spaces of functions harmonic in Rn

A.I. Petrosyan

Abstract. The paper establishes integral representation formulas in arbitrarily wide Ba-
nach spaces bp

ω(R
n) of functions harmonic in the whole Rn.
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1. Introduction

1.1. This paper extends the results of [1] related to arbitrarily wide spaces of
functions harmonic in the unit ballB of Rn to similar spaces of functions harmonic
in the whole Rn. Namely, the integral representation formulas in spaces bp

ω(R
n),

which have natural definition, are obtained by exhausting Rn by enlarging balls.
Also, a representation connected with the natural isometry between b2ω(R

n) and
the space L2(S) is obtained, which is of an explicit form of integral operator along
with its inversion.
The results of this paper are faregoing multidimensional similarities of the early

results of M.M. Djrbashian [3], [4] (1945–1948) which in essence gave rise to the
theory of Hp(α) spaces in the unit disc: the applied analytic apparatus allows
to extend the results of [5] related to the one-dimensional case and holomorphic
functions to functions harmonic in Rn.
Note that in [2], the case of weighted spaces of functions analytical in the unit

ball of Cn is investigated.

1.2. We start with some notation which we use all over the paper.

B = {x ∈ Rn: |x| < 1} is the open unit ball in Rn and S = {x ∈ Rn: |x| = 1} is
its boundary, i.e. S is the unit sphere in Rn;

σ is the normalized surface-area measure over S, i.e. σ(S) = 1;

Hk(R
n) is the set of all complex-valued homogeneous harmonic polynomials of

degree k in Rn;

Hk(S) is the set of all spherical harmonics of degree k, i.e. all restrictions of
functions from H(Rn) to the sphere S;

Zk(η, ζ) is the zonal harmonic of degree k, i.e. Zk(·, ζ) ∈ Hk(S) and p(ζ) =∫
S p(η)Zk(η, ζ) dσ(η) for all p ∈ Hk(S);



234 A.I. Petrosyan

P [f ] is used for the Poisson integral of f :

(1) P [f ](x) =

∫

S
P (x, ζ)f(ζ) dσ(ζ), where P (x, ζ) =

1− |x|2

|ζ − x|n
.

2. The case of the ball

We shall use the following definitions and statements from [1] related to the
weighted spaces bp

ω(B) in the unit ball.

As in [5], by Ω we denote the class of all functions ω(t) defined on [0, 1] and such
that ω(1) = ω(1− 0) and

(i) 0 <
∨1

δ ω < ∞ for any δ ∈ [0, 1);

(ii) ∆k ≡ ∆k(ω) = −

∫ 1

0
tk dω(t) 6= 0,∞, k = 0, 1, . . . ;

(iii) lim inf
k→∞

k
√
|∆k| ≥ 1.

Further, for a given ω ∈ Ω, we denote

dµω(x) = −dω(r2) dσ(ζ),

where x = rζ is the polar form of x, (i.e. r = |x|, ζ ∈ S) and define Lp
ω(B) as the

set of all dµω-measurable functions in B for which

‖u‖p,ω =

{∫

B
|u(x)|p |dµω(x)|

}1/p

< +∞, 1 ≤ p < ∞.

By bp
ω(B) we denote the subset of harmonic functions from Lp

ω(B).

Further, for a given ω ∈ Ω we use the ω-kernel of the form

Rω(x, y) =
∞∑

k=0

∆−1
k Zk(x, y),

where Zk(x, y) is the harmonic extension of the zonal harmonic Zk by its both
arguments. As it is proved in [1], for any function u ∈ bp

ω(B) the following integral
representation is true:

(2) u(x) =

∫

B
u(y)Rω(x, y) dµω(y), x ∈ B.
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3. The integral representation in Rn

3.1. Let Ω∞ denote the set of parameter-functions ω(t), which strictly decrease
on the whole half-axis [0,+∞) and are such that ω(0) = 1 and

∆∞
k (ω) = −

∫ +∞

0
tk dω(t) < +∞ for any k = 0, 1, . . . .

For a given ω ∈ Ω∞ we introduce the space b
p
ω(R

n) as the set of all functions
which are harmonic in Rn and such that

‖u‖p,ω =

{∫

Rn

|u(y)|p dµω(y)

}1/p

< +∞, 1 ≤ p < +∞,

where dµω(rζ) = −dω(r2)dσ(ζ). Let Lp
ω(R

n) be the corresponding Lebesgue
spaces. We shall deal with the following ω-kernel in Rn:

(3) R∞
ω (x, y) =

∞∑

k=0

Zk(x, y)

∆∞
k (ω)

.

Lemma 1. The right-hand side series in (3) is absolutely and uniformly conver-
gent on any compact subset of Rn ×Rn, and hence R∞

ω (x, y) is harmonic in each
of its variables in Rn.

Proof: Let x = rζ, y = ρη, where ζ, η ∈ S. As the function Zk(x, y) is homoge-
neous in its both variables, we get

(4) |Zk(x, y)| = rkρk|Zk(ζ, η)| ≤ rkρkhk,

where hk is the dimension ofHk(S). Now observe that under the above conditions

(5) lim
k→∞

k

√
∆r

k(ω) = r2 for ∆r
k(ω) = −

∫ r2

0
tk dω(t) and ∀r ∈ (0,+∞].

Indeed, it is obvious that ∆r
k(ω) ≤ r2k

(
1− ω(r2)

)
and hence

(6) lim sup
k→∞

k

√
∆r

k(ω) ≤ r2.

On the other hand,

∆r
k(ω) ≥ −

∫ r2

δ
tk dω(t) ≥ δk(

ω(r2)− ω(δ)
)
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for any δ ∈ (0, r2). Therefore

lim inf
k→∞

k

√
∆r

k(ω) ≥ δ lim
k→∞

k

√(
ω(r2)− ω(δ)

)
= δ,

and hence by (6) the passage δ → r2 gives (5). Further, note that ∆r
k(ω) ↑r.

Therefore by (5)

lim inf
k→∞

k

√
∆∞

k (ω) ≥ r2

for any r > 0, and consequently

(7) lim
k→∞

k

√
∆∞

k (ω) = +∞.

The desired convergence follows from (4) and (7) in view of the estimate

(8) hk ≤ Ckn−2

(see, e.g. [7]). �

3.2. The following statement is the main theorem of this section.

Theorem 1. Let u ∈ b2ω(R
n), where ω ∈ Ω∞. Then

(9) u(x) =

∫

Rn

u(y)R∞
ω (x, y) dµω(y), x ∈ R

n.

Proof: The idea of the proof is the following. For any r > 0 we introduce a
kernel

Rr
ω(x, y)

def
=

∞∑

k=0

Zk(x, y)

∆r
k(ω)

,

where ∆r
k(ω) is defined in (5). This kernel plays for a ball |x| < r the same role, as

Rω(x, y) for a unit ball, after dilation we obtain the integral representation (10)
from (2). And passing to limits as r → ∞ we get (9) from (10), which is expected,
because the coefficients ∆r

k(ω) of the expansion of the kernel R
r
ω(x, y) tend to the

coefficients ∆∞
k (ω) of R

∞
ω (x, y).

Consider the function ωr(t) = ω(r2t), 0 ≤ t ≤ 1. Then obviously ∆k(ωr) =

r−2k∆r
k(ω). Therefore by (5)

lim
k→∞

k
√
∆k(ωr) = 1,
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and hence ωr ∈ Ω. On the other hand, u(rx) ∈ b2ωr
(Bn). Thus, the representation

(2) is valid for u(rx). Now observe that for |x| < r, |y| < r

Rωr

(x

r
,
y

r

)
≡

∞∑

k=0

Zk(x, y)

r2∆k(ω)
=

∞∑

k=0

Zk(x, y)

∆r
k(ω)

def
= Rr

ω(x, y),

and dµωr

(y
r

)
= dµω(y). Consequently, (2) can be written in the form

(10) u(x) =

∫

|y|<r
u(y)Rr

ω(x, y) dµω(y), |x| < r,

and to prove (9) it suffices to show that for any fixed x ∈ Rn

(11) lim
r→∞

∫

|y|<r
u(y)Rr

ω(x, y) dµω(y) =

∫

Rn

u(y)R∞
ω (x, y) dµω(y).

To prove this relation, observe that by Lemma 1 the function R∞
ω (x, ·) is harmonic

in Rn. Therefore, by Hölder’s inequality

∫

Rn

∣∣u(y)R∞
ω (x, y)

∣∣ dµω(y) ≤ ‖u‖2,ω

{∫

Rn

∣∣R∞
ω (x, y)

∣∣2 dµω(y)

}1/2

= ‖u‖2,ω

{
∞∑

k=0

1

(∆∞
k )
2

∫

Rn

Z2k(x, ρζ) dµω(ρζ)|

}1/2

= ‖u‖2,ω

{
∞∑

k=0

1

(∆∞
k )
2

∫ ∞

0
ρ2k |dω(ρ2)|

∫

S
Z2k(x, ζ) dσ(ζ)

}1/2
.

Further, it is evident that

(12)

∫

S
Z2k(x, ζ) dσ(ζ) = |x|2k

∫

S
Z2k

(
x

|x|
, ζ

)
dσ(ζ) = |x|2khk.

Consequently,

(13)

∫

Rn

∣∣u(y)R∞
ω (x, y)

∣∣ dµω(y) ≤ ‖u‖2,ω

{
∞∑

k=0

|x|2khk

∆∞
k

}1/2
.

According to (7) and (8), the right-hand side a series of this estimate is convergent.
Hence we conclude that the relation (11) is equivalent to

lim
r→∞

∫

|y|<r
u(y)[Rr

ω(x, y)− R∞
ω (x, y)] dµω(y) = 0.
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In order to prove the latter relation, assume that |x| = r0, r0+1 < r1 < r < +∞,
and observe that

I(r) ≡

∣∣∣∣∣

∫

|y|<r
u(y)(Rr

ω(x, y)− R∞
ω (x, y)) dµω(y)

∣∣∣∣∣

≤

∫

|y|<r1

|u(y)(Rr
ω(x, y)− R∞

ω (x, y))| dµω(y)

+

∫

r1<|y|<r
|u(y)Rr

ω(x, y)| dµω(y)

+

∫

r1<|y|<r
|u(y)R∞

ω (x, y)| dµω(y) ≡ I1(r) + I2(r) + I3(r).

To estimate the summand I2(r) we once again apply Hölder’s inequality:

(14)

I2(r) ≤

{ ∫

r1<|y|<r

|u(y)|2 dµω(y)

∫

r1<|y|<r

|Rr
ω(x, y)|2 dµω(y)

}1/2

=

{ ∫

r1<|y|<r

|u(y)|2 dµω(y)

∞∑

k=0

1

(∆r
k)
2

∫

r1<|y|<r

Z2k(x, y) dµω(y)

}1/2
.

Further, according to (12)

(15)

∫

r1<|y|<r

Z2k(x, y) dµω(y)| =

∫

S
Z2k(x, y) dσ(ζ)

∫ r

r1

ρ2k |dω(ρ2)|

= |x|2khk

∫ r

r1

ρ2k |dω(ρ2)|.

Therefore
∞∑

k=0

1

(∆r
k)
2

∫

r1<|y|<r
Z2k(x, ρη) dµω(ρη)

≤

∞∑

k=0

|x|2k

(∆r
k)
2

∫ r

r1

ρ2k| dω(ρ2)|

∫

S
Z2k

(
x

|x|
, η

)
dσ(η) ≤

∞∑

k=0

|x|2khk

∆r
k

≤

∞∑

k=0

r2k0 hk

∆r0+1
k

.

The last series converges in virtue of (5) and (8), therefore I2(r) < ε/3 for a
given ε > 0 and r1 large enough. On the other hand, from (13) it follows that
I3(r) < ε/3 for r1 large enough. Besides, for any fixed r1

(16)

I1(r) ≤ ‖u‖2,ω

{∫

|y|<r1

|Rr
ω(x, y)− R∞

ω (x, y)|2 dµω(y)

}1/2

= ‖u‖2,ω

{
∞∑

k=0

(
1

∆r
k

−
1

∆∞
k

)2 ∫

|y|<r1

Z2k(x, y) dµω(y)

}1/2
.
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Therefore, by (15)

I1(r) ≤ ‖u‖2,ω

{
∞∑

k=0

(
1

∆r
k

−
1

∆∞
k

)2
|x|2khk

∫ r1

0
ρ2k |dω(ρ2)|

}1/2
,

and the latter series has a convergent majorant independent of r. Indeed,

∞∑

k=0

(
1

∆r
k

−
1

∆∞
k

)2
|x|2khk

∫ r1

0
ρ2k |dω(ρ2)|

≤

∞∑

k=0

|x|2khk

(
2

∆r
k

)2
∆r1

k ≤ 4

∞∑

k=0

r2k0 hk

∆r1
k

< +∞,

where the right-hand side series converges due to (5) and (8), as r0 < r1. There-
fore, the right-hand side of (16) vanishes as r → +∞ and hence I1(r) < ε/3 for
r large enough. Thus, we conclude that I(r)→ 0 as r → +∞, which implies the
desired representation (9). �

3.3. As b2ω(R
n) is a closed subspace of the Hilbert space L2ω(R

n), there is a unique
orthogonal projection Q of L2ω(R

n) onto b2ω(R
n), which is described by

Theorem 2. The operator

Qω[u](x) =

∫

Rn

u(y)R∞
ω (x, y) dµω(y), x ∈ R

n, u ∈ L2ω(R
n),

is the orthogonal projection of L2ω(R
n) onto b2ω(R

n).

The proof of this theorem as well as of the statements below follows the same
lines as the corresponding one in [1] and is thus omitted.

Proposition 1. Let a function ω̃ ∈ Ω∞ be continuously differentiable in [0,+∞)
and such that ω̃(+∞) = 0, ω̃′(t) < 0 and is bounded on [0,+∞) and∫ +∞
0 t−1 dω̃(t) > −∞. Further, let ω be the Volterra square of ω̃, i.e.

(17) ω(x) = −

∫ ∞

0
ω̃

(x

t

)
dω̃(t), 0 < x < 1.

Then ω ∈ Ω∞ and

(18) ∆∞
m (ω) = [∆

∞
m (ω̃)]

2 , m ≥ 0.

By hp(B) we denote the ordinary harmonic Hardy space in B. Besides, we
consider the operator

Lω̃[u](x) = −

∫ ∞

0
u(tx) dω̃(t).

The following two theorems establish an isometry along with its inversion between
b2ω(R

n) and L2(S).



240 A.I. Petrosyan

Theorem 3. The mapping f 7→ Rω̃ [f ], where

Rω̃[f ](x) =

∫

S
f(ζ)R∞

ω̃ (x, ζ) dσ(ζ)

is a linear isometry from L2(S) to b2ω(R
n).

Theorem 4. Let f ∈ L2(S) and u = Rω̃[f ]. Then

(a) Lω̃[u] = P [f ], where P [f ] is the Poisson integral (1);
(b) the mapping u 7→ Lω̃[u] is a linear isometry of b2ω̃(R

n) onto h2(B).

Remark 1. It is well known that for f ∈ L2(S) the function P [f ] has a nontan-
gential limit f(ζ) at almost every point ζ ∈ S. Thus, it is natural to identify f
and P [f ] and to say that the operators Lω and Rω are mutually inverse.
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